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Abstract—Future applications for next generation mobile net-
works demand extremely low end-to-end latency and high relia-
bility. Besides new concepts to achieve low latency, there is also a
need to prove that the requirements are met and high reliability
can be guaranteed under the influence of randomly behaving
traffic. Due to the complexity and the ultra-low failure rates,
simulations or testbeds are cumbersome or even unfeasible. Thus,
this paper aims for a flexible mathematical model that is able to
capture the randomness and to analyze the end-to-end latency
distribution in networks. The distribution provides not only mean
values but also percentiles, which are of key importance for
critical communications. Moreover, such a model may help to
optimize the network, e.g., by selecting the involved nodes and
improving the routing strategy.

Index Terms—latency, modelling, queuing networks, 5G,
URLLC.

I. INTRODUCTION

The fifth generation of mobile networks (5G) is envisioned
to enable a variety of new applications. Apart from the ever
increasing data rate demands, 5G networks need to tackle
extremely low end-to-end (E2E) latency and ultra-high relia-
bility requirements [1], which is denoted as ultra-reliable low-
latency communications (URLLC). The simultaneous support
of multiple use cases with different constraints is expected
to be realized in a flexible and autonomous network enabled
by software defined networks (SDN) and network function
virtualization (NFV) [2]. The E2E analysis of the required key
performance indicators (KPIs) demands the joint consideration
of the Radio Access Network (RAN), the fronthaul, and
the network including switches, routers, and other nodes,
which is highly complex and its evaluation is extremely time-
consuming. Thus, an evaluation tool is introduced to analyze
the E2E latency distribution of any network topology. It is
designed to be universal in the sense that the model can
be applied to the RAN, the fronthaul, any other part of the
network individually, or the entire network.

The proposed tool is based on queuing theory and provides
a mathematical model to analyze the processing time of indi-
vidual nodes under given load conditions, capacities, service
rates, and routing probabilities. In particular, the models build
on queuing networks [3], which denote a class of stochastic
models extensively used to analyze resource sharing systems
such as communication and computer systems, e. g., [4], [5]. In
contrast to other work, which is often limited to the derivation

of the mean and variance, this article aims to find the entire
latency distribution. Thereby, percentiles can be derived as
well, which are of key importance for URLLC.

In the introduced framework, any network topology with
any number of nodes, e.g., switches, routers, access points,
etc., with any possible connection between them can be
captured. Here, every node can differ from each other and
can have different capacities and processing attributes. The
connections reflect the (wired or wireless) links along which
data is forwarded according to certain routing probabilities.
Hence, the network topology can be defined by the number
of nodes and the connections, which can be flexibly adjusted
based on the selected probabilities, i.e., a probability of zero
reflects no connection. Given the SDN and NFV features of 5G
networks, these probabilities can be updated in an adaptive and
autonomous manner, such that the proposed model serves as a
tool for autonomous and intelligent node selection and traffic
forwarding in both a centralized and distributed manner.

The main contributions are as follows. A mathematical
framework to evaluate the E2E latency distribution of a net-
work with any given topology is provided. For a realistic E2E
latency evaluation, possible mutual dependencies of the service
times of nodes are incorporated. Wherever available, analytical
expressions, €. g., known results such as the exemplary queu-
ing models used in this paper, can be implemented. However,
other models are also applicable in the proposed general
framework. If no analytic results are available, the model
is still flexible by applying numerical results. For instance,
distributions obtained from real data could be applied as well.
The proposed model is validated through an evaluation of a
basic RAN scenario containing a realistic model for Ethernet
switches and comparison to simulation results. Here, M/D/1
queues are considered as representative models for machine
type communication (MTC) traffic.

II. SYSTEM MODEL
A. Notation

In this work, a random variable (RV) is depicted by a capital
letter X, its realization by a small letter x, and its probability
density function (pdf) and cumulative distribution function
(cdf) by fx and Fx, respectively. The operator # denotes the
convolution. The indicator function of a set A is denoted as 14,
being one if the argument is in A and zero otherwise.



B. The Queuing Network

Each node, e.g., a base station (BS), an Ethernet switch
(ES), or an edge cloud server (CS) in a RAN, is modeled as a
queuing system with different properties, mainly characterized
by their (external) arrival process, service time distribution,
capacity, and scheduling. A detailed mapping is discussed in
Sec. II-D. Accordingly, the terms node and queue are used
interchangeably in this paper.

