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Abstract—In the context of 5G systems, the emergence of
various use cases with diverse requirements has attracted great
attention to network slicing. In a single physical network, several
instances of logical end-to-end networks, i.e. slices, will be
instantiated to fulfill these requirements. To this end, slices should
share the resources of the physical network, which consist of
Core Network (CN) and Radio Access Network (RAN) resources.
Herein, we focus on the Radio Resource Management (RRM)
in the context of network slicing. To maximize the pooling
gains, dynamic resource sharing is preferred over static sharing.
However, dynamic resource sharing can lead to undesirable inter-
slice influences, in particular, the contention on radio resources.
In this article, we show that, although the radio resources are
dynamically shared among the users of different slices, proper
slice management can realize slice protection. This is achieved by
adjusting the fraction of radio resources allocated to the different
slices by the Packet Scheduler (PS) and by limiting the number
of users admitted to the network via Admission Control (AC).
We propose an iterative algorithm to optimize the parameters of
PS and AC in order to ensure that the service level agreements
are satisfied. Extensive system-level simulations have shown that
a central entity that tunes these control parameters can greatly
increase the network’s performance.

Index Terms—Network Slicing, Radio Resource Management,
Slice Orchestration, 5G, Iterative Adaptation

I. INTRODUCTION

It is anticipated that the fifth generation (5G) networks
shall support a multitude of heterogeneous services, namely
enhanced Mobile Broadband (eMBB), Ultra Reliable Low
Latency Communications (URLLC) and massive Machine
Type Communications (mMTC) [1]. Since the requirements of
these services vastly differ, legacy networks with a monolithic
architecture can hardly accommodate them simultaneously. On
the other hand, deploying multiple service-specific networks
is not an efficient and financially plausible solution. Network
slicing offers a flexible and scalable solution for accommo-
dating diverse services in a single physical network. This
solution allows several logical end-to-end networks, i.e. slices,
to coexist and efficiently share the physical infrastructure,
which brings about massive multiplexing gains and increases
resource and energy efficiency [2]. Furthermore, since the
slices are separate networks, although virtual, they act as
independent networks.
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Fig. 1: SLA mapping layer as a slice orchestrator.

In a sliced network, the tenants of the network specify their
service requirements in terms of Key Performance Indicators
(KPIs) within a Service Level Agreement (SLA) and the
network operator should instantiate the appropriate network
slice to meet these SLAs [3]. At the same time, since the
slices share the same physical infrastructure, they must be
protected from each other such that dynamics of one slice
do not adversely affect other slices [4].

Considering that slices are end-to-end networks, slicing
spans both the Core Network (CN) and Radio Access Network
(RAN) [3]. Slicing the CN has been studied extensively in
fields like Software-Defined Network (SDN) and Network
Function Virtualization (NFV), where efficient architecture
design, instantiation, deployment, and maintenance of the CN
functions have been investigated. In RAN, however, slicing
deals with the efficient sharing of the radio resources, i.e. time,
frequency and space. Contrary to the CN resources, the unpre-
dictability of the wireless medium makes the slicing in RAN a



challenging topic. In particular, Radio Resource Management
(RRM) is a crucial mechanism for ensuring the fulfillment of
all SLAs. That is, RRM should simultaneously make sure that
the resources are shared dynamically between the slices, while
the slices are protected from negative influences of each other.

The objectives of the RRM in a sliced network have been
addressed separately in legacy mobile networks. Fulfilling the
requirements of the users via implementing the Quality-of-
Service (QoS) Class Identifier (QCI) mechanisms has been
proposed in 3GPP Long-Term Evolution (LTE) systems [5].
Based on the requirements of each user, an appropriate QCI
will be assigned to it to guarantee certain service with regards
to throughput, delay, etc. The fundamental difference between
QoS-aware RRM and slice-aware RRM is that not only the
QoS should be guaranteed for all of the users belonging to
a slice, the KPIs that describe their collective performance
should be above some target, which is defined in the SLA. As
for sharing the existing physical network, network virtualiza-
tion has been studied in the context of Mobile Virtual Network
Operators (MVNOs) [6]. In these networks, the resources are
usually shared via a fixed sharing agreement, which ensures
the isolation of the networks from each other, but inhibits
the multiplexing gains. Although the dynamic sharing of the
resources has been studied in [7], the impact of negative inter-
network influences have not been analyzed yet.

