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Autonomous Driving Small-Scale Cars: A Survey
of Recent Development

Dianzhao Li, Paul Auerbach, and Ostap Okhrin

Abstract—While engaging with the unfolding revolution in
autonomous driving, a challenge presents itself, how can we ef-
fectively raise awareness within society about this transformative
trend? While full-scale autonomous driving vehicles often come
with a hefty price tag, the emergence of scaled-down, small-scale
car platforms offers a compelling alternative. These miniature
vehicles are designed to perform predefined tasks and challenges,
equipped with onboard sensors, processing units, and control
actuators. These platforms not only serve as valuable educational
tools for the broader public and young generations but also
function as robust research platforms, contributing significantly
to the ongoing advancements in autonomous driving technology.
This survey outlines various small-scale car platforms, categoriz-
ing them and detailing the research advancements accomplished
through their usage. The conclusion provides proposals for
promising future directions in the field.

Index Terms—Small-scale car, autonomous driving, robotics

I. INTRODUCTION

OVER the past few decades, extensive research on au-
tonomous driving (AD) has been conducted by both

academic communities and industry stakeholders. However,
the fruition of fully functional Level 5 autonomous driving sys-
tems, which entails the availability of completely autonomous
vehicles in the mass market, is anticipated to materialize
in the coming decades [1], [2]. The question arises: Can
we proactively prepare our society for the oncoming fully
autonomous driving? Despite assertions from researchers that
autonomous vehicles (AVs) will mitigate human error and en-
hance safety compared to human drivers, public apprehensions
persist regarding the ethical and safety dimensions of AVs
[3], [4]. Encouragingly, individuals with prior experience with
AVs and younger generations exhibit a more optimistic stance
toward these technologies [5]. Hence, the affirmative response
to this question is clear. Given that those who will further
develop the AD systems are currently in high school, and those
who will coexist with AVs are presently in elementary schools,
the optimal preparation involves providing opportunities for
the public to engage with AD systems now. To this end, a
small-scale car platform emerges as an ideal choice, serving
educational purposes and facilitating researchers in testing
their autonomous systems on a tangible platform.
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Undoubtedly, research in AD research for full-scale cars
holds promise. Despite the supportive environments for devel-
oping and testing AVs in various countries and regions, strict
regulations persist due to concerns about safety, security, and
public trust [6]–[8]. These regulations often limit the ability to
drive or test AVs on public roads, which consequently restricts
the involvement of smaller research institutions or individual
researchers in AD system development. As a solution, the use
of small-scale car platforms offers a more cost-effective and
accessible alternative for the public and research communities
to engage with AD technologies. More specifically, small-scale
car platforms can serve two main purposes: educational tools
for students and research tools for AD researchers. In educa-
tional settings, small-scale cars prove to be an excellent choice
for schools, especially with science, technology, engineering,
and mathematics (STEM) focus, offering students their initial
exposure and hands-on experience with AD while simultane-
ously fostering increased public awareness. On the research
front, the availability of such research platforms lowers entry
barriers, inviting a broader spectrum of researchers into AD
exploration. As evidenced in Fig. 1(A), based on published
studies each year on Google Scholar with the search terms:
”small-scale car” or ”robot car” from 2000 onward, the quan-
tity of research papers focused on small-scale car platforms
has experienced a substantial surge in the past two decades.
Following a relatively gradual incline before 2016, this field
has undergone a notable expansion, particularly catalyzed by
the introduction of a series of well-known platforms. It is
worth mentioning that AD research for small-scale cars is the
ultimate goal of these small-scale car platforms, not the trans-
formation of the techniques into real-size vehicles. Various
major small-scale car platforms claim that these platforms are
designed to be accessible and inexpensive, aimed at fostering
educational and research activities [9]–[13]. For example, as
stated by Duckietown platform [9], their mission is Learning
robotics and AI made tangible, accessible, and fun! They
want to provide a tangible, accessible, and inclusive tool for
a broader range of society to engage with robots and AV.
Similarly, another major platform DeepRacer [10], provided
by Amazon Web Services, also tries to offer developers of
all skill levels for hands-on experience with fully autonomous
1/18th scale race cars with machine learning (ML). Another
platform, F1TENTH’s mission is to foster interest, excitement,
and critical thinking about the increasingly ubiquitous field of
autonomous systems [12]. In comparison to full-scale AVs,
small-scale car platforms employ more lightweight computa-
tion units and sensors for economic reasons. These platforms
primarily use mature AV techniques from full-scale cars,
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albeit under simplified conditions due to current hardware
limitations. Nonetheless, they play a crucial role in engaging
undergraduate students and early career researchers in AV
technologies, inspiring them, and contributing to the growth of
the AV research community. This, in turn, indirectly advances
real-world AV research.

A. Contributions

Despite the importance and widespread use of small-scale
car platforms, no research currently provides a comprehen-
sive overview of these platforms, including their hardware
configurations, software frameworks, and benchmarking of
driving tasks. In [14], the existing literature on small-scale
cars is summarized; however, it lacks comprehensiveness and
does not include a comparative analysis. More recently, [15]
discussed existing platforms, but their focus was limited to
the platforms themselves, without addressing the techniques
used to advance small-scale car AD research. Identifying
this gap, we aim to advance ongoing research initiatives and
enhance public awareness by conducting a comprehensive
survey of existing small-scale platforms for educational and
research purposes. Additionally, we seek to benchmark the
AD tasks accomplished by these platforms. To the best of
our knowledge, this survey represents the first of its kind to
provide such an extensive analysis. The contributions of this
work are as follows:

• Comprehensive Review of Platforms: We thoroughly
review the most widely available small-scale car plat-
forms, comparing their hardware and software configu-
rations to provide readers with an in-depth understanding
and a guide for selecting or building their own platforms.

• Benchmarking Autonomous Driving Tasks: By an-
alyzing over 250 research papers, we categorize the
driving tasks for small-scale cars into two primary
pipelines—modular pipelines and end-to-end pipelines.
We discuss in detail the techniques employed in each
module within these pipelines.

• Proposed Future Directions: After examining the exist-
ing techniques, we propose potential improvements for
both the software and hardware aspects. On the software
side, we suggest techniques to enhance driving behaviors,
while on the hardware side, we recommend platform
improvements to facilitate more advanced research.

The rest of this paper is organized as follows: In Section II,
we examine commonly employed small-scale car platforms,
accompanied by insights into their simulators. Following that
in Section III, we inspect the sensor setups employed in these
platforms. Section IV provides a comprehensive overview of
the AD tasks accomplished within the research community.
Section V outlines promising directions for future develop-
ments, and we draw our conclusions in Section VI.

