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Abstract—Increased usage of wireless technologies in un-
licensed frequency bands inevitably increases the co-channel
interference. Hence, for applications such as ultra-reliable-low-
latency-communications (URLLC) in factory automation, the
interference should be avoided. An intelligent coexistence man-
agement entity, which dynamically distributes the time and
frequency resources, has been shown to be greatly beneficial in
boosting efficiency and avoiding crippling interruptions of the
wireless medium. This entity also supports multi-connectivity
schemes, which are crucial for industry-level reliability require-
ments. The proposed governing technique of the coexistence
management is a deep reinforcement learning (DRL) method,
which is a model-free framework and channel allocation decisions
are learned merely by interactions with the environment. The
simulation results have shown that the employed method can
greatly increase the reliability of the wireless network, when
compared with legacy methods.

Index Terms—Coexistence Management, URLLC, Campus
Network, Deep Reinforcement Learning, 5G

I. INTRODUCTION

URLLC is regarded as one of the most innovative features
brought in the fifth-generation mobile networks (5G) for
mission-critical communications such as industrial automation
[1]. The fourth generation (4G) cellular networks cannot
satisfy the strict delay and reliability requirements of the
URLLC applications. The hybrid automatic repeat request
procedure can guarantee reliability but comes with cost of
delay. Moreover, factory automation requires multi-user, low-
cost, and worldwide applicability. Thus, the 5 GHz ISM bands
are a promising candidate for wireless automation applications.
However, since everybody is allowed to use these unlicensed
frequencies, co-channel interference is a major challenge.
The interference problem will be inevitably amplified as the
number of independent networks are increased. A "campus
network" is an exclusive mobile network which is designed
to meet the specific needs of users and satisfy the future
requirements of industry 4.0 [2]. With increased use of unli-
censed bands in these networks, their coverage could easily
overlap. In the norm IEC 62657-2 [3] for industrial radio
communication systems it is recommended to use an active
coexistence management for reliable channel utilization. To
ensure that such entity can be agile and reliable enough,
an automatic cooperative coexistence management concept is
proposed.
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Fig. 1. In a factory hall, the actuator sensor modules (ASMs) are connected
to the access points (APs) wirelessly. However, there might well be external
interferers that are using the same time-frequency block and can cause
collisions. To ensure that the external interferers do not cause interruptions in
the wireless link, the network manager (NM) is dynamically altering channel
allocations of ASMs.

Beside the interference problem, the coexistence manage-
ment scheme should be able to cope with the special fad-
ing characteristics of the industrial environment. Due to the
more open building layout, the presence of machinery and
highly reflective materials (e.g. aluminium or steel), the radio
channel in an industrial environment will act differently from,
for example, office buildings. This emphasizes the need for
specifically developed wave propagation models for industrial
environments. In this article the large- and small-scale fading
models are based on [4] and [5] respectively, which are based
on the channel measurements in different frequencies and
different transmitter/receiver setups.

It is well known that introducing redundancy to the wire-
less system can improve reliability. In this context, multi-
connectivity is a justifiable solution, where the redundancy is
realized by means of having multiple links carrying the same
information. In [6], the benefits of multi-connectivity for the
secondary users in a cognitive radio environment has been



demonstrated. The coexistence management entity should be
able to accommodate the multi-connectivity aspect as well.

Many cooperative techniques have been proposed in the past
years. For example, [7] proposed a method for cooperative
load resource optimization by considering inter-domain co-
channel interference for multi-domain Het-Net. This proposed
inter-domain load balancing scheme is focusing on balancing
the radio resource cost and co-channel interference. How-
ever, that paper neglects external interference sources. In
[8], a cooperative load-balancing framework for multi-domain
WLANs operating in an interference environment is proposed.
This work is focused on improving network utilization over
multiple WLANs by controlling the available channels at each
AP. However, the proposed load balancing scheme does not
dynamically adjust channel assignment at each AP.

In this paper, the coexistence management problem is stud-
ied for a campus network in the area of industrial automation
(see Fig. 1). In order to address the self-coexistence problem in
a campus network, an adaptive interference- and fading-aware
dynamic channel allocation strategy based on deep reinforce-
ment learning (DRL) is presented. Reinforcement learning
provides model-free control policies that are learnt merely by
interactions with the environment. In [9], it has been shown
that such algorithms are able to exhibit human-level control
in certain difficult tasks. In recent years, some successful
applications of DRL in the field of wireless communication
were developed. In [10], a dynamic channel allocation (DCA)
method based on DQN for multi-beam satellite systems was
proposed. Their simulation results show that the proposed
method outperforms fixed channel allocation and location
based dynamic channel allocation methods by means of lower
blocking probability and increased spectrum efficiency.

