Slice Management in Radio Access Network via
Deep Reinforcement Learning

Behnam Khodapanah*, Ahmad Awada®, Ingo Viering?, Andre Noll Barreto®, Meryem Simsek¥, Gerhard Fettweis*
*Vodafone Chair Mobile Communications Systems, Technische Universitit Dresden, Germany
Email: {behnam.khodapanah, gerhard.fettweis} @tu-dresden.de
TNokia Bell Labs, Munich, Germany; Email: ahmad.awada@nokia-bell-labs.com
fNomor Research GmbH, Munich, Germany; Email: viering@nomor.de
$Barkhausen Institut, Dresden, Germany; Email: andre.nollbarreto @barkhauseninstitut.org
YInternational Computer Science Institute, Berkeley, USA; Email: simsek @icsi.berkeley.edu

Abstract—In future 5G systems, it is envisioned that the
physical resources of a single network will be dynamically shared
between the virtual end-to-end networks called 'slices' and the
network is "sliced". The dynamic sharing of resources can bring
about pooling gains, but different slices can easily influence
each other. Focusing on slicing the radio access network, a
slice management entity is required to steer the radio resource
management (RRM) so that all of the slices are satisfied and
negative inter-slice influences are minimized. The steering of
RRM can be done by adjusting slice-specific control parameters
in scheduler and admission controller mechanisms. We use a
model-free reinforcement learning (RL) framework and train
an agent as a slice manager. Simulation results show that such
agents are capable of relatively quickly learning how to steer
the RRM. Furthermore, a hybrid method of Jacobian-matrix
approximation with RL approach has been devised and shown
to be a practical and efficient solution.

Index Terms—Network Slicing, 5G RAN Slicing, Radio Re-
source Management, Slice Orchestration, Reinforcement Learn-
ing

I. INTRODUCTION

Fifth generation (5G) mobile networks are anticipated to
have a big impact on society by connecting everyone and
everything. Alongside the usual broadband users, it is ex-
pected that smart cities and industries’ wireless connection
requirements will be covered in 5G [1]. Therefore, these
networks shall support a multitude of heterogeneous services,
namely enhanced Mobile Broadband (eMBB), Ultra Reliable
Low Latency Communications (URLLC) and massive Ma-
chine Type Communications (mMTC) [2]. Deploying multiple
service-specific networks is not an efficient and financially
feasible solution. Network slicing offers a flexible and scalable
solution for accommodating these diverse services in a single
physical network [3] [4].

The tenants of the single physical network specify their
service requirements in terms of key performance indicators
(KPIs) within a service level agreement (SLA) and the net-
work operator instantiates the appropriate network slice to
meet these SLAs [5]. At the same time, since the slices share
the same physical infrastructure, they must be protected from
each other such that dynamics of one slice do not adversely
affect other slices [6].

Agent
(SLA mapping layer)

reward 1 _

>

action a

state S¢

\/

A

UEs from three
different slices

AC Admission Control
Ps Packet Scheduler

Environment
(Base station)

Fig. 1: Reinforcement learning in RAN slicing.

Since slices are end-to-end networks, the resources of both
core network (CN) and radio access network (RAN) has to
be sliced [5]. RAN slicing deals with the efficient sharing
of the radio resources, e.g. spectrum resources in time and
frequency. The radio resource management (RRM) mecha-
nisms should simultaneously make sure that the resources are
shared dynamically between the slices, while the slices are
protected from negative influences among each other. In [7]
we have presented an RRM framework, in which slice-specific
control parameters for admission control and packet scheduler
are defined and this approach has been shown to be able to
steer the RRM. Tiling and puncturing are other mechanisms
that can be used to steer the RRM in context of a sliced
network [3] [8]. Since the entity that steers the RRM is trying
to fulfill the SLAs of the slices, this entity is called "SLA
mapping layer".