II. PLATFORMS

For full-scale cars, the standardized dynamics and sizes
are mandated by road regulations. In contrast, smaller-scale
cars, designed without regulatory constraints, are crafted for
diverse research purposes by various groups of researchers

and enthusiasts. Recognizing these disparities, this survey
establishes a clear definition for AD robot cars, setting them
apart from other autonomous robots. In this context, an
AD small-scale car platform refers to a miniature vehicle
equipped with technologies enabling autonomous operation.
This includes sensors, processing units, control actuators,
and often a set of predefined tasks or challenges for testing
and development. In terms of size, namely the scale factors,
there is considerable variability among different platforms.
Platforms intended to carry a lot of sensors and for outdoor
operation can reach almost 1 meter in length [11]. On the other
end of the spectrum, platforms developed for investigating
swarm dynamics are notably compact, with some as small
as 3.3x3.3cm [22]. The most common form factor is the
1/10th scale, representing a model approximately one-tenth the
size of a full-scale car. This scale is frequently employed in
hobby Remote-Control (RC) vehicles, forming the foundation
for numerous platforms [12], [13], [19], [23]–[28]. Regarding
the dynamic system, full-scale cars commonly use Ackermann
steering mechanics, rotating the front axle to facilitate left or
right turns [29]. However, due to the mechanical complexity
of this system and its limitations in certain situations, small-
scale car platforms initially favored the use of a differential
steering system. In this system, the left and right sets of wheels
are driven independently, enabling turns by driving one set of
wheels faster than the other. Nevertheless, as illustrated in Fig.
1, recent advancements in this field have seen the increased
adoption of the more realistic Ackermann steering system in
small-scale car platforms.

A. Hardware Platforms

Before we introduce the different platforms, we categorize
small-scale car platforms into distinct groups based on their
target users and complexity.

1) Educational Platforms: First are the educational plat-
forms predominantly accessible in the commercial market,
as shown in Table I, including Makeblock mBot, Edison,
AlphAI Robot, TinkerGen MARK, and Robolink Zumi. These
platforms are carefully crafted to engage students ranging
from early childhood to elementary school and even grad-
uate programs in the interactive exploration of autonomous
cars. They offer users comprehensive tools, enabling them
to construct effortlessly and program robot cars capable of
executing diverse tasks. These platforms are equipped with
basic sensors such as line sensors, distance sensors, and
occasionally cameras. With limited processing power, most
rely on microcontrollers, they are suitable only for simple tasks
like lane keeping or car following. However, their support for
simple frameworks and visual programming languages makes
them ideal for undergraduate education. Many also come with
pre-made courses designed to teach students the fundamentals
of their operation. Their low cost and commercial availability
further enhance their accessibility for educational purposes.
Despite these advantages, these platforms are not well-suited
for researchers exploring autonomous or connected driving.
Their closed-source hardware and software limit extensibility,
and most lack networking capabilities for external control
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Fig. 1. Illustration of the development and current states of small-scale car platforms, each depicted platform image sourced from its respective paper or
website. (A) Based on published studies each year on Google Scholar with the search terms: ”small-scale car” or ”robot car”, the research on small-scale
cars has seen substantial growth in the number of papers over the years. In the early 2000s, projects like s-bot [16], e-puck [17], and TurtleBot emerged.
Starting around 2016, with the introduction of Duckietown [9], BARC [13], and Autorally [11], there was a significant increase in research papers. This trend
continued with the development of projects like DeepRacer [10], Donkeycar, and F1TENTH [12]. More computationally advanced small-scale cars have been
introduced in recent years, such as ART/ATK [18] and XTENTH-CAR [19]. (B) Examples of small-scale car platforms, categorized into educational platforms
and research platforms, including multiple vehicle setups such as ORAC [20] and UDSSC [21].

TABLE I
AN OVERVIEW OF SMALL-SCALE CAR PLATFORMS FOR EDUCATIONAL

PURPOSES.

Platforms Size Sensors Programming Runtime Price (USD)

Thymio [30] 110x110mm
IR sensor, Accelerometer,
Microphone, Thermistor VPL 2h 270

Makeblock
mBot –

Ultrasonic Sensor, IR sensor,
Line tracking sensor mBlock 1h 190

Edison 80x80x40mm IR sensor, Line tracking sensor
EdBlock
EdPy – 60

AlphAI
Robot –

Camera, Ultrasonic Sensor,
Line tracking sensor Python – 270

Ozobot
Evo 32mm � IR sensor, Speaker OzoBlockly 1h 160

Finch Robot –
Encoder, Ultrasonic sensor,
Line tracking sensor, IR sensor,
Speaker

MicroBit 7h 170

TinkerGen
MARK 200x185x92mm Camera, Ultrasonic Sensor MicroPython – 220

Robolink
Zumi 95x67x70mm Camera, IR sensor Python – 190

or integration into multi-vehicle scenarios. Additionally, their
differential-drive steering design does not accurately replicate
real car dynamics, making them inadequate for serious inves-
tigations into realistic vehicular behavior.

2) Commercial Research Platforms: The subsequent tier
has a more sophisticated system, affording users enhanced
opportunities to innovate and develop new functionalities
within the platform. These platforms also mostly offer support
for more advanced frameworks like Robot Operating System
(ROS) and standard programming languages such as Python to
incorporate them in bigger research projects. Their inclusion
of networking capabilities also aids in incorporating them in
diverse environments. The typical platforms include e-puck
[17], Pheeno [31], Thymio [30], MarXbot [32], Turtlebot, and
Duckietown [9]. The e-puck, Pheeno, Thymio, and MarXbot
are frequently used in swarm robotics research due to their
compact size and reliance on basic sensors. The Duckietown
ecosystem originated in 2016 at MIT as an educational tool
for instructing students in the realms of autonomous and
connected driving but developed into a research platform for
all levels of researchers. Comprising cost-effective vehicles
known as Duckiebots, each unit is outfitted with either a
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Raspberry Pi or a Jetson Nano as its computing unit. Sensor-
wise, the Duckiebots employ an RGB Raspberry Pi camera,
an inertial measurement unit (IMU), wheel encoders, and
a front-facing distance sensor. The platform also facilitates
the incorporation of a central localization system through
”watchtowers.” Propelled by two DC motors on each of the
two driven wheels, the cars adhere to a differential drive pat-
tern. Duckietown is commercially available and widely used
for tasks such as lane keeping using the RGB camera [33],
[34], as well as obstacle and traffic sign detection [35], [36].
Its support for diverse frameworks and sensors, along with
its open-source nature, makes it applicable to various target
groups and tasks. Comprehensive documentation and a large
community further enhance its adaptability and integration into
different environments. The differential-drive steering setup in
Duckietown, similar to educational platforms, is a significant
limitation. Another commercially available platform is the
AWS DeepRacer [10] by Amazon Web Services. This platform
also relies on an RGB camera for sensory input, supplemented
by an upgrade kit featuring a second camera and a LiDAR
sensor. The execution of learned strategies is managed by
a small compute board equipped with an Intel Atom CPU.
With Ackermann steering implementation, DeepRacer is also
primarily used for tasks like lane keeping [37], [38] and
obstacle avoidance [39], [40]. While the platform offers open-
source software to interface with its hardware, its heavy
reliance on Amazon Web Services limits extensibility beyond
the intended use of the manufacturer. However, AWS provides
extensive documentation, including detailed courses on setup
and operation within its software ecosystem.