This paper is structured as follows. In Section II, we
describe the system model for simulating an industrial au-
tomation environment. Next, in Section III, we introduce dif-
ferent coexistence management schemes, specifically the deep
reinforcement learning based approach. The evaluations can
be found in Section IV, where the performances of different
coexistence management algorithms are compared. Finally, in
Section V we conclude the paper.

II. SYSTEM MODEL

In an automated factory hall, we assume there are M
actuator-sensor modules (ASMs), which are the industrial
equipment that are connected to the factory’s wireless network.
Each of these ASMs is able to measure the total received
power over C different channels and reports them back to
the connected access points (APs), which itself relays it to
the network manager (NM). They are connected to one of
N APs and the APs themselves are connected to a central
entity named NM, who makes decisions on channel allocations
for APs. To enable multi-connectivity, it is assumed that the
ASMs are connected via two different channels to the APs.
Furthermore, K external interferers are assumed to be in the
vicinity, which are using a subset of the C available channels

and therefore interfering with the ASMs. Fig. 1 illustrates how
different entities are connected.

A. Interference and Fading

The vulnaribility of the wireless link is mainly caused by the
interference and fading of the channel. The interference source
can be a neighbouring AP, when both of them are transmitting
to their respective ASM in the same time-frequency block.
This adverse effect can be minimized if the NM properly
distributes the resources. Another source of interference are the
external devices, i.e., the devices that use the unlicensed band
time-frequency resources, but are not controlled via the NM.
The signal-to-interference-plus-noise-ratio (SINR) of ASM m
connected to AP n on channel c can be written as

γcm,n =
P cm,n

N∑
n′ 6=n

P c
m,n′ +

∑
k∈Kc

P ck + η

, (1)

where P cm,n denotes the received power of ASM m from AP
n on the channel c, P ck is the received power from interferer
k, Kc is the set of interferers on channel c and η is the noise
power. When the SINR of a channel drops below a guard
threshold ρg , this channel is considered blocked, since the
probability of experiencing deep fade in the next time steps is
higher.

To model the fading of wireless channels between the
ASMs, APs and interferers, large- and small-scale fading
models are considered. In the industrial environment, large
shadowing is expected due to the presence of heavy machinery.
This effect is modeled by a zero-mean log-normal distribution
[4]. Furthermore, to model the small-scale fading, the links
between the ASMs and APs are modeled by a Rician fading
because it is reasonable to assume a dominant line-of-sight or a
dominant reflection path inside the industrial environment [5].
Moreover, if the APs are attached to the ceilings, the assump-
tion of line-of-sight component is more realistic. However, to
model the links between the ASMs and external interferers, a
Rayleigh fading is assumed.

B. Multi-Connectivity

To ensure a reliable communication within the factory hall,
in this work we consider a multi-connectivity scheme, where
two channels are assigned to each ASM simultaneously. For
the combining scheme we choose selection combining (SC),
which is a fast and low-complexity method. In this scheme,
the transmissions from the channel with highest SINR is
chosen and the transmission of the other channel is discarded.
Therefore, the effective SINR of the ASM m in the AP n is

γm,n = max{γc1m,n, γc2m,n} (2)

where γc1m,n and γc2m,n are the SINR of the ASM m experienced
over channels c1 and c2, respectively.
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Fig. 2. Exemplary SINR (a), power (b) and blocked channels (c) tables. These tables can be encoded in red, green and blue channels and combined in one
image (d).

C. Performance metric: Outage Probability

The metric for evaluating different coexistence management
schemes in this work is the outage probability, which we define
in the following. In our setup, outage occurs when both of the
channels associated with each ASM are experiencing deep fade
or large interference, i.e.,

P out
m,n = P ((γc1m,n < ρg) ∩ (γc2m,n < ρg)). (3)

To calculate the outage over all the ASMs, during a simulation
with duration of T timesteps, the number of times ASM m
has experienced an outage is counted and represented as om.
Thereafter, we sum up all the outages and divide it with the
number of ASMs M and simulation duration T , i.e.,

P out =
1

M · T

M∑
m=1

om. (4)

III. COEXISTENCE MANAGEMENT SCHEMES

In this section, firstly, we describe the NM entity and
its input and output. Thereafter, we introduce the legacy
coexistence management techniques, along with the strategy
based on deep reinforcement learning.