In our previous work [9] we have approached the problem
by defining cost functions for KPIs and their respective
targets and tried to minimize the cost. In [4], a heuristic
based, reactive algorithm has been proposed. However, these
approaches require accurate or approximate models of the
inter-dependencies of slices in RAN, which might not be
available in general. In this paper, we use deep reinforcement
learning as a model-free algorithm, where no prior knowledge

TABLE I: Slice types

Best Effort (BE)

Constant Bit-Rate (CBR)

Minimum Bit-Rate (MBR)

Description The users belonging to this slice If the admission control has admit- Similar to CBR users, if the admis-
do not have any rigid requirements ted an CBR user, regardless of the sion control has admitted an MBR
on their instantaneous through- user’s channel conditions,the con- user, a minimum bit-rate has to be
put. However, the collective per- stant throughput should be granted. guaranteed for the MBR users. On
formance of the users are consid- Since the throughput is constant the other hand, similar to BE users,
ered in the SLA. These users are for all the users, the only KPI that the scheduler determines a share
always admitted, but also dropped is associated with this slice is the of unreserved resources to these
if they linger more than the drop- admission rate and is declared in users. Applications such as video
ping threshold 7p. Applications the SLA. Voice-over-IP (VoIP) can streaming can be examples of this
like web browsing can be consid- be considered as a service which service since the video codecs re-
ered as an example of this slice. has similar requirement. quire a minimum bit-rate to be able

to stream with the lowest quality.

Input parameters e Arrival rate A e Arrival rate As e Arrival rate A\s
e File size F; e Constant bit-rate G5 e Minimum bit-rate G5

e File size F e File size F;
Control parameters e Scheduler weights w e Admission threshold ths e Scheduler weights ws
e Admission threshold th

Output KPIs e Average throughput 7’ e Admission rate Ag Average throughput T’
e Fifth percentile throughput F e Admission rate Ag
e 1 - Dropping rate 1 — Dy

KPI targets e Ts =80 Mbps o A, =975% e Ty = 90 Mbps
° F’S:BMbps e A, =98 %

e 1-Ds=97%

about the RAN dynamics is required (Fig. 1). It should be
noted that although reinforcement learning has been applied
to the problem of resource management in [10] and [11], in
their setup, the slices have similar targets and the only the
resource allocation determines the achievement of the targets.
In this work however, the focus has been on management of
realistically diverse slices, in terms of different targets and
different control mechanisms.

This paper is structured as follows. In Section II, we
describe the system model of a sliced network with the
presence of slices with different requirements and formulate
the problem. Next, in Section III, we introduce the deep
reinforcement learning (DRL) algorithm and show how to
apply this to the SLA mapping layer. The evaluations can
be found in Section IV, where the performance of the DRL
in comparison with other algorithms is studied. Finally, in
Section V we conclude the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let S be the set of all slices present in the network. The
users of different slices arrive at a random time and location.
The arrival process of the users of slice s is a Poisson-
distributed random variable with an arrival rate A\, [12].
Furthermore, the spatial distribution of the users is assumed
to be uniform across the network and the imposed traffic load
of slice s is determined by the arrival rate \s.

By definition, traffic models and KPIs from the users of
different slices are different. Therefore, we have defined three
exemplary slice types, which are summarized in Table I.
Note that each of these slices have clearly defined KPIs as

output parameters. To evaluate the performance, these KPIs
are compared with the KPI targets defined in the SLA.

Section II-A and II-B describe the scheduling and admis-
sion processes, respectively. In Section II-C, the problem
of the slice management in RAN in terms of the control
parameters is explained.

A. Scheduling Process

To model the scheduling process in presence of different
users of different slices, we first model the users’ throughput.
Based on Shannon’s capacity formula, the throughput of user
1=1,2,---, Ng from slice s is defined as

T! =w! B-logy(1+v7), (1)

where w! is the resource share of the user i in slice s, 1! is
the average signal-to-interference-plus-noise-ratio (SINR) of
user ¢ and B is the total bandwidth.

For the CBR users, the throughput is constant and guaran-
teed and given in the SLA, i.e, G,. Consequently, the amount
of resource share needed to fulfill the throughput for every
user belonging to slice s in Scpr is given by

wi = —GS
° B-logy(1+i)

The admitted CBR users take their share of resources first and
collectively require

N
Qcpr = g E Wy,

sEScpr =1

2

and the rest of the resources, i.e., 1 —{)cgr, are shared between
the MBR and BE users.

