RoadRunner: A Modularized Design and Tool
Manager for Hardware Projects

Mattis Hasler

Barkhausen Institut

Dresden, Germany
mattis.hasler @barkhauseninstitut.org

Abstract—In hardware design, the tool pipeline’s abstraction
level is generally not very high. A design is usually built for
one setup, meaning one specific tool flow. Adding support for
other tools is a manual task that must be repeated for each
tool. That makes using external IP in a project cumbersome
because, in most cases, importing an IP also means adjusting it
to the project’s tool set. RoadRunner is a versatile design and
tool flow manager emphasizing the separation of concerns in
multiple aspects of hardware design projects. The definition of
hardware modules and their attributes—like clock definitions—is
done hierarchically to reflect the hardware design and allow easier
reuse of modules compared to centralizing attributes in project
files. Additionally, the hierarchical module definition is tool-ag-
nostic, allowing the separation of hardware design from the tools
used, further easing the reuse of modules. In RoadRunner, the
processing steps are separated into distinct working directories
to prevent unpredictable side effects and increase portability with
workload managers. Portability is further improved by separating
the “what” to do with a tool from the “how” to use a tool. Where
the project should define what to do, and the IT infrastructure
should define how to set an environment to make a tool usable.
The flexibility to compose and work with inhomogeneous projects
is shown in an multi-processor system-on-chip design that includes
an open source RISC-V core and an Al accelerator and targets
an FPGA, an ASIC implementation, and a fully open-source
simulation environment simultaneously.

I. INTRODUCTION

In hardware design, it is worthwhile to wrap the execution of
tools behind a simple interface. Such a project setup is usually
particular to the environment and one specific tool flow. It
enables engineers to work on big designs without knowing
every detail about the modules and tools used or the integration
of each (third-party) component. However, changing something
in the tool flow requires manual work and a lot of tool expertise.
Also, intellectual property (IP) developed on another tool flow
needs adoption to be included because design and tool flow
configuration are often intertwined. Generally, the plain HDL
description of a design must be enriched with metadata to
be smoothly fed through a processing pipeline. For example,
asynchronous registers must be tagged in a design for synthesis
to run smoothly, which is impossible in Verilog directly. Avail-
able solutions to enrich a hardware design with metadata are
defined mainly by tool vendors and are tool-specific and lack
the flexibility to describe truly hierarchical designs.

Hardware design projects are huge, confusing, and com-
prised of many tasks, making debugging the project hard. With
the increasing complexity of designs, the number of 3rd-party

Sebastian Haas

Barkhausen Institut

Dresden, Germany
sebastian.haas @barkhauseninstitut.org

IPs increases, which results in an increasing number of used
languages and tools. Every tool needs its specific environment,
produces a unique output structure, and may clutter its working
directory with logs and auxiliary files. Cluttering in project
directories makes it unclear to the untrained eye which task
—or tasks—a file belongs to. In addition, infrastructure has
become more decentralized, making it necessary that projects
work on different machines.

This work introduces RoadRunner, an EDA project manage-
ment tool that separates different aspects of a hardware design
project to address the problems that traditional project struc-
tures face. It allows hierarchical definition of designs, not
only at the HDL but also at the metadata level. The goals of
RoadRunner are to provide a human-readable and debuggable
working environment that separates design from tool flow
description and makes both reusable and interoperable. Tool
and source language support is modularized to allow design
definitions to be reused with a different tool set. The general
working environment for an EDA project is shown in Fig. 1.
It comprises the following key components:

1) The RoadRunner Config Space holds the project defi-
nition. It is used for design and tool flow definition and
capturing the results of processing steps, making them
available for follow-up steps. It features hierarchical
definitions, sub-project inclusion, cross-references, and
parametrizable dynamic content. The config space is
rendered from special YAML files in both the project’s
directory tree and result directories created by already
executed processing steps.