3) Open Source Platforms: For users seeking open-source
platforms and aiming to build a system from the ground
up, two popular options are Donkeycar [23] and F1TENTH
[12]. Donkeycar is a community-driven platform that provides
detailed instructions for constructing a customizable vehicle.
Its open-source nature allows significant flexibility in sensor
configurations and system design. The base platform is built
on a 1/10th-scale RC car with Ackermann steering, equipped
with a Raspberry Pi or Jetson Nano as the compute unit
and a Raspberry Pi camera as the primary sensor. Users
can enhance the platform by adding sensors such as IMUs,
encoders, and even LiDAR. Given its open-source framework,
users can extend the platform’s functionality according to their
needs. Originally designed for autonomous racing, Donkeycar
is commonly used for tasks like lane keeping [41], [42] and
obstacle avoidance [43]. However, its versatility extends to a
wide range of applications due to its open-source framework.
The community behind the project also offers comprehensive
documentation on building and using the platform. Its Python-
based custom framework supports integration with other sys-
tems, such as ROS, further expanding its functionality. While
primarily designed for single-vehicle use, the platform could
be extended to enable coordination among multiple vehicles.
Despite its advantages, the complexity and the need for manual
assembly and configuration may deter researchers seeking out-
of-the-box solutions. F1TENTH, like Donkeycar, is based on
a 1/10th-scale RC car with Ackermann steering. It features
a Nvidia Jetson as its compute unit and a 2D LiDAR as

the primary sensor. Additional hardware includes an IMU,
odometry data provided by the VESC motor controller, and
an optional RGB camera. With its high-speed capable base
platform, F1TENTH is primarily utilized for autonomous
racing tasks [44], [45], though it is also applied in fundamental
tasks like lane keeping [46] and obstacle avoidance [47], [48].
Thanks to its relatively powerful compute unit, F1TENTH can
support advanced applications, including ML-based decision-
making. The big advantage of these two platforms lies in their
open-source nature and comprehensive online documentation,
enabling extensive customization, such as incorporating ad-
ditional sensors or connecting to simulators. However, this
flexibility comes with the challenge of increased complexity,
as users must build and configure the platforms from scratch,
an approach that may not be suitable for all researchers.

4) Outdoor Platforms: For outdoor applications, the Au-
torally [11] platform takes center stage, built on an off-the-
shelf RC car platform. Unlike smaller platforms such as
Donkeycar and F1TENTH, AutoRally uses a larger 1/5th-
scale model car, allowing it to accommodate more powerful
hardware. Its compute unit is a consumer-grade computer
mainboard equipped with an Intel i7 CPU, enabling advanced
processing capabilities. The platform features a sophisticated
sensor suite, including two industrial synchronized RGB cam-
eras for stereo imaging, an IMU, magnetic encoders for
odometry, and a GPS receiver. Due to its substantial size and
high-performance components, Autorally is mainly employed
for racing tasks [49]–[51]. These tasks often utilize various
sensor fusion strategies, such as combining GPS and IMU
data [52], [53] or integrating camera and IMU data [54], [55].
While the diverse set of sensors and substantial computing
power allow the platform to be used for different tasks, its
large size and high-speed capabilities necessitate an outdoor
environment, making it unsuitable for smaller lab setups.
The project provides instructions for constructing the vehicle,
setting up the software, and integrating it into the ROS frame-
work. However, the lack of comprehensive documentation may
present challenges for users attempting to fully leverage its
potential.

5) Multi Vehicle Platforms: The significance of a small-
scale smart city platform, accommodating multiple vehicles,
is underscored as it plays a crucial role in achieving harmony
and efficient collaboration of a fully autonomous driving
world. To this end, the University of Delaware Smart Scaled
City (UDSSC) [21], developed for education and research on
connected and autonomous driving, emerges as a distinctive
contribution. UDSSC features a scaled-down urban environ-
ment with diverse traffic scenarios, including intersections
and roundabouts, and uses Micro Connected and Automated
Vehicles (MCAVs). These vehicles are built on the Pololu
Zumo platform and feature a differential-drive DC motor
setup with encoders, an IMU, and an Arduino microcontroller.
Each MCAV is further equipped with a Raspberry Pi as
its compute unit, a line-following sensor, and a front-facing
distance sensor. Notably, the absence of onboard cameras or
LiDAR necessitates the use of a centralized localization system
for precise positioning. The platform is tailored for coopera-
tive and connected driving tasks, such as merging [21] and
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TABLE II
SMALL-SCALE CAR PLATFORMS: AN OVERVIEW OF THE HARDWARE SETUP.

Platforms Size Vehicle
Dynamics Actuator Sensors Computation Unit Runtime Commercial

available Price (USD)

AutoRally [11] 1/5th Ackermann Two servo motors
Camera, IMU, GPS,
Hall-effect sensor

Intel i7-6700
Nvidia GTX-750ti SC <1h 7 10k

ART/ATK [18] 1/6th Ackermann
One brushless DC motor
One servo motor Camera, 3D LiDAR Jetson Xavier NX – –

BARC [13] 1/10th Ackermann One brushless DC motor Camera, LiDAR, IMU, GPS ODROID-XU4 – –

Donkeycar 1 1/10th
1/16th Ackermann One brushed/brushless DC motor Camera, LiDAR, IMU, Encoder RPi/Jetson Nano � 7 350

F1TENTH [12] 1/10th Ackermann One brushless DC motor Camera, LiDAR, IMU Jetson TX2 <1h 7 3800

RACECAR(MIT) [24] 1/10th Ackermann
One brushless DC motor
One servo motor Camera, LiDAR, IMU, Encoder Jetson Tegra X1 – 7 2600

MuSHR [25] 1/10th Ackermann
One brushless DC motor
One servo motor

Camera, LiDAR, IMU,
Bump sensor Jetson Nano – 7 900

Qcar 2 1/10th Ackermann One brushless DC motor Camera, LiDAR, IMU, Encoder,
Microphone Jetson TX2 30m∼2h � –

Autominy [27] 1/10th Ackermann One brushless DC Servomotor Camera, LiDAR, IMU, Encoder Intel NUC – –

JetRacer 3 1/10th
1/18th Ackermann One brushed DC motor Camera Jetson Nano – � 600

Autonomouscar [26] 1/10th Ackermann One brushed DC motor
Camera, LiDAR, IMU, Encoder,
ToF Sensor, Indoor GPS RPi 4 – –

CoRoLa [28] 1/10th Ackermann
One brushless DC motor
One servo motor

Camera, Encoder,
Ultrasonic sensor RPi 4 – –

AutoDRIVE [59] 1/14th Ackermann Two DC geared motors Camera, LiDAR, IMU, Encoder,
Indoor GPS Jetson Nano – –

PiRacer 4 1/16th Ackermann Two DC brushed motors Camera RPi 4 – � 250
Duckietown [9] 34x15x23cm Differential Two DC geared motors Camera, IMU, Ultrasonic sensor RPi 2/Jetson Nano 2∼6h � 450

DeepRacer [10] 1/18th Ackermann
One brushless DC motor
One servo motor Camera, LiDAR, IMU Intel Atom ∼6h � 400

µcar [60] 1/18th Ackermann
One brushless DC motor
One servo motor IMU, Encoder RPi Zero W ∼6h –

UDSSC MCAV [21] 1/25th Ackermann One geared DC motor IMU, line following, IR sensor RPi 3 90m –
Chronos [61] 1/28th Ackermann Brush motor with gearbox IMU, Encoder Espressif ESP32 30m∼1h –
Go-CHART [62] 1/28th Differential Four micro metal gear motors Camera, LiDAR, Bump sensor RPi 3 ∼1h –

Cambridge Minicar [63] 75x81x197mm Ackermann – Indoor positioning system8 RPi Zero 2h –

ORCA Racer [20] 1/43th Ackermann – IMU, Indoor positioning system8 ARM Cortex M4 20m –

Epuck [17] 70mm � Differential Two stepper motors
Camera, IMU, IR sensor, Speaker,
Microphone STM32F407 ∼3h � 1000

Turtlebot3 5 14x18x19cm Differential Two servomotors Camera, LiDAR, IR sensor RPi 4 ∼2.5h � 1200
Kilobot [22] 33mm � Vibration Two vibration motors IR sensor Atmega 328 3∼10h � 15
GRITSBot [64] 31x30mm Differential Two stepper motors IMU, IR sensor Atmega 328 1∼5h –