To model the scheduling of MBR and BE users, we
propose a resource-fair scheduler with prioritization. A
conventional resource-fair scheduler distributes the same
amount of resources to each user. To enable prioritization
of different slices, a weight vector is defined as w =

[W1, w2, -+, WisgeUsyeg]» Where Spg U Sypr constitutes all
the BE and MBR slices. The resource share of user i =
1,2,---, Ns belonging to slice s € Sgg U Sypr is defined
as (1 — Qenn)
i ws + (1 —$2cpr
WS(W) - Z Ns’ W _|_ Z Ns“ W . (4)
s’ €Spg 5" €Smer

If we only use (4) for the MBR and BE users, there might
be some MBR users that do not get enough resources to
achieve their minimum throughput. To simultaneously use
(4) and fulfill the MBR requirement, we propose an iterative
scheduling. First, the resources are shared based on (4). If any
of the MBR users has lower throughput than its minimum
bit-rate, similar to (2), the minimum resources are determined
and assigned to them. let N, be the number of users that
have received this special treatment. The collective resource
consumption of the users of these slices is

N

QMBRZ Z Zwim 5)

5"/ €Supr =1

After this special treatment of some MBR users, the resource
share of users of slices s in Sgg U Sypr is defined as

- wg - (1= -0
w (W) = (1=Sor —hr) g
Z NS’ . U}S/ + Z NS” . ’U_}s//

s’ €Spg s’ €Smer

where Nsu = Ny — NS// is the number of MBR users of
slice s” that have achieved the MBR only with the resources
assigned to them by the PS. Note that after each iteration
of the scheduler, using (6), there might be some MBR users
whose resource share is not sufficient. Therefore, the iteration
is repeated until all the MBR users are satisfied.

B. Admission Process

The role of admission control (AC) in the network is to
regulate the incoming traffic. Tenants want the admission rate
to be as high as possible. However, by admitting more users,
the other KPIs of the network are affected, because the number
of active users increase. This mechanism is especially crucial
in sliced networks, since too many users from one slice might
negatively impact the KPIs of the other slices. To implement
an AC, we define slice-specific resource thresholds. For all of
the MBR and CBR slices that are in set Scgr U Smpr, When
a user from slice s appears, the admission policy is

grant admission

If Q, < thy
)

If Q, > thy deny admission ’

where th, is the resource threshold for slice s and Q, =
Ef\il Gs/B -logy(1 +) is the minimum amount of re-
sources that is required to satisfy the MBR or CBR slice.
In other words, if the new user increases the), above thg,
it is not admitted.

C. Problem Formulation and Previous Approaches

The aim of the SLA mapping layer is to steer the control
parameters of the RRM mechanisms, so that the KPI targets
defined in the SLA are achieved by the network. In our
system model, the scheduler weights w,; Vs € Sgg U Supr
and admission control thresholds th, Vs € Scgr U Smpr are
the control parameters to steer. One could define a function
that maps the control parameters into the KPIs in the form of

Ykpis = f(XCOntrols)~ (8)

A natural way to approach this problem is to solve an
optimization problem, where the cost function is [9]

C = Hprls - YTargetsHQ . ®)

However, to solve this optimization problem, a model of the
RAN is required, i.e., f(-) should be analytically described.
Moreover, the KPIs of different nature and units create costs
of different scales and summing them up as a single term in
(9) implicitly and unfairly discriminates between KPIs.

Another approach is to use a coarse approximation of the
Jacobian matrix of the (8) to iteratively react to violations of
the SLA [4]. We require a reasonable approximation of the
relationships between the X control parameters and K KPIs.
This approximation can be represented in a X X K matrix
defined as J = [j;], where

0 increase in x does not affect KPI &
jm,k =4 +1
—1 increase in = decreases KPI k

increase in x increases KPI &k (10)

This matrix allows us to increase certain KPIs by increasing
or decreasing the corresponding control parameters. Assuming
that we have one instance of each slice type, one reasonable
design for J matrix can be defined as

m
m
z S .oz &
| = s
< 4 & &£ g <
0 +1 +1 +1 -1 —17 wsg (1D
J=|[+1 -1 -1 -1 -1 -1 thcer
0 -1 -1 -1 -1 4+1]) thwsr

For instance, if the Tgg is under its target, the wgg should
increase and thcgr and thypgr should decrease. To determine
which KPI needs increasing, we define a K x 1 violation
vector v = H(y —y), where H(:) is the element-wise step
function, i.e.,

L oif yr <Yk (12)

)

Uk:H(yk_yk):{

0 if yp > yx

where vy, yx and i are the kth KPI in the violation, output
KPI and target KPI vectors, respectively. Using the violation
vector v, we know which KPIs are not satisfied and with
the relationship matrix J, we know which control parameters
should be changed. Therefore, the update rule is defined as

X =x+6Jv, (13)

where ¢ is the step size for the control parameter update.
Here we have considered § = 0.05. The shortcoming of this
approach is that the Jacobian matrix should be determined
from heuristics beforehand, which might not be feasible.
Moreover, inevitably, the inaccuracies of the approximation
drive the control parameters to a space that might not be
optimal. Furthermore, such algorithms require a reasonable
starting point of the control parameters. The performance of
this method is evaluated in Section IV. To avoid the drawbacks
of the previous approaches, we formulate our problem in a
reinforcement learning framework in Section III.