2) Isolated Working Directories are created when running
a processing step (aka. command) defined in the config
space. It contains all the files needed to execute the
selected command. These may be source files, results,
generated auxiliary files, and scripts controlling the
execution. All input and output stays within, making a
working directory autonomous; it stays executable even
when copied to a remote location.

3) Results are directories that capture the outputs of pro-
cessing steps that are to be persistent and could be reused
in later processing steps. A result directory contains a
config space definition describing the result’s structure,
which is included in the config space.

4) A Machine Config is independent of projects. It holds
information on how to access third-party tools (TPTs)
on the current machine. While the project defines what

user machine

worker machine

config Working Directory Machine

space Config
5 Sources Scripts
Directory / > rrun.py

-
!
Result generate :
Result
M |

Fig. 1: Parts of a RoadRunner project. The config space acts as a central storage of structural information. A working directory contains all files for a processing
step. Files can be sourced from a local directory tree and results of previous processing step. The machine config contains info to make a task runnable on a

(worker) machine.

to do with a specific TPT, it does not have to deal
with how to call it, which is completely left to the IT
administration of each machine.

5) A Task is the execution of one processing step in an
EDA tool flow. The Task is defined in the config space
by a command node. From the command definition,
the working directory will be created in the preparation
phase. In the execution phase, which may happen on a
different machine, the entry point of the working direc-
tory is called. The machine config is used to get access
to the TPT to be used. Generated results that are placed
into the result directory are automatically included in
the config space after the Task is finished.

II. RELATED WORK

As of now, there is a multitude of hardware project management
tools. From our experience, at least two big companies that do
digital design have in-house solutions, which can be described
as sophisticated tool-flow-specific shell scripts. One problem
these tools have is that they were developed on a specific
infrastructure and thus have particular and deep-rooted require-
ments, like a specific version control system (like Subversion)
or software management tooling (like environment modules).
Similarly, open-source projects often use in-house developed
make-based build systems like the Rocket Chip processor gen-
erator [1] that do not expect any software management. Instead,
it assumes that all needed software is available through an
installation process that reportedly takes half a day to complete.

There are open-source tools that manage different IP sources
and TPTs. Most of these tools focus on a specific use case, a set
of tools, or a project structure. hdlmake [2] describes itself as a
Makefile generator. It features resolving module dependencies
by fetching repositories and generates Makefiles to run simula-
tions and synthesis with tools from several vendors, including

Xilinx and Mentor. As a bonus, it allows the remote execution
of tasks. However, it only works with FPGA-targeting projects.

Although OpenPiton [3] is foremost described as a general-
purpose, many-core processor, it is also a framework that
includes creating hardware, firmware, and software within
the landscape of the Piton processor. It provides a polished
interface to tinker with every part of the processor and run
every step, like simulation, FPGA synthesis, and ASIC backend
steps. As the project grows around the Piton Processor, the
possibility of using it for other projects is minimal. A more
general approach is pursued in the Silicon Compiler [4] project.
It provides a Python-based API to describe hardware projects,
targeting an automated source-to-hardware flow.

Another project that allows the generation of SoC structures
based on a set of parameters is PLSI [5]. It structures the
creation of a SoC in two steps: the generation of “cores” and
the composition of these “cores” into a SoC. Apart from the
available generators for Rocket Cores and BOOM Cores, it is
possible to create more generators for other cores. It is possible
to run simulations of the SoC in Verilator and Synopsys VCS.
Similarly, synthesis is limited to Synopsys DC and formal
verification to Synopsys formality.

Successor to PLSI, HAMMER [6], [7] defines a versatile
system to mix and match tools and technology nodes while
separating concerns by putting each type in a different set of
plugins. Still, plugins “communicate” through a standard API to
make them interoperable and project-independent. HAMMER
also defines an IR that uses metaprogramming and hooks to
allow the user to adjust a tool flow to their needs. The tool-flow
customization possibilities allow arbitrarily complex flow defi-
nitions that, in our humble opinion, may become too complex
to be adoptable by other projects. Apart from the flow defin-
ition, HAMMER lacks flexibility regarding the composition of
designs from different sources and source languages. Similarly,
the OpenRoad [8] project focuses on the automation of the

backend process. It supports various tools and a growing set
of PDKs to support an open-source backend tool flow.