Let M € N denote the number of nodes Q;, i € M in the
network and M = {1,...,M} be the set of all node indices.
The queues are connected and form a queuing network [3],
i.e., after being processed, each output of a queue Q; will be
forwarded to the queue Q; with probability p;; or will leave
the network with probability p;o, i, j € M (cf. Fig. 1). External
packets arrive at the network with a mean rate @ > 0 and enter
at the queue Q; with probability pg;, j € M. For now, the
arrival process is not further specified. The probabilities are
collected in the routing matrix P = (p;;); jepm and the vectors
Po- = (poj)jem and p.o = (pio)ie m, respectively. Together, P,
Po., and p.o completely describe the topology of the network.
It is worth noting that by setting certain elements in the routing
matrix to either zero or one, one can achieve disconnection or
deterministic routing between two queues, respectively.

Let A; denote the effective arrival rate at Q;,i € M and A =
(A)iem- Then, presuming a stable network without dropped
traffic, the following equations of traffic conservation hold

A =apo+ ) pigkis jEM, (1)
ieM
or, equivalently,
(I —P)d =apo. 2
where I € RM*M ig an identity matrix. For non-degenerated

networks, (2) can be solved for A. The regularity of (I — P) is
shown in [6]. Further, let u; denote the mean service rate of
the queue Q;, i € M. Again, the service time distribution is
not further specified for now, since different distributions can
be applied. The load of Q; is denoted as p; = A4;/u;.

The current state of Q;, i.e., the number k € N of packets
currently waiting and being in service at Q;, at time ¢ is
denoted as the RV X;(¢) and let m;.(¢) = P[X;(z) = k] be the
probability of Q; being in that state at time ¢. Further, let
nl{?{(t) = P[X;(¢t) = k | Arrival at t] be the conditioned prob-
ability upon arrival. In systems, where the PASTA property
(Poisson Arrivals See Time Averages [7]) does not hold,
typically i (1) # 74y (1). If exists, let

i = lim wa(r), oy = lim 7g (), i€ MkEN  (3)

denote the steady state probabilities, which are used to mea-
sure long-term performance. Let X(t) = (X;(#));epm be the
multivariate RV, containing the states of each queue, and
m(t) = P[X(¢t)=x] and 7, = lim;_ o 7(¢) denote the
transient and steady state probabilities of X, respectively. Here,
the steady state, i.e., the asymptotic behavior is of interest.
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Fig. 1. A general queuing network. Traffic at queue Q; arrives with an

effective rate A;, is being processed with a service rate y;, and forwarded
with probability p;; to the queue Q; or leaves the system with probability
pio- External packets arrive with a rate of @ and are split according to the
probabilities poj, j € M.

C. Waiting Time, Service Time, and Sojourn Time

The latency analysis starts with the delay at each queue.
The RV J; denotes the sojourn time at the queue Q;, i.e., the
time a packet spends for waiting and service, and is presented
as follows:

Ji=W;+S;+D;, ieM, “)

where the RVs W; and S; denote the waiting time and the
service time at Q;, respectively. The RV D; is introduced
to accommodate any additional delays that do not refer to
queuing theory but occur in a realistic scenario, such as
processing or propagation time. In particular, D; may be
deterministic. However, it is set to zero in this work. The
waiting time W; depends on the conditioned waiting times
Wik, which a packet experiences after arriving in state k, and
so the following holds for the RV and its pdf

W; = Z 1ix, =1y Wik, fw, = Z T i - o)

keN keN

For this work, the following assumption is stated.

Assumption 1 (Independence). The waiting times W; at the
queues are assumed to be independent from each other.

Assumption 1 appears to be a very strong requirement,
since the queues are mutually coupled. However, according to
Kleinrock’s independence approximation (cf. Sec. 3.6.1 in [6]),
independence can be assumed for sufficiently dense networks.
Indeed, the observations depicted in Fig. 2 as well as our
results presented and compared to simulations have shown that
this assumption leads to good approximations, particularly for
two or more inputs per queue and for high network load.