III. DRL BASED SLA MAPPING LAYER

In this section, first the concept of Reinforcement Learning
(RL) is shortly introduced. Thereafter, the RL method is
applied to the problem of controlling the slice-specific control
parameters.

A. Deep Reinforcement Learning

RL is a subject of machine learning, in which an agent takes
actions in an environment and receives rewards. The aim is to
learn a policy for the agent such that the cumulative reward of
the agent is maximized. To formulate the interactions between
the environment and the agent, Markov Decision Process
(MDP) is used, i.e., the agent at time step ¢ selects an action a,
and the environment responds to these actions with moving to
new states sy and giving rewards ry4; (Fig. 1). The action-
value function is defined as

Q(St, at) = E{R\Suat} = E{Z ’Yk : rt+k+1|3t7at}u (14)
k=0
where R is the cumulative reward, r; is the reward received
at time step ¢t and « € [0, 1] is the discount factor. If the state
space is discrete and finite, off-policy Q-learning with time
difference (TD) update rule for Q(s,a) is [13]

Q(s¢,at) Q(st,at)—&—a[R—&-vmaaxQ(stH,a)—Q(st,at)].

(15)
After the training is finished, we choose the action that
maximizes this function, so that we can collect maximum
cumulative rewards.

In practice, however, the states can have high dimensions
with continuous space. Therefore, the use of an approximate
method that can handle large and continuous state dimensions
is necessary. The deep Q-network (DQN) architecture uses
artificial neural networks to approximate the (s, a) function
as Q(s,a;0), where 0 is a vector containing all of the
weights and biases in the neural network and parametrizes

Initialize Q-Net. weights 8 < Orandom;
Initialize Target Net. weights 0~ < 6g;
Populate replay buffer with minimum samples;
for t < 1 to t,,,, do
if mod(t,7) = 0 then

‘ Update Target Net. weights 8~ <+ 0y;
end
Sample a random number p < rand(0,1);
Based on greedy policy calculate €(t);
if p < €(t) then

‘ Sample a random action a; € A;
else

‘ Q-Net. action a; = arg max Q(s;, a; 0;)
a€h
end

Pass the a; to the environment;

Observe 7441, S;4+1 from environment;

Recent experience <— < sy, ay, Te41, Se4+1 >
Add the recent experience to the replay buffer;
Sample a mini-batch from the replay buffer;
Augment the mini-batch with recent experience;
Calculate the label according to (16);

Train the network 0; < 6;41;

end
Algorithm 1: DQN Training.

Q. 0 is the parameter that is updated during learning. At
time step ¢, the DQN takes in the state s; as input and
outputs Q(s¢,a;0) Va € A, where A is the action space
set. This means that the number of output nodes of the DQN
is equal to number of possible actions. Each of the experiences
between the agent and the environment can be summarized in
a tuple < s, a4, S¢4+1,7¢+1 >. According to [14], to avoid
the correlation between the consecutive samples from the
environment, we store the experiences in a replay buffer and in
each training iteration a random mini-batch of the experiences
is chosen for training the network. Furthermore, to avoid
instabilities during training caused by a moving target in (15),
it is suggested to create two neural networks, one which is
updated every training step Q(s,a;60) and another one, the
target network Q(s,a;0), which is updated every 7 steps
[14] [15]. Besides, to avoid the influences of the replay buffer
memory size on training, combined replay has been proposed
in [16]. In this method, the most recent experience is added
to the random mini-batch samples. The labels for training are

L(st,a) =

Tey1 + YQ(St41,argmax Q(s11,a’;0);07) If a=ay

Q(st,a,0) ’ I oata
(16)

where L(st,a) is the calculated label for all a € A [15].
Algorithm 1 illustrate the process of training in more detail.

B. RL Application to SLA Mapping Layer

To apply the framework of RL to the problem of SLA
mapping layer, we merely need to define the state, actions
and rewards as follows

o State: Because we want the agent to be able to ob-
serve the environment in details, we define the states
as the combination of the KPI reports and control pa-
rameters, i.e., at time step ¢ the state vector is s; =
[TéE) FBtE7 DltSEv AEZBR? Tl\t/lBRa A]t\/IBRv wéE? thtCBRv thlt\/lBR}'

o Action: Each control parameter is between 0 and 100
%. The action is to increase the control parameter by 5
%, decrease by 5 % or don’t change it. Note that we
further inhibit the control parameters to go above 95 %
and below 5 %. Meaning that if the control parameter
is at 95 %, increase action will not change the control
parameter.

e Reward: for each KPI that is above its target, we assign
+1 and -1 otherwise. Therefore, if K KPIs are being
considered, the rewards are in range of [— K, +K].