On the contrary, FuseSoc [9] focuses more on the compo-
sition of a design by allowing the definition of a dependency
tree that can automatically be resolved. Design definitions,
including dependencies, are defined in a fixed YAML scheme.
FuseSoc has, unlike HAMMER, a fixed list of tools that can
be utilized to do simulations or synthesis for FPGAs.

Another tool to specify and automatically resolve design
dependencies is Bender. Although not published separately,
Bender definitions are widely available in the pulp ecosys-
tem [10] and thus well known in pulp-related projects. It uses
a YAML scheme to define modules with their source files and
dependencies, usually as git repositories. Bender can automat-
ically resolve the dependencies of whole projects, fetch the
needed files, and then call some hardcoded software or export
the derived file lists in various formats for further usage by
other tools.

RoadRunner combines the ideas of HAMMER to modularize
the tool flow and the ideas of FuseSoc and Bender to compose
hierarchically defined designs.

Central to the RoadRunner project is the config space, which
uses YAML to describe a project’s structure.

The IEEE standard format IP-XACT also offers the descrip-
tion of hardware IP together with metadata, and is used by
many commercial vendors. However, IP-XACT focuses on
describing hardware modules, including a very detailed con-
nectivity definition [11]. In contrast, RoadRunner also allows
the description of modules but assesses the integration of 3rd-
party tools into the project as equally important.

RoadRunner draws inspiration for its execution environment
isolation from Bazel[12]. Following the isolation idea conse-
quently leads to a working directory becoming self-contained.
At some point, even the used tools are part of the working
directory. RoadRunner breaks the isolation at this point because
many EDA tools are too big to be copied around like that.
Additionally, in contrast to Bazel, RoadRunner puts effort into
making the isolated environment as clear and human-readable
as possible and maintaining the possibility of entering an
environment and rerunning steps manually.

III. ConFIG SPACE

The config space provides core functionality in RoadRunner
to provide flexible and hierarchical definitions of modules and
their sources, attributes, metadata, and transformation steps in
the form of TPT invocations to produce result data that, in turn,
gets reinserted into the config space. In Fig. 2, a config space
is shown. Conceptually, there are three types of nodes: All
nodes that contain information about the project source files
or metadata are “resource description nodes”. “Transformation
steps” take a node (or a whole sub-tree) as input and insert a
new node into the config space. Finally, “composition” nodes
describe the relation of nodes, e.g. lists, attribute sets, or cross-
links.

The config space of a project is loaded from a YAML
file named RR, situated in the project’s root directory. The
standard attribute-set-and-list structure provided by YAML is

[]

local
| 1P

I ! I |
I W
1 ! I

files Ll lexternal

Ip

meta

0

resource description

transformation step

I
| |-

composition

config space

Fig. 2: Structure of the config space. It is a tree structure to allow hierachrical
definitions resembling the usual hardware design structure. Each node in the
config space can define resource by linking source files or define additional
meta data, describe a processing step aka. transformation step, or describe a
composition of a set of sub-nodes.

extended with additional functionality. Among others, there
is the possibility to cross-reference within the config space,
load sub-trees from additional YAML files, define variables,
walk the config space recursively to gather attributes hierar-
chically, and render content dynamically using an inline Lua
interpreter and dynamic attribute sets. When containing an RR
file, subdirectories can be included in the config space as a
subtree, allowing easy building of a config space topology that
resembles the directory structure. With dynamic attribute sets,
variants of the same config space sub-tree can be generated
based on context variables. For example, an attribute that
defines the optimization level might depend on the current use
case.

opt: # optimization leve
/SYNTHESIS: 5 # full ~ in synthesis
/DEBUG: 0 # no ~ in debug
/default: 2 # some ~ otherwise

In this case, the given attribute set would render to opt: 2
given there are no flags set. With flags set, the effective value
of the attribute can change.