Recently, authors in [8], [9] and [10] have proposed a
general framework for resource management in a sliced net-
work with an auction-based model. Although the approach of
auctioning each (resource) block to maximize the total revenue
of the operator can be easily applied in the CN, the application
to RRM is not straightforward. Because of the random and
dynamic nature of the wireless environments, the capacities of
the radio resources are varying and difficult to abstract at the
system level. Furthermore, such approaches require detailed
penalties for not fulfilling the whole or parts of the SLA, which
might be hard to define beforehand.

In this work, we propose an entity called SLA mapping
layer that monitors the network in terms of KPIs and verifies
the SLA fulfillment of the slices. If this entity detects that
certain KPIs are below their targets, it tries to fine tune
the control parameters of the Packet Scheduler (PS) and
Admission Control (AC) such that SLA fulfillment is achieved
for all of the slices. This orchestration task of the SLA
mapping layer is illustrated in Fig. 1. In our previous work
[11] we have demonstrated that such an entity can be helpful
for minimizing the deviations of KPIs from the target SLAs in
a static environment. However, unlike [11], we are considering
a more realistic system, where the environment is dynamic and
the slices have very diverse requirements.

This article is structured as follows. In Section II, we
describe the system model of a sliced network with the
presence of slices with different requirements. Next, in Section
III, we introduce an algorithm for the SLA mapping layer,
which orchestrates the RRM in an iterative manner such that
all of the SLAs of the slices are fulfilled. The simulation results
can be found in Section IV where the performance of the

algorithm in different schemes is studied. Finally, in Section
V we conclude the paper.

II. SYSTEM MODEL

Consider a mobile cellular network with c = 1, 2, ..., C cells
and let S be the set of all slices. Total number of slices in the
network is denoted as S, which is equal to the cardinal number
of set S, i.e. |S| = S. The users belonging to these slices arrive
in the network at a random time and location and intend to
download a file and leave the network (traffic model similar
to [12]). Section II-A describes the random processes behind
this procedure. In Section II-B, we elaborate on the slice types.
These slice types serve as a template for the slice instantiation.
Finally, in Section II-C and II-D, the inner workings of the PS
and AC algorithms are described. Since each of these slices
has different requirements, the PS and AC are responsible to
assure that these diverse demands are fulfilled throughout the
network.

A. Spatial and Temporal User Distribution

We assume that the arrival process of the users of slice s
is a Poisson-distributed random variable with an arrival rate
of λs. Furthermore, the position of the users is also a two
dimensional (2D) random variable. In this article, we study the
impact of two different spatial distributions on the performance
of the network. For the first distribution, we assume that the
users are distributed uniformly across the network. In the
second distribution, we simulate a spatial hot-spot, using a
2D Gaussian distribution [13]. The mean vector [µhor, µver] of
this distribution is the center of the hot-spot and the variance
vector [σ2

hor, σ
2
ver] represents, how concentrated the users are,

in horizontal and vertical axes, respectively. For simplicity,
we assume that µhor = µver = µ and σ2

hor = σ2
ver = σ2

so that the 2D Gaussian distribution is symmetric along the
horizontal and vertical axis. Note that we truncate the 2D
Gaussian distribution to be only limited to the network space.
Uniform distribution can be considered as a special case of the
truncated 2D Gaussian distribution with σ2 =∞. To simplify
the illustration of results, we define the concentration factor as
1/σ. Now, as the concentration factor approaches 0, the users
are more uniformly distributed.

B. Slices Types with Diverse Requirements

To simulate the slices with different requirements, we have
defined three slice types. We assume that in general, several
instances of these slice types might be present in the network.
One could view these slice types to be slice templates to be
instantiated every time a new slice is added to the network.
• Best Effort (BE):

The users belonging to this slice do not have any
rigid requirements on their instantaneous throughput,
which is a function of the users’ channel conditions and
the PS decisions. Applications like web browsing can
be considered as an example of this slice. However,
the long-term average of the users’ throughputs (TBE)
and the fifth-percentile (FBE) KPIs must be above



the targets that have been declared in the SLA, i.e.,
T̄BE and F̄BE, respectively. Moreover, to implement
the contention control in the network, we assume that
the users of BE will be dropped from the network
if they linger more than a time threshold, namely
θD. This mechanism ensures that even in the very
congested conditions, the number of users will not grow
indefinitely. Although this mechanism ensures network
stability, the BE slice does not wish to have its users
dropped frequently, therefore the dropping rate (DBE)
should be below a target defined in SLA, i.e., D̄BE. For
convenience, we can reformulate the KPI as 1 − DBE
and wish that this KPI would be above the 1 − D̄BE.
We further assume that the AC admits all of the BE users.