Since the analysis is cumbersome, there exist only a few
specific works on dependent queuing systems, e.g., [8]. For
now, the dependency is left for future studies.

In contrast, the dependency of the service time S; between
the queues is more crucial. If the service time is packet
dependent, i.e., not independently drawn at each queue from
the service time distribution, it has a non-negligible effect on
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Fig. 2. Illustration of Kleinrock’s independence approximation. A simple

network (a) consisting of M queues is studied. The correlation of the waiting
time at one of the M — 1 input queues and the output queue is shown in (b)
for different network loads and queuing models.

the overall latency. Thus, the service time S; at the queue Q;
is assumed to be a scaled version, of an initially drawn packet
size Sp:

Si=u 'S0, ieM. (6)

This approach requires that the queues have identical service
time distributions, at least up to scale.

Now, let g = (q1,...,qn) € M™ be a path in the network.
Then, the overall waiting time W,,, overall service time S, and
overall additional delay D, along the path ¢ is the sum of the
single waiting times, service times, and delays respectively

W, =

n

Wy, Sq:znlSl.. Dq:zn:in. 7
i=1 i=1

i=1

and the overall latency or sojourn time is given by

n
Jg = Jg =Wy +Sg+Dy. (8)
i=1

Eq. (6) leads to

Sq = (Z llqil)so = ,U(;ISO’ &)
i=1

and with Assumption 1, Eqgs. (7) can be expressed as pdfs as

(10)
(1)

n
Jw, = qul * quz £ fw, = ~>_k1 qui’
qu(t) = ﬂquo(/lqt)’

which leads to the pdf of the overall sojourn time along path g

J1,0= % i, (0 g fso(pigt) * fo, (). (12)

Depending on the considered distributions, Eq. (12) may be
solved analytically, or, in the more general case, numerically.

D. A Queuing Model of an Access Network

In the following, the model is mapped to a realistic RAN.
Its components, i.e., BSs, ESs, and CSs can be modeled as
queuing systems to evaluate the delay behavior of each of
them but for now only the ESs are in focus. Fig. 3 (a) shows
the structure of a realistic ES, which is a key component
in RANSs. Preceding nodes are connected to the input ports
(ingress) on the left. Each input is equipped with a meter that
drops traffic exceeding any predefined service level agreement
(SLA). In this work, the metering is not modeled explicitly,
but is implemented by limiting the arriving traffic accordingly.

The incoming packets are processed at the packet processing
unit that determines to which port at the egress side they
will be forwarded. The packet processing is designed such
that it is capable to process the accepted packets with a
deterministic delay that depends only on packet size, which
can be captured by the RV D;. Each output port has multiple
first-in first-out (FIFO) buffers for different service priorities,
so packets may have to wait for others. The model evaluates
the occurring waiting and service times W; and S;. Typically, in
Common Public Radio Interface (CPRI)-based networks [9],
at least three buffers per output are used for data, control
and management, and timing synchronization data. For the
sake of simplicity, only the data traffic and, thus, only one
buffer per port is considered here. It is assumed that the
other traffic is assigned a fixed amount of resources. Each
buffer applies weighted random early discard (WRED [10]),
i.e., randomly dropping packets to avoid congestion based
on the instantaneous queue utilization, configured weights and
thresholds. The described behavior is modeled by representing
the ESs by multiple queues. Fig. 3 (c) shows this principle by
inserting the ES structure (a) into the topology (b).

III. EXEMPLARY APPLICATION SCENARIO

The scenario, shown in Fig. 3 (b), consists of two BSs, one
CS, and five ESs. This work focuses on the ESs. Two traffic
models are studied and described in the following sections.
In [11] it is shown how general traffic models can be analyzed.
It should be noted that the choice of the traffic model is crucial
as shown in [12].