IV. MobuLEs

With the config space, it is possible to describe all sorts
of metadata in a structured, hierarchical, and modular way.
However, RoadRunner does not define a fixed scheme to allow
or disallow specific attribute names. Modules will traverse the
config space and read out the needed attributes. The set of
attributes a module reads out depends on the domain to which
it is dedicated. A domain might be an HDL language or a TPT.
For example, the “Verilog” language module provides functions
to gather the files needed to compile a hardware module. While
doing so, it will read the “sv” and “v” attributes to gather

source files and walk the config space recursively by following
“include” attributes.

As an example of a tool module, the “Icarus” module
provides functionality to compile and run simulations using
the open-source Icarus Verilog Simulator [13]. It will read out
attributes to define the parameters needed to be passed to the
simulator binaries, such as the “toplevel” attribute, to specify
the simulated hardware module. It also utilizes the “Verilog”
module to gather source files needed for the simulation. The
module exports a command handle that allows the simulator to
be used from a transformation node in the config space.

V. CoMMANDS

To use a tool in a RoadRunner project, a transformation (i.e.
command) node must be defined in the config space. A simple
command node for an Icarus-Verilog-based simulation could
be defined as follows:

simulation:

tool: Icarus

sv: testbench.sv

include: =:modulel #cross—-reference

toplevel: testbench
A command node refers to a command handle defined by a
tool using the “tool” attribute. For example, tool:
calls the standard command handler in the “Icarus” module to
process this transformation node. The command handler will
then read all other attributes.

A command handler is implemented as a Python function.
It receives a config space context—a pointer to a config space
node—pointing to the command node as an argument, and
will prepare the execution of a tool. RoadRunner prepares
a dedicated working directory for each command invocation.
The command handler copies all needed source files to the
working directory and generates additional scripts to perform
the requested TPT execution. To make this process as easy as
possible, RoadRunner provides convenience functions to help
with these tasks.

Icarus

A. Isolated Execution

A command handler is supplied with a working directory by
RoadRunner. The handler’s task is to provide all the resources
needed for the command and copy them to this directory. That
usually includes source files and additionally generated scripts.
Additionally, it uses the “Pipeline” and “Call” classes to define
tool calls and turn them into a set of scripts in the working
directory that can be started by an entry script (Fig. 1). This
way, the working directory becomes self-contained. It no longer
depends on the project directory and can be moved to various
environments for execution, such as a different machine. An-
other effect is that the working directory is isolated from any
other processing step defined in the project, as well as the
potential side effects it might have. Only an explicitly defined
set of files will be copied to the result directory and brought
back into the project’s config space for other processing steps
to be used.

B. Execution Time Environment

The execution phase of a command is controlled by a subsystem
of RoadRunner called RoadExec, which is copied to each
working directory. It starts by calling the entry point script
rrun.py at the root of the working directory. As shown in
Fig. 1, RoadExec will load the tool environment from the ma-
chine configuration. The tool environment contains information
on how to set up an environment to run a specific tool. It can
vastly differ from machine to machine, and it should be the
concern of the administrator of each machine to provide this
information. The project, in contrast, should not be concerned
with this to stay agnostic to the IT infrastructure in which it is
installed. Apart from setting up the environment for the used
tools, RoadExec controls the order of configured invocations.
It starts the tools according to the structure defined by the
command handler when creating the working directory. There
can be a mixture of sequential and parallel command groups.