Note that for each of the control parameters, a separate agent
is considered. This implies that for each agent, the other
remaining agents are part of the environment and their actions
are visible to the agent in the state vector.

IV. EVALUATION

To evaluate the DQN algorithm, we first explain the ex-
periment setup. The environment is a mobile network cell,
in which the users from different slices appear, request a
download of file-size . The users of CBR and MBR slices
can be blocked and the users of BE slice can be dropped. We
assume that there is one instance from each of the slice types.
Therefore, the control parameters wgg (wmpr = 1 — wgE),
thcgr and thypr are responsible for slice management in
the RAN. Every U minutes the KPIs are compared with
their corresponding target in the SLA and the rewards are
calculated. Further details of the environment are given in
Table II.

It is assumed that in each experiment the control parameters
are initialized randomly. The maximum achieved rewards
correspond to maximum possible fulfillment of the KPIs in
the SLA. The list of tested algorithms are

1) Random action: at each time step the agent is taking
random actions. This is a bad policy and determines the
lower bound on the rewards.

2) Genie agent: the agent knows the best actions to drive
the control parameters to the best possible states. The
knowledge about the best states are derived via a brute
force search.

3) J-matrix: the agent only reacts to the violations based on
the approximate Jacobian matrix (Section II-C).

4) DON agent: RL based agent (Section III)

5) Hybrid Method: to avoid lengthy random explorations
required by the DQN, a hybrid of the J-matrix and the
DQN is proposed. The J-matrix based increase/decrease
actions are executed regardless of the DQNs decision.

TABLE II: List of parameters

Environment parameters

File size F 16 Mb
Update interval U 5 min

Drop time threshold Tp 8 sec

Carrier frequency 2 GHz
Downlink transmit power 45 dBm
Noise power density -174 dBm/Hz

Propagation model Free-space path loss

+ Log-normal shadowing

Interference Full interference
from dummy cells

Total bandwidth 80 MHz

Cell radius 1 km

Shadowing std. dev. 8 dB

Antenna model Isotropic

Slice Load Agg, ACBR, AMBR 10, 3, 4 users/s/cell

Guaranteed bit rate Gypr, Gegr 5, 5 Mbps

Agent parameters

Neural network layer 1
Neural network layer 2
Neural network layer 3

Dense - 50 neurons
Dense - 50 neurons
Dense - 100 neurons

Activation function Rectified Linear Unit

for all layers (ReLU)
Batch size 32 samples
Initial replay buffer 160 samples
Target Net. update period 7 50 steps
Discount factor v 0.9

Initial exploration rate 90 %

Final exploration rate 1 %

However, when the J-matrix is issuing no action, the
DQN can execute its actions.

Fig. 2a illustrates the average reward collected over 250
simulations over 4000 steps for the DQN and the random
action algorithms. For more clarity of the results, the running
average over time with window size of 200 steps is drawn.
Fig. 2b shows the running average of the rewards collected
by different algorithms. The upper bound is found by brute
force search where all the possible combinations of the control
parameter, which we call "genie agent". The lower bound of
the performance is found by following a complete random
policy. Next, moving to the performance of the J-matrix, we
see that the performance is constant. This is because this
algorithm rarely changes the control parameter unless there
is a violation. On the other hand the DQN starts with a worse
performance, but after about 500 steps the performance is
approximately the same as the J-matrix. Another observation
is that the DQN has not found the global optimum yet and
is stuck in a local minimum. The reason for this is simply
because the exploration has not been enough for this agent.
Furthermore, we observe that the hybrid method starts with a

6r
——DQN Rewards - Averaged over simulations
5.8 ===='DQN Rewards - moving average of last 200 steps
Random Action Rewards - Averaged over simulations
561 =+ Random Action Rewards - moving average of last 200 steps

o
(S}

Average rewards
W

4.8
4.6
4.4 Lk AT LR R i
42
4)
0 500 1000 1500 2000 2500 3000 3500 4000
Steps

(a) Average rewards over simulations and running average rewards.