HydraOne [65] 27x32cm Omni Two encoder motors Camera, 3D LiDAR, Encoders Jetson TX2 – 7 7200

Pheeno [31] 10cm � Differential Two micro gear motors Camera, IMU, Encoder, IR sensor ATmega328P
ARM Cortex-A7 5h 7 270

Thymio [30] 11x11cm Differential Two DC motors
IR sensor, Accelerometer,
Microphone, Thermistor PIC24F 2h � 270

MarXbot [32] 17cm � Differential –
Camera, IMU, IR sensor,
2D force sensor ARM 11 processor – –

WolfBot [66] 17.5cm � Omni –
Camera, IMU, IR sensor,
Microphone BeagleBone – –

LabRAT [67] - Differential Two DC gearmotors IR sensor Atmega324p 3h –

Jetbot 6 - Differential Two TT motors Camera, IMU Jetson Nano 2∼3h � 250
1. http://donkeycar.com 2. https://www.quanser.com/products/qcar 3. https://github.com/NVIDIA-AI-IOT/jetracer
4. https://www.waveshare.com/wiki/PiRacer AI Kit 5. https://www.turtlebot.com 6. https://jetbot.org
7. Build guides with off-the-shelf parts are provided. 8. Motion Capture Systems.

roundabout navigation [56]–[58]. However, it is constrained
by several limitations. The reliance on an external localization
system ties the platform to a specific physical testbed, as
relocating the system requires substantial effort. Additionally,
the lack of onboard sensors for localization restricts its use
to studies on multi-vehicle interactions. Unfortunately, the
UDSSC platform is not open source; its hardware and software
are proprietary, and it is not available for purchase. Moreover,
the absence of detailed documentation limits its usability.
As a result, the platform primarily serves as inspiration for
developing custom solutions with similar capabilities.

For the sake of brevity, the details of commonly used
platforms have been summarized in tables. Table II presents a
comparative hardware analysis of various platforms, highlight-
ing key characteristics such as steering dynamics, actuators, in-
stalled sensors, and prices, whether for crafting or purchasing
a platform. Table III focuses on the software aspect, detailing
the software frameworks employed and, where applicable, the
simulation tools integrated into each platform. Additionally,
the primary focus tasks of each platform are provided as a
reference for those interested in exploring specific driving
behaviors.

B. Simulators

Before employing the autonomous system in real platforms,
a simulation is often used first to test the performance. For
small-scale cars, numerous simulators exist to facilitate the
training, testing, and evaluation of autonomous systems.

First, for the requirements of simulating the vehicle dynam-
ics and control systems, CarMaker and CarSim are widely
recognized. These platforms provide environments for assess-
ing various aspects of vehicle behavior, including handling,
braking, and acceleration, under diverse driving conditions.
For autonomous systems, sensor models are as crucial as
physics engines. Gazebo [68] is a prominent open-source
platform in robotics, offering modular systems for integrating
diverse sensors and physics models. Gazebo-based simulations
have been developed for small-scale platforms like Turtlebot,
Duckietown, DeepRacer, F1TENTH, MuSHR, and Autorally,
demonstrating its flexibility and adaptability to different re-
search needs. Other robotic simulators such as ARGoS and V-
REP are also used as bases for small-scale car platforms [17],
[22]. For macro-scale simulations, SUMO [69] is a leading
platform for analyzing transportation systems, optimizing road
networks, and developing traffic management strategies. It
has been used for training traffic control algorithms in multi-

http://donkeycar.com
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TABLE III
SOFTWARE SETUPS AND TARGET TASKS FOR DIFFERENT

SMALL-SCALE CAR PLATFORMS.

Platforms Software
Programming

Simulation
Platform

Focused
Tasks1

User
Manual

ART/ATK ROS2 Chrono General
MuSHR ROS – General �

Qcar ROS, Python,
MATLAB Gazebo General

Autominy ROS Gazebo General �

AutoDRIVE ROS
AutoDRIVE
Simulator General �

WolfBot ROS MATLAB General
HydraOne ROS – General �
Turtlebot3 ROS Gazebo General �

RACECAR(MIT) ROS Gazebo
SLAM
Path Following �

Donkeycar Python Gym-Donkeycar2
Lane Keeping
Racing �

Duckietown ROS
Gazebo
Gym-Duckietown3

Lane Keeping
Obstacle Avoidance �

PiRacer ROS – Lane Keeping �

Jetbot ROS Gazebo
Lane Keeping
Obstacle Avoidance �

Autonomouscar ROS
LabVIEW –

Lane Keeping
Obstacle Avoidance

AutoRally ROS Gazebo Racing �

BARC ROS –
Racing
Drifting

F1TENTH ROS
Gazebo
F1TENTH Gym4 Racing �

JetRacer – – Racing �
DeepRacer ROS Gazebo Racing �
ORCA Racer C++ – Racing

Epuck ROS
Enki, Webots
V-REP, ARGoS Swarm �

Kilobot – V-REP Swarm �
GRITSBot – – Swarm
Pheeno Python – Swarm �
MarXbot ROS Gazebo Swarm
LabRAT C Player/Stage Swarm

CoRoLa ROS2
Based on
LGSVL Cooperative Driving

µcar C++
Matlab – Cooperative Driving �

UDSSC MCAV ROS SUMO Cooperative Driving
Chronos ROS – Cooperative Driving �
Go-CHART ROS – Cooperative Driving
Cambridge Minicar Python – Cooperative Driving �

1 Focused tasks are identified based on the main research paper or proposed by us according to the sensor
configuration.
2 https://github.com/tawnkramer/gym-donkeycar.
3 https://github.com/duckietown/gym-duckietown.
4 https://github.com/f1tenth/f1tenth gym.

vehicle systems, as discussed in [58]. In the realm of more
detailed autonomous driving setups, various open-source simu-
lators have gained popularity, with TORCS [70], CARLA [71],
AIRSIM [72], and LGSVL [73] being notable examples. These
platforms feature high-fidelity physics engines and extensive
sensor support, enabling hyper-realistic simulations of traffic
environments. They are particularly effective for training larger
small-scale vehicles, such as 1/5th scale models, before real-
world deployment [74]–[77]. In addition to general-purpose
simulators, several platforms are tailored to specific small-
scale systems. For example, Gym-Duckietown provides a fast
and customizable environment for Duckietown, supporting
various driving tasks. The DeepRacer cloud simulator by
Amazon offers an online platform for customizing algorithms
and testing them within the DeepRacer ecosystem. Donkey-
Gym, designed for Donkeycar, uses the Unity game engine for
enhanced physics and graphics. F1TENTH Gym is optimized
for F1TENTH platforms, offering specialized simulation ca-
pabilities. AutoDRIVE simulator provides a comprehensive
environment for various driving tasks for AutoDRIVE cars.
For multi-agent systems, platforms like MADRaS [78] (built
on TORCS) and Flow [79] (built on SUMO) are frequently
employed. These tools facilitate the study of interactions and

behaviors in complex traffic and multi-agent environments. In
Table III, a summary of simulators used for main small-scale
car platforms is shown.