Al IP
l A T
T4 Rocket
pulp deps pulp \T
sources Verilog
'T‘ 7 It\ Toplevel RTL
/ | lcarud Source
bender | / \ \1, !Icarus l}
fetch RTL
: S-Veril
Synthesis Bench Soflrrlczg Sv2v
=7
t 1
|| result Icarus Vivado HDL chisel
|| command —> create Sim Sim generate source
] node —> include

Fig. 3: Project hierarchy of the MPSoC as defined in the config files (RR). Command nodes (orange) can be executed to execute a 3rd party program and may
create a result node (green). Resources for command execution are gathered through an include hierarchy, that may span across the config and can include any

kind of node including result nodes.

VI. EXAMPLE

In an extended example, the flexibility of RoadRunner is to
be presented. The considered example design is an MPSoC.
It features multiple RISC-V cores connected with a network-
on-chip and additional custom top-level modules. While most
top-level modules are custom modules written in Verilog, some
need special handling. The RISC-Vs are Rocket Cores [1]
written in Chisel [14] depending on Chipyard’s make-based
RTL-export system. The MPSoC features an Al accelerator that
heavily uses modules from the pulp ecosystem, which Bender
manages. The design is built to be synthesized to an Xilinx
FPGA evaluation board and a Cadence toolchain working
on a 22nm FDSOI PDK from GlobalFoundries. Simulating
the design is possible on commercial simulators of Cadence,
Synopsys, and Xilinx, and for early development on the open-
source Icarus Verilog Simulator [13]. Tapeout is done on the
premises of an external foundry access provider, which has its
own custom project and tooling management. For the tapeout
version, a DDR Interface IP from Synopsys is included, as
well as a PLL IP and multiple pad cell IPs provided by the
foundry access company. The tapeout-specific IP is left out
of the design for other use cases by exploiting RoadRunner’s
dynamic content mechanics.

An overview of how the project is structured in RoadRunner
is given in Fig. 3. Each IP is held in its subdirectory and is
defined in a separate RR file, depicted in the figure as big
boxes. The top-level definition uses cross-references to include
RTL from the IPs. It also defines the simulation commands
close to the corresponding RTL definition, i.e. the top-level
simulations in the top-level node and IP level simulations in the
IP nodes. The AI accelerator and the Rocket Core IPs define
special commands to deal with special origins and provide
smooth integration into the RoadRunner project.

A. External Resources

The rocket core IP and the AI accelerator are not developed
in-house and do not use RoadRunner. Still, a RoadRunner
config file has been created to include these external resources
in the RoadRunner project. For the AI accelerator IP, two
static resource nodes are defined. As shown in Fig. 3, these
are the “RTL’-node, which only lists the (System)Verilog
sources, and the “pulp_deps”-node to define the dependencies
into the pulp ecosystem in a Bender config file. In the usual
Bender workflow, these dependencies are downloaded from git
repositories as given in the Bender config file. The retrieved
dependencies are placed somewhere in the project directory to
be used in the following steps, such as simulation or synthesis.
In the example project, RoadRunner’s Bender module is used
to import dependencies specified in a Bender file:

aiAccel: # (Bender Fetch)
tool: Bender
benderDir: aiAccel #dir with bender-file

This command loads the Bender-defined dependencies from the
external IP included in the project as a git submodule.

The Rocket Core IP is also included as a git submodule. The
project defines two commands on this asset (in Fig. 3 named
“chisel_source”). The first command transforms the source

clock_generator:

/XILINX: #FPGA implementation
sv: xilinx/ClockGen.sv
xilinxLib: mmccO

/TAPEOUT:
sv: ip/ClockGen.sv
include: =:ip.adpll.rtl #using PLL IP

/default: #only simulation
sv: sim/ClockGen.sv

Listing 1: Dynamic clock generator selection depending on used Software
and target. Three variants all define the c1ockGen module, internally using
different implementations based on different IP.

code given in Chisel to SystemVerilog. The second command is
only needed for the Icarus-based simulation flow, as it compiles
the SystemVerilog (“S-Verilog Source”) to Verilog (“Verilog
Source”). The correct version is selected automatically using
RoadRunner flags. When the “RTL” node is included and
the “Icarus” flag is set, the Verilog variant is used, and the
SystemVerilog version is used otherwise.