• Constant Bit-Rate (CBR):
The admitted users of the CBR slice are guaranteed to
have a constant throughput; if the AC has admitted an
CBR user, regardless of the user’s channel conditions,
the constant throughput should be granted. Voice-over-IP
(VoIP) can be considered as a service which has similar
requirement. Since the throughput is constant for all the
users, the only KPI that will be associated with this slice
is the admission rate (ACBR) which has to be above the
target in the SLA, i.e., ĀCBR.

• Minimum Bit-Rate (MBR):
Similar to BE users, the MBR users’ throughput is de-
termined by the channel conditions and the PS decisions.
On the other hand, similar to CBR users, a minimum bit-
rate has to be guaranteed for the MBR users. Moreover,
the AC controls the number of admitted MBR users.
Applications such as video streaming can be examples of
this service since the video codecs require a minimum
bit-rate to be able to stream with the lowest quality.
The average throughput of MBR users (TMBR) and the
admission rate (AMBR) are the considered KPIs for this
slice. These KPIs should be above the targets in the SLA,
i.e., T̄MBR and ĀMBR. Note that for this slice type we don’t
consider the fifth-percentile throughput as a KPI, because
a minimum instantaneous bit-rate is guaranteed for all the
users.

We define SBE, SCBR, and SMBR to be the sets of all BE, CBR
and MBR slices, respectively.

C. Packet Scheduler

To model the scheduling process in presence of different
users of different slices, we first model the users’ throughput.
Based on Shannon’s capacity formula, the throughput of user
i = 1, 2, · · · , Ns,c from slice s in cell c is defined as

T i
s,c = ris,c ·B · log2(1 + γis,c), (1)

where ris,c is the resource share of the user i in slice s, γis,c
is the average Signal-to-Interference-plus-Noise-Ratio (SINR)
of user i and B is the total bandwidth.

For the CBR users, the throughput is constant and guaran-
teed and given in the SLA, i.e, Ḡs. Consequently, the amount
of resource share needed to fulfill the throughput for every
user belonging to slice s in SCBR is given by

ris,c =
Ḡs

B · log2(1 + γis,c)
. (2)

The admitted CBR users will take their share of resources first
and collectively require

RCBR,c =
∑

s∈SCBR

Ns,c∑
i=1

ris,c, (3)

and the rest of the resources, i.e., 1− RCBR,c, will be shared
between the MBR and BE users.

To model the scheduling of MBR and BE users, we
propose a resource-fair scheduler with prioritization. A
conventional resource-fair scheduler distributes the same
amount of resources to each user. To enable prioritization
of different slices, a weight vector is defined as w∗,c =
[w1,c, w2,c, · · · , w|SBE∪SMBR|,c] for cell c, where SBE ∪ SMBR
constitutes all the BE and MBR slices. The resource share
of user i = 1, 2, · · · , Ns,c belonging to slice s in SBE ∪ SMBR
and in cell c is defined as

ris,c(w∗,c) =
ws,c · (1−RCBR,c)∑

s′∈SBE

Ns′,c · ws′,c +
∑

s′′∈SMBR

Ns′′,c · ws′′,c
. (4)

If we only use Eq. (4) for the MBR and BE users, there
might be some MBR users that do not get enough resources to
achieve their minimum throughput. To simultaneously use Eq.
(4) and fulfill the MBR requirement, we propose an iterative
scheduling. First, the resources are shared based on Eq. (4). If
any of the MBR users has lower throughput than its minimum
bit-rate, similar to Eq. (2), the minimum resources will be
determined and assigned to them. let N̆s′′,c be the number of
users that have received this special treatment. The collective
resource consumption of the users of these slices is

R̆MBR =
∑

s′′∈SMBR

N̆s′′,c∑
i=1

ris′′,c. (5)

After this special treatment of some MBR users, the resource
share of users of slices s in SBE∪SMBR and in cell c is defined
as

ris,c(w∗,c) =
ws,c · (1−RCBR,c − R̆MBR)∑

s′∈SBE

Ns′,c · ws′,c +
∑

s′′∈SMBR

“Ns′′,c · ws′′,c

, (6)

where “Ns′′,c = Ns′′,c− N̆s′′,c is the number of MBR users of
slice s′′ that have achieved the MBR only with the resources
assigned to them by the PS. Note that after each iteration of
the scheduler (using Eq. (6)), there might be some MBR users
whose resource share is not sufficient. Therefore, the iteration
repeats until all the MBR users are satisfied.