Communication in robotics is as critical as the simulator
itself, and ROS [80] serves as a key middleware platform for
managing robotic software development. ROS facilitates com-
munication between various robotic components, including
sensors, actuators, and decision-making algorithms, enabling
seamless integration and scalability. It also offers a vast
collection of pre-built packages and libraries for common tasks
like motion planning and image processing. Currently, ROS
exists in two versions: ROS 1 and ROS 2. ROS 1, the original
version, is widely used and supported by the community; how-
ever, its centralized architecture limits real-time capabilities
and lacks robust security features. In contrast, ROS 2 addresses
these limitations with a decentralized design based on the Data
Distribution Service, offering enhanced scalability, real-time
support, and Quality of Service. While ROS 1 remains suitable
for projects reliant on mature tools and is ideal for educational
or non-real-time applications, ROS 2 is recommended for
new projects requiring real-time performance, high scalability,
security, and cross-platform compatibility. Nevertheless, the
Simulation to Reality (Sim2Real) gap remains a challenge
that needs to be addressed before successfully deploying the
trained algorithms in the real world.

C. Sim2Real Transfer

Sim2Real is a concept in robotics and AVs that involves
transferring skills, knowledge, or models acquired in a simu-
lated environment to real-world applications. Here, the real-
world setting or scenario in which the robot is intended
to operate and execute tasks is termed the target domain.
Conversely, the data, and experiences, shaping the develop-
ment of the robotic system are called the source domain.
The core objective of Sim2Real is to devise algorithms and
methodologies capable of effectively bridging the disparities
between these two domains, known as the Sim2Real gap. For
instance, this gap may manifest as dynamic differences or
discrepancies in the sensing part, where the simulated images
and the real images are different. Although the Sim2Real trans-
fer is primarily centered on transferring Deep Reinforcement
Learning (DRL) policies from simulation to the real world,
it can also be more broadly considered as ML problems for
the sensing part, for the agent facing situations in the real
world that have not appeared in simulation. To address the
Sim2Real gap, an array of methods is proposed, including
system modeling, dynamics randomization, and randomization
for sensing. Here we introduce the most used methods for
small-scale cars.

The first approach for the real-world application of small-
scale cars is Zero-shot Transfer, where the trained model is
directly applied in real-world settings. Imitation Learning (IL),
based on datasets from real platforms, trains agents to mimic
expert behavior [11], [33], [54], [55], [62], [81]–[83]. While
efficient, this method assumes simulation and real-world envi-
ronments are similar. DRL-based Zero-Shot Transfer, achieved
via compact observation and output spaces [84]–[86], depends
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heavily on simulation fidelity for success. Another noteworthy
approach is Transfer Learning, which aims to improve the
performance of the target agent in the target domain by
transferring the knowledge contained in different but related
source domains [87]. It excels when simulation closely aligns
with real-world scenarios but falters with significant domain
mismatches. For small-scale cars, this method balances ef-
ficiency and adaptability in controlled conditions. When the
labeled data in the target domain is scarce or expensive,
Domain Adaptation is used. As a subset of transfer learning,
it seeks specifically to minimize the distribution mismatch
between the source and target domains, allowing the model to
generalize better across different domains. It is effective in dy-
namic environments but requires computational resources and
high-quality feature extraction, posing challenges in real-time
applications. Another frequently used approach is Domain
Randomization, in which the randomness and variation are
introduced during simulation to make the model more robust
to different real-world conditions [88]. It works by for example
randomly varying simulation parameters, such as lighting con-
ditions, textures, object appearances, and physics properties
during training. For small-scale car platforms, Duckietown
and DeepRacer provide Domain Randomization option in the
simulation, which is easier for the users to tackle Sim2Real
issue [10], [37], [89], [90]. While fostering generalization,
excessive randomization may dilute the relevance of training
data, compromising real-world performance.

III. SENSORS AND SENSOR SYSTEMS

In Section II-A, various platforms are explored, each em-
ploying diverse sensors to perceive their surroundings and exe-
cute tasks. Compared with full-scale AVs, which are equipped
with various state-of-the-art sensors for perception [91], small-
scale cars usually use lightweight sensors. Here, we discuss
the most commonly utilized sensors across these platforms,
providing their respective use cases.

A. Camera

An RGB camera provides a stream of images that is easily
processed and understood by humans. This helps researchers
to better understand the perspective of the robot. The amount
of information provided by cameras is huge, which allows the
robot to perceive a lot of information with just one sensor in a
short amount of time. The downside of this is, that they need
a high bandwidth communication link to whichever part of the
robot needs those information. Also with the information in
images being so densely encoded, it is difficult for a robot to
understand the environment.

The field of computer vision has emerged as a crucial
scientific discipline, facilitating the extraction of pertinent
details from images and videos. In recent years, the advent
of deep learning (DL) models, such as You Only Look Once
(YOLO) [92], has significantly contributed to enhancing the
robot’s ability to interpret scenes captured by cameras. It
is worth noting that cameras face external influences, such
as varying lighting conditions, which can substantially alter
the captured images. In extreme scenarios, such as very

dark environments or instances where direct light affects the
camera, the effectiveness of cameras may be compromised. A
big advantage of cameras is their wide pricing range, starting
from 15 USD, corresponding to images of different quality in
regards to resolution and dynamic range. They are also easy to
interface with, usually requiring only a USB connection. Some
tasks can be accomplished only with cameras, e.g. traffic sign
or road marking detection [93]–[95].

Beyond RGB cameras, more advanced options exist, includ-
ing those detecting optical flow [96] (the apparent motion of
objects) or depth cameras [97], employing different methods
to ascertain the distance to objects. These advanced cameras
provide both depth information and standard RGB images.
In the context of autonomous tasks for single-car platforms
discussed in this paper, cameras emerge as a ubiquitous choice.
Their cost-effectiveness and information-rich output make
them the preferred sensor for many platforms. Among the
commonly used cameras in scaled vehicles, the Raspberry Pi
Camera stands out [9], [23], [28], [31], [59], [62]. Designed for
the Raspberry Pi, it combines affordability with decent image
quality, offering a resolution of 1080p and a dynamic range of
44dB. Another popular option used in the discussed platforms
is the Intel Realsense line of cameras [25], [26]. Those include
two cameras and an IR projector, which allow to capture not
only an RGB image but also depth information of each pixel
using stereovision. The IR projector helps to improve accuracy
in scenes with poor textures. The manufacturer claims an
accuracy in the centimeter range.

The big advantage of cameras is their versatility combined
with their low price. Their dense stream of information makes
them suitable for almost all tasks discussed in this paper.
Although different approaches for processing the information
from cameras need to be applied depending on the task.
Applying DL approaches helps with this in many different
fields and allows for quickly iterating through different ap-
proaches. One major drawback of relying solely on cameras
is their susceptibility to varying environmental conditions, as
previously mentioned. This sensitivity complicates the transfer
of control strategies from simulations to real-world vehicles.
For successful transfer, simulations must either model these
environmental influences with high accuracy or incorporate
an additional interpretation layer that bridges the gap between
simulation and reality.