B. Simulation

The top-level “RTL” node includes different IPs throughout
the project, including the AI accelerator, the Rocket Core, and
multiple others (Fig. 3). It also defines command nodes for
simulating the design using the Icarus Simulator and Xilinx
Vivado. Both commands include the exact top-level RTL defi-
nition, even though it will render slightly different designs. As
described before, depending on the simulator type, the rocket
core definition will include either the Verilog or the SystemVer-
ilog sources of the processor. Similarly, the clock generation
will differ depending on the simulator, using Xilinx’s clock IP,
a non-synthesizable open-source version, or a purchased third-
party IP for ASIC synthesis.

Pushing the metadata and implementation derivation selec-
tion to the units makes the actual simulation command almost
trivial, containing no special information apart from the to-be-
simulated top-level module.

simpleSim: # (Ic us Sim)
tool: Icarus #using Icarus
include: =;Bench #cross—-ref bench node

toplevel: SimpleBench
The selection of the correct variants is controlled entirely by the
flags the Icarus command handler defines, e.g. SIMULATION
and ICARUS.

C. Implementation Results

RoadRunner has been used to tape out three chips, named
Masur23 [15], Masur24 and Masur25. The Ilatter two are
currently being measured in the lab. All three chips share a
project structure similar to the example project from this work.
RoadRunner itself is open source and can be obtained from our
GitHub repository! or via Pypi.org?

D. Synthesis

The example design can be synthesized for FPGAs using
Vivado. As shown in Fig. 3, the synthesis command (Synthesis)

thttps://github.com/Barkhausen-Institut/roadrunner
2https://pypi.org/project/roadrunnerEDA

uses the same top-level definition as the simulation test bench.
Specific differences between the implementation for simulation
and synthesis are resolved by the tool wrapper, applying dif-
ferent flags to the configuration. For example, as shown in the
code example in Listing 1, the clock implementation differs
depending on the target selected by flags.

To find the maximum synthesis frequency, RoadRunner’s
flow control subsystem is used. It allows a command to be
controlled by a given Lua script, run multiple commands with
varying flags, and react to their outcomes (e.g. exit codes).

To make the primary clock frequency controllable by Road-
Runner, the main clock frequency generated in ClockGen.sv
depends on the SystemVerilog define FREQMULT. The clock
generator definition is altered to be:
clock_generator:

/XILINX:

sv: xilinx/ClockGen.sv
env:
FREQMULT: <%-freqMult$>

The SystemVerilog define FREQMULT follows the Road-
Runner flag fregMult for this module. Running the
synthesis command defined at :synth can now be pa-
rametrized with different values for freqMult, for exam-
ple: :synth+fregMult~42. Using RoadRunner’s Flow mod-
ule, a Lua script is used to search for the maximum frequency
that completes the synthesis successfully by running variations
of the :synth command. The algorithm, shown in Listing 2,
performs a search of halving intervals, narrowing down the
optimal value for fregMult in O(nlog(n)) tries. The valid
range is between 32 and 64. In Table I, the steps are summa-
rized to reach the final result. The search algorithm ran for 3
hours and performed five syntheses unsupervised to obtain the
result of fregMult = 42 or freq = 131.25MHz.

VII. CoNCLUSION

RoadRunner is an EDA project management system that fo-
cuses on flexibility, extendability, and separation of concerns. It
features the config space, an attribute-set-list-tree data structure
to capture metadata about EDA projects. Several dynamic
extensions enable reusability and allow hierarchical and modu-
larized project definitions. The definition of processing steps,
source files, metadata, and the results are kept in the config
space. RoadRunner separates the processing of data into two
phases. (I) All necessary data, including sources and scripts to

interval halving

lo, hi = 32, 64 min/max for fregMult
while hi - lo > 1 do
mid = (hi + lo) // 2
t = task(":synth+fregMult~" mid)
wait (t); s = status(t)
if s.exitCode == 0 then
lo = mid —--sucess, set new min
else
hi = mid failt, set new max
end
end