TABLE I: Different adaptation schemes.

Scheme I

No adaptation

No violation vector

Scheme II

Distributed

adaptation

Local violation vector

SLA

Mapping Layer

Scheme III

Central adaptation

without cell specific control  

Global violation vector

SLA

Mapping Layer

Scheme IV

Central adaptation

with cell specific control  

Global and local violation vector

: Control parameters related to BE slice : Control parameters related to MBR slice : Control parameters related to CBR slice

D. Admission Control

The role of AC in the network is to regulate the incoming
traffic. The AC blocks some users so that the number of
admitted users are limited. Tenants want the admission rate to
be as high as possible. However, by admitting more users, the
other KPIs of the network will be affected because the number
of active users will increase. This mechanism is especially
crucial in sliced networks since too many users from one
slice might negatively impact the KPIs of the other slices.
To implement an AC, we define resource thresholds. For all
of the MBR and CBR slices that are in set SCBR ∪ SMBR, the
admission policy is{

If Rs,c ≤ ths,c grant admission
If Rs,c > ths,c deny admission

, (7)

where ths,c is the resource threshold for slice s in cell c
and Rs,c =

∑Ns,c

i=1 Ḡs/B · log2(1 + γis,c) is the minimum
resources that is required to satisfy the MBR or CBR slice.

III. SLA MAPPING LAYER

The objective of a slice-aware RRM system is to tune the
control parameters of different slices in different cells, so that
the KPIs of the network are in a state that do not violate any
of the slice SLAs. We can define the relationship between the
control parameters and KPIs as

y = f(X), (8)

where y = [ACBR, 1−DBE, TBE, FBE, TMBR, AMBR]T is a K ×
1 vector of all KPIs of all slices in the whole network and
X = [x1, x2, · · · , xC ] is a X × C matrix that contains all of
the control parameters vectors from all of the cells. Control
parameters vector xc = [wBE,c, wMBR,c, thCBR,c, thMBR,c]

T is a
X × 1 vector containing the control parameters pertaining to
PS and AC in cell c.

The goal is to adjust the control parameters so that the
KPIs are near the target values defined in the SLA, i.e. ȳ.
However, functional form of f(·) is not available in closed-
form even in systems with just one slice. For example, no
closed form expression for minimum throughput or fifth-
percentile throughput of BE slice is known. This is exacerbated
by the presence of multiple slices, the KPIs for which are
coupled. Consequently, optimizing the control parameters is
really challenging and conventional optimization approaches
such as gradient-descent do not apply here. In Section III-A,
we circumvent this issue by developing an algorithm that
requires only the sign of the partial derivative of f(·) with
regards to the different control parameters. Section III-B
introduces different schemes based on how we collect network
reports.

A. Iterative Adaption Algorithm

To find the best control parameters in the cells defined in
Eq. (8), we introduce an iterative adaptive algorithm. In every
time interval of τ seconds, the SLA mapping layer adapts the
control parameters of every cell. After each interval, the KPIs
are measured and reported back to the SLA mapping layer. At
interval t, the network-wide KPIs can be stated as

yt = f(Xt = [xt1, x
t
2, · · · , xtC ]). (9)

To be able to fine tune the control parameters for the next
interval, i.e. [xt+1

1 , xt+1
2 , · · · , xt+1

C ], we require a sensible
approximation of the relationships between the X control pa-
rameters and K KPIs. This approximation can be represented
in a X ×K matrix defined as J = [jx,k], where

jx,k =


0 if increase in x, does not affect KPI k
+1 if increase in x, increases KPI k
−1 if increase in x, decreases KPI k

. (10)

This matrix allows us to increase certain KPIs by increasing or
decreasing the corresponding control parameters. This matrix



Fig. 2: Fulfillment border of an example scheme.