B. LiDAR

LiDAR, another widely employed sensor in numerous plat-
forms, functions by measuring the time taken for a beam of
light to reflect off a surface. The LiDAR emits beams from
multiple angles—typically ranging from 360 to 2048—creat-
ing a detailed point cloud map of objects in the environment.
Multi-layer LiDAR systems, with laser beams spanning up to
128 angles, provide data on objects at different heights, gener-
ating a comprehensive 3D point cloud. LiDARs are available
in various resolutions, offering enhanced detail, especially in
complex and structured environments. The typical scanning
frequency of LiDARs ranges from 5 to 20 Hz, with high-end
models achieving detection ranges of up to 350 meters.
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The distinct advantage of LiDAR over cameras lies in its
direct identification of the surroundings, including the precise
position of objects relative to the robot. In contrast, a camera
first needs to identify an object in an image and then estimate
its position. Moreover, LiDAR provides significantly more ac-
curate positional information compared to estimations derived
from camera images. However, unlike cameras, LiDARs lack
the ability to discern details such as the color of the detected
objects. This limitation renders them unsuitable, for example,
in tasks like traffic signs or lane detection. LiDAR also has
a significant advantage over cameras in that it is unaffected
by environmental conditions such as varying lighting, and it
can operate effectively in complete darkness. Additionally,
some LiDAR models offer reflectivity data, which can help
distinguish between different surface types. For example, they
can differentiate highly reflective road markings from less
reflective obstacles. However, LiDARs are typically more
expensive than cameras. The most affordable hobbyist LiDARs
start at around 150 USD for a basic single-plane sensor, with
prices increasing rapidly as resolution or the number of planes
expands.

Usually physically larger platforms use LiDAR sensors [10],
[12], [13], [18], [23]–[27], [59], [62] as they tend to be
bigger and heavier than cameras. Those platforms are also
usually more versatile and used for more different tasks and
therefore the additional cost of a LiDAR is feasible. In our
investigation, all platforms utilizing LiDAR also integrate a
camera to address the limitations of LiDAR for specific tasks.
The LIDAR that is used by far the most on the platforms
we investigated is the single plane RPLIDAR [13], [23], [26],
[27], [59], [62]. It offers a reasonable detection range of 12m
and a resolution of 0.225 degrees for small-scale car platforms
with a 360 field of view. And is one of the cheaper options
costing around 400 USD. But it only allows for a 10 Hz scan
frequency. The second most popular, higher end solution is
the Hokuyo UST-10LX [12], [24], offering a 270 degree field
of view and a 10m detection range.

Particularly tasks, that require precise information about the
location and orientation of surrounding vehicles or obstacles
benefit greatly from the improved accuracy of LIDARs over
cameras, these include car following, overtaking, or obstacle
avoidance. Tasks such as lane following or traffic sign follow-
ing need the additional visual information provided by cameras
and can therefore not be accomplished with only LIDARs.

For economic considerations, cost-effective sensors are the
mainstream choice for small-scale cars. These sensors typi-
cally offer lower resolution but demand less computational
power. For example, the RPLiDAR is commonly used in small-
scale cars, providing a detection range of up to 40 meters with
error margins of approximately 1%. It has a data rate of around
32,000 samples per second. In contrast, typical LiDAR sensors
used in full-scale AVs offer significantly higher range, resolu-
tion, and data rates. For instance, the Velodyne LiDAR sensor
can detect up to 120 meters with a 2 cm error margin and
a data rate of 1.3 million points per second. These hardware
limitations make it challenging to develop new approaches,
leading primarily to the application of mature AV techniques
from full-scale cars under simplified conditions. However,

advancements in semiconductor technology are expected to
make more sophisticated hardware setups available for small-
scale cars in the near future, which will unlock more advanced
AV techniques for small-scale cars.

C. IMU and Encoder

Some sensors that are usually not used on their own but as
an additional source of information for other sensors are IMU
and odometry encoders. Where odometry encoders provide
information about the angle by which each wheel of a robot
has turned and therefore allow us to estimate where it has
traveled, the IMU provides information on how fast a robot is
spinning along each of its axes aiding in estimating the total
rotation.

The information of these two types of sensors is usually
combined with other absolute positioning inputs like a camera
or a central localization system to fuse them in a filter like a
Kalman filter [98] or in any other kind of perception module.
IMUs are available at relatively affordable prices, ranging
from 15 USD. The two IMU sensors most commonly used
in the discussed platforms are the MPU9250 and MPU6050
[9], [17], [23], [26], [59]. Although it has to be noted, that not
all publications mention the exact model of the IMU used.
Both sensors feature a 3-axis gyroscope, which measures the
rotational speed, and a 3-axis accelerometer, which measures
linear acceleration. The MPU9250 additionally offers a 3-
axis magnetometer to incorporate measurements of the Earth’s
magnetic field into orientation sensing.

Odometry encoders can be found in several different forms,
ranging from magnetic encoders to optical ones. Their im-
plementation is usually dependent on the platform, as they
need to be tightly integrated into the mechanics of the robot.
Despite their low cost, often under 10 USD, they offer reliable
positional data, making them a popular choice. Almost all
the platforms reviewed in this paper incorporate an IMU and
some form of encoder, as these sensors are both affordable and
effective, particularly in slow, controlled indoor environments.
The notable exception is the smallest platform, primarily
designed for swarm robotics research [22], where extreme cost
constraints led to the exclusion of these sensors.

The addition of cheap odometry encoders or IMUs espe-
cially benefits tasks that require the knowledge of the precise
location and orientation of the vehicles. This includes tasks
such as path following, racing, or drifting. The disadvantage
of this type of sensor lies in the need to incorporate it in a
meaningful way, this usually involves either existing filters or
using deep neural networks. In the first case, the additional
filter needs to be tuned to provide meaningful information,
in the case of the latter the training of the neural network
becomes more complex. The big advantage lies in the small
price and easily accessible information.

D. GPS

GPS is the least frequently used sensor with model scale
platforms [11], [13] offer positional information in a global
coordinate system. Most of the discussed platforms are de-
signed for indoor use, which eliminates the use of GPS as
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the signal does not penetrate buildings. However, recognizing
the pivotal role GPS plays in full-sized vehicles, many model-
scale platforms opt to replace it with indoor central localization
systems, as detailed in Section III-E, to enhance realism. GPS
receivers are also comparatively cheap at around 30 USD.
However, for those seeking higher precision, the cost can
escalate to several hundred USD, especially for the more
advanced GPS RTK systems [99]. Such precision may become
necessary for model-scale platforms, as conventional GPS
systems typically only offer an accuracy of approximately 5
meters [100]. The biggest disadvantage of GPS sensors for
small-scale vehicles is their reliance on outdoor environments,
which require significantly more space and make experiments
heavily dependent on weather and other outdoor conditions. As
a result, GPS sensors are only beneficial for platforms when
the research focuses specifically on the accurate effects and
phenomena associated with GPS data, such as multipath errors
or signal interference.

E. Central Localization System

In situations where the emphasis is on studying the inter-
action among multiple vehicles rather than individual vehicle
behavior, a central localization system streamlines the task,
allowing a more focused approach to other aspects such
as obstacle avoidance or overtaking, by providing precise
information about the position and orientation of different
objects and sometimes even their velocity. By decoupling the
algorithms for (multi) vehicle behavior from the perception of
individual vehicles, central systems enable the study of system
dynamics in an idealized ”best case” scenario. In this context,
the term ”best case” refers to a situation where a vehicle
possesses precise knowledge of its own position and that of
surrounding obstacles. However, it is essential to acknowledge
that this assumption may not align with the complexities of
real-world road situations. Conversely, central systems find
utility in simulating GPS positioning within actual vehicles.