A. A Scenario with Exponentially Distributed Service Times

Here, each of the ESs is modeled as an M /M /1 queue with
FIFO scheduling (cf. Sec. II-D). Other scheduling schemes,
e.g., egalitarian processor sharing (EPS), could be applied,
too. External packets arrive with a rate @« = 0.1 and the
service rates are set to y; = 0.15 per time unit for i € M.
The routing probabilities are set symmetrically. For M /M /1
queues, Jackson’s Theorem [3] provides the joint steady state
probabilities as my = [1}, [p}(1 — p;)]. In addition, the
packet size is assumed as Sp ~ Exp(1) and §; is set according
to Eq. (6). The components of the waiting time are W;p = 0
and Wy ~ T'(k, y;), since they are the sum of k independent
exponentially distributed RVs. In particular, the remaining
service time of the already running packet at the first position
is still exponentially distributed, due to the memoryless nature
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Fig. 3. Modeling of ES behavior in a queuing network. (a) ES structure. Input ports (left) are equipped with meters that drop traffic which violates SLAs.
Each output port (right) has its own buffers. (b) The investigated network. (c) The queuing network, when (a) is put into (b) and only one buffer per output.

of the exponential distribution. It should be noted that, strictly
spoken, the used M /M /1 results only provide approximations,
since the service times at each queue are coupled by Eq. (6).

B. A Scenario with Deterministic Service Times

Here, the service times at the outputs of the ESs are assumed
to be deterministic, i.e., S; = ;1;1. In contrast, the arrival
process to the overall network is still set to be Poisson with
rate . Thus, the network consists of pure M/D/1 FIFO
queues at the ingress, but each queue which is fed by another
queue of the system has a general arrival process and is
therefore G/D/1. State probabilities for M/D/1 queues are
given by [13]

mio =1 — pi, mip = (1 = p)(e” —1), (13)

k—1
. I i in\k—J i Nk—j—1
mik = (1 _pi)(ekp’ + e j[o(ﬁ';)j)! + 4 ])
j=1

for k = 2. Egs. (13) do not hold in the G/D/1 case. For such
a queue Q;, the probabilities are approximated by a discrete
Markov chain as follows. At each time step one packet is
served, but each preceding queue Q; adds a packet with the
probability (1 — m;0)p;; of being active and forwarding to
Q;. Thus, transition rates can be obtained iteratively and the
state probabilities are obtained from the resulting equilibrium
equation.

The waiting time W; at each queue Q; is obtained from
Eq. (5) as follows. W;p = 0, since there is no waiting at an
empty queue, and W;; ~ U(0,u~") with U(a,b) being the
uniform distribution on the interval (a, b), since for the packet
currently being served all remaining times between 0 and !
are equally likely. Finally,

Wi = (k = "+ W, (14)
or equivalently

W~ U (k= 1) k™) (15)

for k > 1.

IV. NUMERICAL EVALUATION

For validation, a discrete event simulator was implemented
that creates packets at time instances from the arrival distribu-
tion and samples sizes from the distribution of Sg. When being
in service, the remaining time is determined through the packet
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Fig. 4. The modeled and simulated latency along (Qi, Q3, Q7) for (a)
exponential and (b) deterministic service. The legend applies to both figures.

size and the service rate of the queue. The routing is handled
according to the routing probabilities. A FIFO scheduler lets
a packet wait for all others that arrived before.

A. Model Validation and Results

Fig. 4 depicts the latency distribution for both traffic models
along the path (Q1,03,0Q7). It turns out that the model curve
approximates the simulation results well. The remaining gap
between both curves is due to the approximation error of As-
sumption 1 and the approximations of the state probabilities.

One useful result of the model is the fact that latency
guarantees can be generated directly from the percentiles of
the resulting distribution. Thus, statements such as “90 %
of the packets experience a latency less than Tu~' in the
deterministic scenario” can be made, which is very important
in the context of URLLC, where certain latency bounds have
to be guaranteed.

The results depicted in Fig. 4 show that the choice of the
service time distribution has a crucial impact. Even though
both models implement the same mean arrival and service
rates, the deterministic service rates result in a much more
concentrated distribution, since the absence of any variation
in the service times is beneficial for the system. However, the
deterministic service times also lead to a distinct minimum



TABLE I
COMPUTATIONAL EFFORT. COMPARISON OF SIMULATION AND MODEL.

Simulation Model
Part  Compl. O(-) Comp. [s] Compl. O(-) Comp. [s]
Sim. NgM 103.72 - -
5) - - nNGKmax 12.28
Pdf NrNg 41.94 nNg log Ng 5.28
Total Ng(Ng+ M) 145.65 nNg(log NG + kmax)  18.16

Remark: The computation times are averaged over 100 runs performed on
an Intel® Xeon® CPU E5-2699A v4, 2.40GHz for exponential service.

service time of 3u~!, where a peak indicates the probability

of experiencing this minimum in a completely empty system.