A. Network Manager (NM)

The NM is responsible for regulating the channel allocations
of the ASMs. Therefore, during the run time the NM sends
the channel allocation table to the APs, which is the mapping
between C channels and M ASMs. This table can be updated
periodically or as a reaction to blockages experienced by the
ASMs. Each ASM senses the spectrum and measures the
received power of that ASM over all frequencies. Therefore,
each ASM sends a vector of size C to the NM at each
time step. Furthermore, each ASM is measuring the SINR
in the two channels that are allocated to it. In the NM, the
SINRs received over M ASMs are compared with the guard
threshold ρg and the ones which are below the threshold are
marked as blocked channels. Fig. 2 illustrates examples of
the power table, SINR table and blocked channel tables. We
can accommodate each table as a color channel of a RGB
image and get a combined table which has all of the relevant
information. These tables are periodically made available to

the NM and, based on them, the NM can dynamically allocate
proper assignments, i.e., manage their coexistence.

B. Legacy Coexistence Management

The legacy strategies could be static or dynamic, meaning
that the channel allocation can remain constant or be changed
dynamically, either periodically or triggered by an outage
event.

1) Static Channel Allocation (SCA): In the SCA technique,
a set of channels are statically allocated to each ASM at
the initialization phase and do not changed during the run
time. This technique is not able to cope with the time-varying
interference and fading. This coexistence management scheme
is only investigated to constitute a comparison basis.

2) Random Channel Allocation (RCA): To cope with the
time-varying nature of the wireless link, it is essential that
the NM has the ability to dynamically change the channel
allocations to avoid incoming interference and channels that
will face deep fade. Therefore, in this technique, when a
channel is marked blocked by the NM, a randomly selected
free channel will be assigned to the ASM that is experiencing
blockage.

C. Deep Reinforcement Learning based Channel Allocation

Firstly, the concept of Reinforcement Learning (RL) is
shortly introduced. Thereafter, the RL method is applied to
the problem of coexistence management.

1) Concept of Reinforcement Learning: Reinforcement
learning is a subject of machine learning, in which an agent
takes actions in an environment and receives rewards. The
aim is to learn a policy for the agent, such that the cumulative
reward of the agent is maximized. To formulate the interactions
between the environment and the agent, Markov Decision
Process (MDP) is used, i.e., the agent at time step t selects
an action at and the environment responds to these actions
with moving to new states st+1 and giving rewards rt+1. The
action-value function is defined as

Q(st, at) = E{R|st, at} = E{
∞∑
k=0

ηk · rt+k+1|st, at}, (5)

where R is the cumulative reward, rt is the reward received
at time step t and η ∈ [0, 1] is the discount factor. If the state
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Fig. 3. Architecture of the DRL.

space is discrete and finite, off-policy Q-learning with time
difference (TD) update rule for Q(s, a) is [11]

Q(st, at)← Q(st, at)+α[R+ηmax
a

Q(st+1, a)−Q(st, at)].

(6)
After the training is finished, we choose the action that
maximizes this function, so that we can collect maximum
cumulative rewards.

In practice, however, the states can have high dimensions
with continuous space. Therefore, the use of an approximate
method that can handle large and continuous state dimensions
is necessary. The deep Q-network (DQN) architecture uses
artificial neural networks to approximate the Q(s, a) function
as Q(s, a;θ), where θ is a vector containing all of the weights
and biases in the neural network and parametrizes Q. θ is the
parameter that is updated during learning. At time step t, the
DQN takes the state st as input and outputs Q(st, a;θ) ∀a ∈
A, where A is the action space set. This means that the number
of output nodes of the DQN is equal to number of possible
actions.