One of the cheapest options implemented in the considered
platforms involves the use of special markers or tags on each
vehicle, which are observed by one or multiple overhead
cameras [101]. These markers, based on ArUco [102] tech-
nology, are strategically placed on vehicles and key positions
or obstacles. Knowing the intrinsic and extrinsic parameters
of the cameras, existing libraries like OpenCV [103] can be
employed to detect these markers and estimate their position
and orientation. As discussed in Section III-A, cameras are rel-
atively inexpensive, and the markers merely need to be printed
out. While the resulting localization precision is reasonable
[104], it does decline with the distance of the markers from
the camera. Mitigating this issue involves the use of multiple
cameras, necessitating synchronization and precise positioning
of all cameras.

Off-the-shelf solutions for tracking also exist from various
manufacturers, such as OptiTrack or VICON. These solutions
predominantly rely on high-speed IR cameras and reflective
markers on the tracked objects. The systems inherently pro-
vide position and orientation information for different marker
assemblies (referred to as rigid bodies) without requiring

additional processing. Notably, the accuracy of these systems
surpasses that of solutions utilizing RGB cameras, with man-
ufacturers often specifying sub-millimeter accuracy. However,
the upfront cost is relatively high, typically exceeding 10,000
USD, and in some cases, additional licensing fees for the
requisite software may apply [21], [63].

Central localization systems offer the advantage of high
precision localization of any object within the test setup
and are easily extendable to more vehicles of objects as
no additional sensors need to be mounted on the vehicles
themselves. They are however quite expensive and require a
dedicated mounting setup to position the sensors, therefore
they cannot easily be relocated. Their high precision allows
for easy transferability from simulation to real-world testbed.
The implementation of these systems especially benefits tasks,
that do not study the influence of sensors and sensor behavior
on the control algorithm, but merely the control strategies
themselves. They can essentially be used as the single source
of information for any of the tasks listed except traffic sign
following.

F. Other sensors

Several platforms discussed in Section II-A employ addi-
tional sensors to either emulate sensors found in full-scale
autonomous cars or fulfill specific tasks.

A prevalent type of sensor utilized in many platforms [9],
[17], [26], [28], [30], [32], [62], [64], [66], [105] is the
single-point distance sensor, available as either ultrasonic or
infrared. These sensors operate on the time-of-flight principle.
They measure the time it takes for a wave to reflect back to
the sensor and calculate the distance accordingly. Typically
positioned at the front of vehicles, they often mimic radar
sensors and play a crucial role in tasks such as car following.

Line following sensors, consisting of an array of light
sensors aimed at the ground, are employed in certain platforms
[21], [26], [26] to assist visual line following, with a camera
serving as a secondary input. These sensors can easily discern
the line from the road by measuring the reflectance of the
surface on multiple points along the length of the sensor. A
limitation is their coverage area, which is relatively small and
located underneath the car. If the vehicle deviates significantly
from the line, the sensor may struggle to rediscover it.

One platform [101] utilizes RFID readers to detect specific
points of interest on the road, such as the beginning of
intersections or as indicators for turns on a crossroad. Turtlebot
employs cliff sensors, which function as downward-facing
distance sensors, indicating if the part of the vehicle with the
sensor is suspended over a steep drop. This sensor serves to
prevent the vehicle from inadvertently falling off a precipice
in the environment.

For the platform designed for use with a high amount of
robots [22], infrared (IR) transmitters and receivers are em-
ployed. These facilitate cost-effective communication between
different robots and emulate a simple form of Vehicle-to-
Vehicle (V2V) communication.



10

G. Compute Units

To process the information from the sensors and compute
actuator movement according to their task, the platforms
require a dedicated computational unit. As the physical size of
the platforms is quite limited, the computational performance
of these compute units is as well. The prevailing choice
across numerous platforms [9], [21], [23], [26], [28], [60],
[63], [101], [106] is the Raspberry Pi single-board computer
(SBC). It offers a performance of about 32 GFLOPS lever-
aging both CPU and GPU. Built on a System on a Chip
(SoC), the Raspberry Pi features a compact physical size
but offers modest computational performance, with a 4-core
1.5GHz CPU. Despite its relatively low processing power, the
Raspberry Pi is well-suited for the majority of tasks performed
by these platforms. The Raspberry Pi also benefits from a large
developer and research community providing a diverse set of
frameworks and libraries to harness its capabilities.

A comparable alternative to the Raspberry Pi is the Nvidia
Jetson. Also based on an SoC, the Nvidia Jetson stands out
by incorporating an additional higher performance GPU to
accelerate ML tasks, resulting in a performance of around 472
GFLOPS. Different versions of the Nvidia Jetson are available,
some also offering dedicated resources for tensor operations
for DL tasks. The highest performing option offers up to 300
TOPS. Given their similar connectivity, some platforms offer
compatibility with either the Raspberry Pi or the Nvidia Jetson
[9], [23]. However, the majority of platforms exclusively
support the Nvidia Jetson [12], [18], [24], [25], [59], [65].

For platforms not requiring high computational performance
on the vehicles themselves, microcontrollers [17], [22], [30],
[61], [64], [67] are very common. Although microcontrollers
offer lower performance than Raspberry Pi, offering only
between 100 KFLOPS and 25 MFLOPS, they enable real-
time code execution, crucial for interfacing with low-level
sensors and actuators. They also use less power and are
cheaper. Conversely, some platforms leverage regular PCs as
their computational unit [10], [11]. While PCs provide the
highest performance, ranging from 50 GFLOPS for CPU-only
tasks up to multiple TFLOPS for GPU computation, they
have larger physical footprints and higher power consumption.
Because of this, some platforms [21], [28], [63] opt to use a
lower power compute unit like a Raspberry Pi on the vehicles
themselves for command execution and sensor data acquisition
only and offload compute-intensive tasks such as control
strategies and computer vision algorithms to a more powerful
central computer that is connected through a network to the
compute units on the vehicles. This increases the complexity
of the setup as network communication has to be handled
but allows for easier reconfiguration and upgrades as only the
central compute unit has to be changed. This also allows to use
external high performance compute clusters to handle complex
control strategies.

Especially control strategies involving a camera as a sensor
or strategies fusing multiple sensors require significant perfor-
mance from the computing unit. Platforms that employ these
strategies usually use one of the higher end options listed,
namely an Nvidia Jetson or regular PCs, either on the vehicles

or as a central computer unit. The smaller and the cheaper the
platforms tend to be, the smaller also the compute units have to
be, as size and energy constraints increase with smaller sizes.
Smaller platforms also usually employ smaller and more low
level sensors which can only be interfaced with through low
level compute units like microcontrollers or SBCs.

H. Vehicle-to-Everything (V2X)

V2V refers to the ability of autonomous vehicles to commu-
nicate with one another to collaboratively perform cooperative
driving tasks. Its extension, Vehicle-to-Infrastructure (V2I),
involves communication between vehicles and infrastructure
elements, such as traffic lights or traffic signs. In 2019, the
definition was expanded to V2X, which encompasses V2V
and V2I, but also extends to communication with broader
systems like the power grid or cellular networks. In full-
scale autonomous vehicles, dedicated network components and
protocols facilitate this communication.