can be viewed as a coarse approximation of the Jacobian
matrix of Eq. (8), where first-order derivative of all the
KPIs with regards to all of the control parameters would
be available. However, to analytically obtain the Jacobian,
an accurate model of the network is needed, which is not
necessarily available. Assuming that we have one instance of
each slice type, one reasonable design for J matrix can be
defined as

A
C

B
R

1
−
D

B
E

T
B

E

F
B

E

T
M

B
R

A
M

B
R




0 +1 +1 +1 −1 −1 wBE

J = 0 −1 −1 −1 +1 +1 wMBR

+1 −1 −1 −1 −1 −1 thCBR

0 −1 −1 −1 −1 +1 thMBR

. (11)

The single KPI of the CBR slice is the admission rate ACBR
and it will only increase if the AC threshold thCBR is increased.
The other control parameters do not affect this KPI since
the CBR users’ resource share is guaranteed for the admitted
users. The KPIs of the BE slice will only increase if the
scheduler prioritizes them over the MBR users. This can be
done by increasing wBE or decreasing wMBR. Additionally
increasing thCBR or thMBR slices decreases the KPIs of the BE
slice since more of these users will be admitted to the network.
Hence, the overall load increases. Finally for the KPIs of
the MBR slice, the throughput increases if the MBR users
have more priority in the scheduler. Moreover, an increase in

thCBR or thMBR will increase the number of users and cause
congestion. The admission rate of the MBR slice increases
if the scheduler prioritizes them more because they will have
better throughput and will leave the network earlier and make
room for the new users. Similarly, a decrease in thCBR will
influence the AMBR positively. Finally, it is clear that an
increase in thMBR clearly positively affects AMBR.

To determine which KPI needs increasing, we define a K×1
violation vector vt = H(ȳ − yt), where H(·) is the element-
wise step function, i.e.,

vtk = H(ȳk − ytk) =

{
1 if ytk < ȳk

0 if ytk > ȳk
, (12)

where vtk, ytk and ȳk are the kth KPI in the violation, tth
iteration’s KPI and target KPI vectors.

Using the violation vector vt, we know which KPIs are not
satisfied and with the relationship matrix J, we know which
control parameters should be changed. Therefore, the update
rule is defined as

xt+1 = xt + δJvt, (13)

where δ is the step size for the control parameter update.
Note that the step function H(·) is used in Eq. (12) rather

than the conventional Mean Square Error (MSE) metric, i.e.,
(ȳk − ytk)2. The reason is that the KPIs have different units
(e.g. Admission rate [%] and average throughput [Mbps])
and different scales (e.g. average throughput is usually much
larger than fifth-percentile throughput). Consequently, to avoid



implicitly weighting different KPIs, we only consider whether
the KPI was violated or not.

B. Adaptation Schemes

So far we have assumed that the KPI reports yt are collected
over the whole network. However, we can define the local
KPI reports in cell c as yt

c and define vtc (c.f. Eq. (12)) as
local violation vector. Based on this classification of the KPI
reports, we can devise four different schemes and compare
their performance:
• Scheme I - No adaptation:

We do not change the initial control parameters in any
of the cells. This scheme is for comparison only.

• Scheme II - Distributed adaptation:
Within each cell, we use Eq. (13), where instead of vt,
we use vt

c. This implies that the cells are unaware of the
performance of the surrounding cells.

• Scheme III - Centralized adaptation without cell-specific
parameters:
The central entity, i.e., SLA mapping layer, collects
reports from the whole network and uses Eq. (13) for all
c = 1, 2, · · · , C with violation vector vt. In this scheme,
we have the information about the whole network, but
we do not have the freedom to tune each cell’s control
parameters individually.

• Scheme IV - Centralized adaptation with cell-specific
parameters:
Similar to Scheme III, the central entity collects reports
from the whole network. However, Eq. (13) is utilized
with vt� vtc as the violation vector, where � is element-
wise multiplication. With this scheme, we only change
the control parameters if the respective global and local
KPIs are violated.

For clarity, Table I summarize the aforementioned four
schemes.

IV. PERFORMANCE ANALYSIS

A. Simulation Scenario

To evaluate the proposed schemes and algorithm, we first
describe the simulation setup. We assume that we have three
slices, one from each slice type, i.e. BE, CBR and MBR.
Associated with these slices, the default load, user distribution,
and control parameters are given in Table II. These default
values are chosen so that the network can fulfill the SLAs
without the need to update the control parameters.