1lo)

Listing 2: Algorithm to find the maximal frequency for the FPGA design. The
synthesis task :synth is called with varying values for flag freqMult.

print ("optimal fregMult:"

TABLE I: AUTOMATIC SYNTHESES TO FIND OPTIMAL FREQUENCY.

low / hi freqMult fl‘E:]/Ilglzl]c y :j:ctils(;i.:lsl
32/ 64 48 150 no
32748 40 125 yes
40/ 48 44 137.5 no
40/ 44 42 131.25 yes
42/ 44 43 134.375 no

call the tools, are collected in an isolated working directory.
(II) The work defined in a working directory is executed. An
example is shown using RoadRunner to implement an MPSoC
using different build systems for different design parts. It
exploits the flexibility to provide specific tailoring for FPGA,
ASIC, and simulation variants. It also showcases the flexibility
of RoadRunner by running a set of synthesis runs to find the
frequency maximum for an FPGA design efficiently.

ACKNOWLEDGEMENT

The project on which this report is based was funded by the
German Federal Ministry of Education and Research under
grant number 16MEQ527. The author is responsible for the
content of this publication.

REFERENCES

[1] K. Asanovic et al., “The rocket chip generator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, vol.
4, pp. 6-2, 2016.

[2] E. van der Bij, “Hdlmake.” Accessed: Jan. 23, 2023. [Online]. Available:
https://ohwr.org/project/hdl-make

[3] J. Balkind et al., “OpenPiton at 5: A Nexus for Open and Agile Hardware
Design,” IEEE Micro, vol. 40, no. 4, pp. 22-31, 2020, doi: 10.1109/
MM.2020.2997706.

[4] A. Olofsson, W. Ransohoff, and N. Moroze, “A Distributed Approach
to Silicon Compilation: Invited,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, San Francisco, California, 2022, pp.
1343-1346.

[5] P. Dabbelt, “PLSI: A Portable VLSI Flow,” 2017.

[6] E.Wang, A. Izraelevitz, C. Schmidt, B. Nikolic, E. Alon, and J. Bachrach,
“Hammer: Enabling reusable physical design,” in Workshop on Open-
Source EDA Technology (WOSET), 2018.

[71 H. Liew et al., “Hammer: a modular and reusable physical design
flow tool,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 1335-1338.

[8] T. Ajayi et al., “Toward an open-source digital flow: First learnings
from the openroad project,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1-4.

[9] O. Kindgren, “A scalable approach to IP management with FuseSoC,” in

Proc. Workshop Open Source Design Autom., 2019.

“PULP Training Slides.” Accessed: Apr. 17, 2023. [Online]. Avail-

able: https://www.pulp-platform.org/docs/pulp_training/PULP_robert_

manuel_deep_dive.pdf

W. Kruijtzer et al., “Industrial IP integration flows based on IP-XACT™

standards,” in Proceedings of the conference on Design, automation and

test in Europe, 2008, pp. 32-37.

K. Wang, G. Tener, V. Gullapalli, X. Huang, A. Gad, and D. Rall, “Scal-

able build service system with smart scheduling service,” in Proceedings

of the 29th ACM SIGSOFT International Symposium on Software Testing

and Analysis, 2020, pp. 452-462.

S. Williams, “Icarus verilog.” 2006.

T. Developers, “Chisel/FIRRTL: Home,” Accessed: Mar, vol. 18, 2021.

S. Haas, C. Dunkel, F. Pauls, M. Hasler, and Y. Verma, “Trustworthy

Silicon: An MPSoC for a Secure Operating System,” in 2024 [EEE

Nordic Circuits and Systems Conference (NorCAS), 2024, pp. 1-7.

[10]

[11]

[12]

[13]
[14]
[15]