B. Computational Effort

Obtaining reliable results from a simulation requires a
certain minimum simulation time to capture all possible con-
stellations that can occur within the system, which increases
with the system complexity. For instance, a failure rate of 10~°
requires a significantly higher number than 10% of instances to
be detected. Extremely low failure rates of 10~°, as required
by some URLLC use cases, become infeasible for simulations.
Here, only Np = 10° packets were generated.

A mathematical model typically does not suffer from such
limitations. However, some of the computations have to be
performed numerically. Thus, accuracy as well as computation
time both scale with the number of cells Ng in the underlying
grid of the involved functions. The numerical effort is gov-
erned by the calculation of Eq. (5), which linearly scales with
NG and the maximum number of considered states kp,x, and
the convolution in Eq. (10) that scales as Nglog Ng and the
length of the investigated path n. For the presented results, a
grid with Ng = 40,000 cells was used.

Table I shows the differences in complexity and computa-
tion time. In the example the simulation took 146 s, compared
to the significantly lower 18 s for the model evaluation.

V. CONCLUSION AND OUTLOOK

A mathematical framework to study E2E latency in future
mobile networks is presented. The queuing models are kept
simple for now to prove feasibility and accuracy, but may
be replaced in future by more complex ones. However, since
Assumption 1 is based on dense networks, it is expected that
the approximation improves for more sophisticated setups.

The model provides insights into the latency along different
paths in a network. Hence, it can be used to find optimal paths
within a network for URLLC traffic. Further, it provides a
valuable foundation to optimize the network. Traffic can be
steered by adjusting the routing matrix P. Suitable optimiza-
tion algorithms are left for further studies.

REFERENCES
[1] P. Schulz et al., “Latency Critical IoT Applications in 5G: Perspective

on the Design of Radio Interface and Network Architecture,” IEEE
Communications Magazine, vol. 55, no. 2, pp. 70-78, February 2017.

[2]
[3]
[4]

[5]
[6]
[7]
[8]
[9]
[10]

(11]

[12]

[13]

M. Simsek et al., “On the Flexibility and Autonomy of 5G Wireless
Networks,” IEEE Access, vol. 5, 2017.

J. R. Jackson, “Networks of Waiting Lines,” Operations Research, vol. 5,
no. 4, pp. 518-521, Feb. 1957.

M. Mashaly and P. J. Kuehn, “Modeling and Analysis of Virtualized
Multi-Service Cloud Data Centers with Automatic Server Consolidation
and Prescribed Service Level Agreements,” in 2016 IEEE 41st Confer-
ence on Local Computer Networks Workshops, Nov 2016, pp. 9-16.

Y. Xu et al., “Impact of Flow-level Dynamics on QoE of Video
Streaming in Wireless Networks,” in IEEE INFOCOM, April 2013.

D. Bertsekas and R. G. Gallager, Data Networks, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1992.

R. W. Wolff, “Poisson Arrivals See Time Averages,” Operations Re-
search, vol. 30, no. 2, pp. 223-231, 1982.

S. Calo, “Message delays in repeated-service tandem connections,” I[EEE
Trans. on Communications, vol. 29, no. 5, pp. 670-678, May 1981.
eCPRI Specification V2.0, “Common public radio interface: ecpri inter-
face specification,” CPRI initative, Tech. Rep., May 2019.

S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, Aug.
1993.

P. Schulz et al., “End-to-End Latency Analysis in Wireless Networks
with Queuing Models for General Prioritized Traffic,” in 2019 IEEE
International Conference on Communications Workshops (ICC Work-
shops), May 2019, pp. 1-6.

M. Laner et al., “End-to-end delay in mobile networks: Does the traffic
pattern matter?” in ISWCS 2013; The Tenth International Symposium on
Wireless Communication Systems, 8 2013, pp. 1-5.

K. Nakagawa, “On the Series Expansion for the Stationary Probabilities
of an M/D/1 queue,” Journal of the Operations Research Society of
Japan, vol. 48, pp. 111-122, 2005.