Average rewards
W

——Random Action
581 ——Hybrid Method
——Genie Agent
56+ J-Marix
—DQN
5.4

L
o

48
4.6
44
421
4)
0 500 1000 1500 2000 2500 3000 3500 4000
Steps

(b) Running average rewards.

Fig. 2: Comparison of rewards collected by different algorithms.

worse performance than that of the J-matrix. This is because
the exploration of the state-actions at the start degrades the
performance, but after sufficient exploration, the DQN can
start exploiting, i.e., drive the control parameters to some
space that maximizes the cumulative rewards. Although the
hybrid algorithm has the best performance, we should note
that the J-matrix inhibits the exploration of the whole state
space. This is because in some states, the SLAs are violated
and the J-matrix quickly reacts to it and implicitly inhibits the
exploration of such bad states. Therefore, one cannot simply
remove the J-matrix and continue with the trained network,
because to the eyes of the agent the J-matrix is part of the
environment.

V. CONCLUSION

In this paper we have shown the application of reinforce-
ment learning to the problem of slice-management in RAN.
It has been shown that the RL agent can relatively quickly
find a policy that has the same performance as the J-matrix,
which is a carefully constructed algorithm based on heuristics.
Furthermore, a hybrid algorithm has been introduces to avoid
the initial random explorations of the DQN. This algorithm
provides a combination of heuristics and learning algorithms,
which is safe for initialization and further explorations of the
DQN promise convergence of the control parameters where
the maximal cumulative rewards can be assured.

ACKNOWLEDGMENTS

We would like to thank the Center for Information Services
and High Performance Computing (ZIH) at TU Dresden for
generous allocations of computer time.

REFERENCES

[1]1 S. E. Elayoubi et al., “5G RAN Slicing for Verticals: Enablers and
Challenges,” IEEE Communications Magazine, vol. 57, no. 1, pp. 28—
34, January 2019.

[2] NGMN Alliance, “NGMN 5G White Paper,” Tech. Rep., Feb. 2015.

(3]

(4]

(5]
[6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Rost et al., “Network Slicing to Enable Scalability and Flexibility in
5G Mobile Networks,” IEEE Communications Magazine, vol. 55, no. 5,
pp. 72-79, May 2017.

B. Khodapanah et al., “Slice management in radio access network
via iterative adaptation,” in 2019 IEEE International Conference on
Communications (ICC): Communication QoS, Reliability and Modeling
Symposium (IEEE ICC’19 - CORM Symposium), Shanghai, P.R. China,
May 2019.

NGMN Alliance, “Description of Network Slicing Concept,” Tech.
Rep., Jan. 2016.

1. da Silva et al,, “Impact of network slicing on 5G Radio Access
Networks,” in 2016 European Conference on Networks and Commu-
nications (EuCNC), June 2016, pp. 153-157.

B. Khodapanah er al., “Radio resource management in context of
network slicing: What is missing in existing mechanisms?” in 2019
IEEE Wireless Communications and Networking Conference (WCNC)
(IEEE WCNC 2019), Marrakech, Morocco, Apr. 2019.

K. I. Pedersen et al., “A flexible 5G frame structure design for
frequency-division duplex cases,” IEEE Communications Magazine,
vol. 54, no. 3, pp. 53-59, March 2016.

B. Khodapanah et al., “Fulfillment of Service Level Agreements via
Slice-Aware Radio Resource Management in 5G Networks,” in 2018
IEEE 87th Vehicular Technology Conference (VTC Spring), June 2018,
pp. 1-6.

R. Li et al., “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74429-74441, 2018.

G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah, and
W. Jiang, “Dynamic reservation and deep reinforcement learning based
autonomous resource slicing for virtualized radio access networks,”
IEEE Access, vol. 7, pp. 45758-45772, 2019.

3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Further
advancements for E-UTRA physical layer aspects,” 3rd Generation
Partnership Project (3GPP), TR 23.203, Mar. 2017.

R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction,
ser. Adaptive computation and machine learning. MIT Press, 1998.
[Online]. Available: http://www.worldcat.org/oclc/37293240

V. Mnih et al, “Human-level control through deep
reinforcement learning,” Nature Publishing Group, a division
of Macmillan Publishers Limited., 2015. [Online]. Available:

https://www.nature.com/articles/nature 14236

H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-learning,” 2015.

S. Zhang and R. S. Sutton, “A Deeper Look at Experience
Replay,” CoRR, vol. abs/1712.01275, 2017. [Online]. Available:
http://arxiv.org/abs/1712.01275