Each of the experiences between the agent and the envi-
ronment can be summarized in a tuple < st, at, st+1, rt+1 >.
According to [9], to avoid the correlation between the consec-
utive samples from the environment, we store the experiences
in a replay buffer and in each training iteration a random mini-
batch of the experiences is chosen for training the network.
Furthermore, to avoid instabilities during training caused by
a moving target in (6), it is suggested to create two neural
networks, one which is updated every training step Q(s, a;θ)
and another one, the target network Q(s, a;θ−), which is
updated every τ steps [9], [12]. Besides, to avoid the influences
of the replay buffer memory size on training, combined replay
has been proposed in [13]. In this method, the most recent
experience is added to the random mini-batch samples. The
labels for training are

L(st, a) =rt+1 + ηQ(st+1, argmax
a′

Q(st+1, a
′;θ);θ−) if a = at

Q(st, a,θ) if a 6= at
,

(7)

Initialize Q-Net. weights θ0 ← θRandom;
Initialize Target Net. weights θ− ← θ0;
Populate replay buffer with minimum samples;
for t← 1 to tmax do

if mod(t, τ) = 0 then
Update Target Net. weights θ− ← θt;

end
Sample a random number ρ← rand(0, 1);
Based on greedy policy calculate ε(t);
if ρ < ε(t) then

Sample a random action at ∈ A;
else

Q-Net. action at = argmax
a∈A

Q(st, a;θt)

end
Pass the at to the environment;
Observe rt+1, st+1 from environment;
Recent experience ← < st, at, rt+1, st+1 >;
Add the recent experience to the replay buffer;
Sample a mini-batch from the replay buffer;
Augment the mini-batch with recent experience;
Calculate the label according to (7);
Train the network θt ← θt+1;

end
Algorithm 1: DRL Training.

where L(st, a) is the calculated label for all a ∈ A [12].
To encourage exploration in the beginning phase of training,
random actions are taken with probability of ε(t), which is
defined as

ε(t) =

{
1− 1−εf

tmax
t if t < tmax

εf otherwise
, (8)

where εf is the final exploration rate after tmax. After tmax,
the agent is taking actions based on the learned policy, i.e.,
exploration phase.As time moves on this probability decays, so
that the exploitation phase takes over. Algorithm 1 illustrates
the process of training in more detail. Furthermore, Table I
lists the parameters of the DRL.

2) Application of DRL to Coexistence Management: To
apply the framework of DRL to the coexistence management
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Fig. 4. Comparison of outage probabilities of different coexistence manage-
ment techniques.

problem, we need to define the state, action and rewards as
follows
• State: To enable the agent to fully observe the environ-

ment, we define the state s to be all the information
available to the NM. Therefore, the state s consists of
the SINR table, power table and blocked channel table.
One can reformulate these tables as an M ×C × 3 array
(see Fig. 2).

• Action: The actions are the choice of the channel to be
selected, i.e., there are C channels available and therefore,
there are C different actions that the agent can take.

• Reward: Since we want to decrease the outage probabil-
ity, after each action a negative reward is assigned if after
the change in the channel allocation, there is an outage.
On the contrary, if after the channel allocation, there were
no outages, a positive reward is assigned. Thus the agent
is motivated to learn to select the channels that will avoid
outages.

Since the states are in the form of images, as suggested in
[10], we employ a convolutional neural network (CNN) as
the function approximator which is accompanied by the fully-
connected layers. Fig. 3 illustrates the architecture of the
neural network. Furthermore, since the channel assignment
should be carried our for each of the ASMs, the first row
of the M × C × 3 image is swapped with the ASM that is
being decided on. Thus the agent is always making the best
decision for the ASM in the first row and separate agents for
separate ASMs is not required.

IV. SIMULATION SETUP AND EVALUATION

The factory hall is assumed to have a width of 50 meters
(in y-axis) and length of 100 meters (in x-axis). The height
of this building is assumed to be 6 meters (in z-axis). There
are two APs attached to the ceiling and they are located at
{x = 25, y = 25, z = 6} and {x = 25, y = 75, z = 6}
meters. Furthermore, the ASMs are at a height of z = 1
meter and can move throughout the hall. However, we pose
an additional constraint that they are not allowed to cross
a border at y = 50 meters. This constraint is required to

TABLE I
SIMULATION AND DRL PARAMETERS

Simulation Parameters Value
Simulation Duration (s) 100
Interval between steps (ms) 1
Total number of steps T 100.000
Factory Hall (m) 50 × 100
Timed update event frequency tf 100
ASM speed (m · s−1) 1
Interferer speed (m · s−1) 5
Guard threshold ρg (dB) 7
Carrier frequency (GHz) 5.2
Bandwidth (MHz) 20
Gt and Gr (dBi) 2
Rician K-factor (dB) 14.7
Number of multi-links 2
Number of channels 19