B. Evaluation Methodology

To assess the performance of different schemes, we intro-
duce anomalies to the network and observe how much each
scheme can react to these anomalies. These anomalies can be
an increase in the traffic load or the concentration factor. The
scheme that can fulfill all of the KPIs in higher traffic load
and spatial concentration is superior to others. Fig. 2 illustrates

TABLE II: Simulation parameters

File size 16 [Mb]
Update interval (τ ) 1 [min]
Adaptation step size (δ) 0.1
Simulation duration 1 [hours]
Drop time threshold (θD) 8 [sec]
Carrier frequency 2 [GHz]
Downlink transmit power 45 [dBm]
Noise power density -174 [dBm/Hz]
Propagation model Free-space path loss

+ Log-normal shadowing
Interference Full interference

from surrounding cells
Total bandwidth 90 [MHz]
Number of serving cells 7
Number of surrounding cells 12
Cell radius 1 [km]
Shadowing std. dev. 8 [dB]
Antenna Model Omni-directional
Default load of CBR (λCBR) 3 [users/s/cell]
Default load of BE (λBE) 10 [users/s/cell]
Default load of MBR (λMBR) 4 [users/s/cell]
Default user distribution Uniform
for all slices
Default thCBR 0.33
Default thMBR 0.33
Default wBE 0.5
Default wMBR 0.5
Guaranteed minimum 5 [Mbps]
bit rate (ḠMBR)

Guaranteed constant 5 [Mbps]
bit rate (ḠCBR)

the assessment of an example scheme. The infeasible region
represents the points (traffic load and spatial concentration)
that at least one of the KPIs is under its target from the
SLA. On the other hand, the feasible region represents the
points that all of the KPIs of all slices are not violated. The
border between these two regions is called fulfillment border.
As the traffic load or the spatial concentration increases, it is
harder to fulfill all the SLAs. Therefore, we are looking for
the algorithms that push the fulfillment border to the right and
up, meaning that it is able to tolerate more anomalies. Note
that even a "genie" algorithm has a fulfillment border since
the resources are not sufficient to fulfill all KPIs under very
high load or concentration.

C. Simulation Results

Fig. 3 illustrates the fulfillment border for different schemes
with slice anomalies from different slices. Starting from the
Scheme II’s performance, we notice that it is actually worse
than Scheme I in all of the slice anomalies. The reason for



(a) MBR slice anomalies. (b) BE slice anomalies. (c) CBR slice anomalies.

Fig. 3: SLA fulfillment border in presence of anomalies from different slices.

this is that in the distributed control systems, we don’t have
any knowledge about the slice performance in the surrounding
cells and any slight change in the KPIs will rapidly change the
control parameters. In the case of concentration, the central
cell observes that almost all of the KPIs are in violation,
therefore based on Eq. (11) it decides to decrease thCBR.
This effect could be seen as a hasty reaction of the algorithm
that ultimately degrades this scheme’s performance. On the
other hand, Schemes III and IV have the global knowledge
and can avoid making hasty decisions by looking at the KPIs
in the whole network. In Scheme I, since the initial control
parameters are chosen correctly, with lower concentrations, the
performance is similar to Schemes III and IV. This behavior
is observable for all slice anomalies. As the concentration
factor increases, the initial control parameters are not the
right choice anymore and we need an entity that updates
these control parameters. Therefore, Schemes III and IV have
superior performance. Moreover, in Fig. 3a and 3b we observe
that the Scheme IV outperforms Scheme III because the
former has the freedom to adjust each cells control parameters
individually. However, in Fig. 3c Schemes III and IV have
identical performances. The reason is that according to Eq.
(11) the Admission rate of the CBR slice (ACBR) is merely
affected by the CBR admission threshold thCBR in the central
cell and increasing or decreasing the thCBR in the surrounding
cells separately does not impact the ACBR.

V. CONCLUSION

In this article, we have shown that the SLA mapping layer
can enhance the performance and robustness of the network
against the increase in the traffic load or concentration of
the users in a particular cell. This is achieved by iteratively
properly orchestrating the control parameters of the PS and
AC. The central orchestrating entity, i.e., SLA mapping layer,
has been compared with decentralized adaptation and no-
adaptation schemes. Simulation results have shown that SLA
mapping layer can achieve significant improvements in the
network resilience to the anomalies. Additionally, the freedom
for choosing the cell-specific control parameters can further
improve the network performance.
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