DRL Parameters Value
Final exploration rate εf 0.01
Max. exploration step tmax 10000
Replay memory size 50000
Mini-batch size 32
Target network update freq. 80
Reward for correct assignment +10
Reward for incorrect assignment -10
Discount factor η 0.9

avoid simulating the handover process, since it is out of scope
of this paper. Half of of the ASMs are served by the AP
on the left and the other half by the AP on the right. The
interferers, on the other hand, are generated at the left edge
of the factory hall and move to the right and occupy one of
the C = {19} channels. They are assumed to be at a height
of z = 7 meters, to resemble a pedestrian in the second
floor. The interferer is removed if it exits the rights side of
the factory or if it is randomly selected for removal. At each
time step, the interferer will be removed with probability of
0.001. When an interferer is removed, a new one appears on
the left side of the factory and occupies a randomly selected
channel. The ASMs’ locations are randomly selected in the
beginning of the simulations and they pick a random direction
to move, i.e., north, east, south or west. Moreover, to follow
the standard in [14], the transmission power of each channel
is different. The transmission power of channels c = 1, · · · , 4
is 23 dBm, c = 5, · · · , 8 is 20 dBm and c = 9, · · · , 19 is
27 dBm. The simulation scenarios consider the number of
ASMs of U = {14, 15, 16}, and the number of interferers
K = {4, 5}. Each simulation corresponds to 100,000 steps
because we simulate 100 seconds with the resolution of 1000
samples per second. Table I summarizes the simulation and
DRL parameters.

To compare the performance of different coexistence man-
agement techniques, their outage performance has been cal-
culated and shown in Fig. 4. For each of the test cases, 50
different realizations have been conducted. First of all, as
we increase the number of interferers, the outage probability
increases. That is because with more interferers, they are
occupying more channels and therefore, increasing the chance
of collision with channels that are already assigned to the
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Fig. 5. Outage probability during the training of the DRL.

ASMs. Moreover, as the number of ASMs is increased, the
number of free channels decreases and the NM does not have
as much freedom to allocate more suitable channels to the
ASMs that are experiencing deep fade or intense interference.
Comparing the coexistence management schemes, the static
channel allocation (SCA) has the highest outage probability.
This is because in this technique there is no reaction to
the incoming interferers or the deep fade. This results in
a high number of outage cases. This clearly shows that
dynamic channel allocation is necessary to ensure reliable
communications for the URLLC cases. The next technique
is the random channel allocation (RCA), where a blocked
channel triggers the NM to allocate a new channel. This newly
assigned channel is chosen randomly from the pool of free
channels. Clearly with comparison to the SCA, reacting to the
blocked channels will increase the reliability of the system
greatly.

Finally, we can see that the DRL approach has the best
performance. This is because the NM, at each time step,
has learned to choose the channel that minimizes the outage.
Therefore, this method is not waiting for an outage to happen
and then react to it, but is always dynamically changing the
channel allocations. If an external interferer approaches the
hall or some channels begin to experience deep fades, the NM
will have learned to quickly identify those and react to them
before it is too late. The more interesting observation that can
be made is that this knowledge has been learnt via only trial
and error and no modeling or domain expertise was required.
Fig. 5 shows the performance of the DRL agent during the
training. Every 1000 steps the average outage probability is
calculated. During the first 10000 steps, the agent is mostly
taking random actions to explore the environment (exploration
phase) and hence, the outage probability is increased. As the
time goes on, we start taking the actions based on the DRL
(exploitation phase), where the channels that are assigned will
cause least amount of outage.

V. CONCLUSION

In this paper, a cooperative automatic coexistence man-
agement system based on a centralized unit (called NM) is
proposed for URLLC in unlicensed frequency bands. This
system is based on the deep reinforcement learning framework,
which does not require any modeling or domain expertise and
only depends on the interactions with the environment to learn
a policy. This approach considers all of the received power
and SINR tables collected from the ASMs and decides on the
channel allocation. We have shown that compared with the
legacy techniques, the DRL based technique is superior. To
further increase the reliability, we expect a more sophisticated
combining scheme can have a big influence. Furthermore,
employing a recurrent neural network that can produce a
channel allocation table for all of the ASMs at each time step,
can increase the responsiveness of this technique.
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