Small-scale vehicles play a crucial role in researching these
types of interactions, as they enable easy deployment of
complex setups involving both vehicles and infrastructure in
compact testbeds. For a small-scale platform to support such
research, it must have networking capabilities, which excludes
many of the educational platforms discussed in Section II-A1.
Most other platforms rely on WiFi for networking, with the
notable exception of the Kilobot [22], which uses a proprietary
infrared communication link. WiFi enables both centralized
approaches, where all vehicles and infrastructure elements
communicate with a central coordinator, and decentralized
approaches, where vehicles communicate directly with each
other. All of the platforms investigated in our research rely
on a central coordinator to manage communication, as seen
in [21] and [63]. However, the open-source platforms refer-
enced in Section II-A3 can be extended to support alternative
communication strategies. Most of the platforms we examined
only support V2V communication, with the Duckietown [107]
and AutoDRIVE [59] platforms being exceptions. These two
platforms also support V2I communication in the form of
connected traffic lights. In Duckietown, the traffic lights are
essentially built with the same hardware as the vehicles, al-
lowing them to sense other vehicles through onboard cameras
and accept control commands from either a central coordinator
or other vehicles.

IV. BENCHMARKING

As discussed in Section III, small-scale cars primarily apply
mature AV techniques from full-scale cars under simplified
conditions. Thus, autonomous driving systems for small-scale
vehicles are typically categorized into two distinct pipelines,
similar to those used in full-scale cars: the end-to-end system
pipeline and the modular system pipeline. As illustrated in
Fig. 2, a modular system comprises multiple subsystems that
perform various tasks such as perception and localization,
mapping, path planning, and control [108], [109]. Each sub-
system focuses on specific functionalities and tasks. First is the
perception system, where sensors such as cameras and LiDAR
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Fig. 2. Comparison of two pipelines for the autonomous driving system. An end-to-end system maps raw sensor inputs directly into control commands,
whereas a modular system includes multiple subsystems to process the sensor inputs sequentially and output control commands.

are used to gather information about the surroundings, includ-
ing lane markings, obstacles, traffic signs, and other vehicles.
Following this, the localization and mapping system leverages
GPS, odometry, IMU, or techniques like simultaneous local-
ization and mapping (SLAM) to precisely pinpoint the position
within the environment while concurrently creating a detailed
map of its surroundings. The perception system creates an
intermediate representation of the environment for subsequent
utilization.

The representation module then uses the information from
the perception module and further processes the sensor data
with sensor fusion techniques or creates an object map with
the predicted state of each object within the sensor range.
The combination of the perception module and the repre-
sentation module can be seen as the scene understanding,
which provides an abstract high-level representation of the
environment [109]. Afterward, the planning system maps out
a safe and efficient route to reach the destination. Normally, in
the autonomous driving system, the planning phase is divided
into two different parts, namely global path planning and
local path planning [110]. Global path planning refers to the
process of determining an optimal or feasible route from the
current position to its destination and is done considering the
entire environment and involves high-level decision-making.
Local path planning or path following, on the other hand,
focuses on the immediate surroundings of the vehicle and deals

with making real-time adjustments to adhere to the planned
global path. Finally, the control module generates driving
commands based on the processed information. In control
theory, the primary goal is to minimize a cost function. Various
methodologies are employed for the control system, classical
controllers such as the Proportional–Integral–Derivative (PID)
controller, Model Predictive Control (MPC), and ML-based
controllers such as IL or DRL. PID works by continuously
calculating the error between a desired setpoint and a measured
process variable, then applying corrective actions based on
three components: proportional, integral, and derivative. The
proportional component reacts to the current error, providing
immediate corrections, the integral component addresses ac-
cumulated past errors to eliminate steady-state error, and the
derivative component predicts future errors by considering the
rate of change, enhancing stability and responsiveness. MPC,
on the other hand, is an advanced control strategy designed
for complex systems. It predicts future system behavior using
a dynamic model and computes optimal control inputs by
solving a constrained optimization problem at every time step.

For ML-based controllers, as illustrated in Fig. 3, IL in-
volves training an agent to mimic expert behavior by learning
from a dataset of demonstrations. By directly leveraging
expert trajectories, IL bypasses the need for explicitly defined
reward functions, making it particularly effective in scenarios
where optimal behavior is well understood but challenging
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Fig. 3. Classification of research in small-scale cars into modular and end-to-end systems. Modular systems are further subdivided into perception tasks,
planning tasks, and control tasks.

to formalize mathematically. Key IL algorithms include Be-
havioral Cloning (BC) [111], Generative Adversarial Imita-
tion Learning (GAIL) [112], Inverse Reinforcement Learning
(IRL) [113], and Dataset Aggregation (DAgger) [114]. On the
other hand, RL involves training an agent to autonomously
discover optimal policies by interacting with an environment
and receiving feedback in the form of rewards [115]. This
exploration-based approach allows RL agents to learn from
scratch and adapt to a wide range of environments, even in
the absence of expert guidance.

An end-to-end system is characterized by a unified archi-
tecture that aims to learn the entire mapping directly from
raw sensor inputs to driving actions without explicitly decom-
posing the task into separate modules [116]–[118]. It involves
training a comprehensive learning model with ML methods,
IL or DRL, directly processing raw sensor data and output
control commands. End-to-end systems potentially simplify
the system architecture by eliminating the need for handcrafted
modules and feature engineering.

In this section, we focus on the two primary systems and the
key tasks associated with each, as depicted in Fig. 3. Rather
than delving into the detailed methodologies used to accom-
plish these tasks, we provide references to the relevant studies
for further exploration. Additionally, we propose a baseline
framework for each system, aiming to provide inspiration and
guidance for researchers in developing their own approaches.

A. Perception

In a modular system, the perception system performs several
key functions essential to autonomous driving, including map-
ping the environment and localizing the autonomous vehicle,
detecting lanes, and detecting objects. In this subsection, we
will discuss various aspects that the perception module needs
to consider.

1) Localization and Mapping: Localization and mapping
are foundational tasks in autonomous systems, often requiring
high precision and real-time performance. A primary consider-
ation in localization is GPS, which offers direct positional data
for the vehicle. However, the accuracy of GPS is influenced
by various factors, such as atmospheric conditions, satellite
geometry, signal blockage (buildings, trees, etc.), multipath
interference, and the quality of the GPS receiver. Differential
GPS (DGPS) systems and augmentation techniques can be
used to enhance GPS accuracy by correcting some of these
error sources, but cannot fulfill the accuracy which is ex-
tremely important when it is small-scale cars. IMUs, another
commonly used sensor, provide high-rate measurements of
acceleration and angular velocity across three dimensions but
suffer from issues like sensor drift and integration errors,
leading to long-term inaccuracies. To address the issues,
the two sensors are often integrated through sensor fusion
methods, such as Kalman filter (KF) [98] to enhance accuracy
and reliability in determining the position and orientation. As
in the studies by [119]–[121], that use BARC small-scale
cars, KF makes the fusion of IMU, wheel encoders, and
indoor GPS measurements to achieve an accurate localization.
Nevertheless, KFs are limited by assumptions of linearity and
Gaussian noise, making them less effective in complex or
nonlinear environments. Therefore, [11] and [50] use factor
graphs combined with incremental smoothing and mapping 2
(iSAM2) [122], to fuse GPS and IMU measurements and out-
put smoothing estimation. For the issues with non-linear dy-
namics and non-linear measurement models, [52]–[54] use the
particle filter to fuse the camera images with IMU, and GPS.
[123] also presents an approach to use KF to fuse multiple-
camera images with the AprilTag system and wheel odometry,
validated using the OptiTrack Motion Capture System, which
offers high accuracy but at a significantly higher cost, limiting
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its practicality for small-scale platforms. Additionally, a single
camera can serve as a perception sensor. For example, in
[55], CNN is used with a single monocular camera to predict
the cost map of the track in front of the vehicle which is
directly useable for online trajectory optimization with MPC.
Similarly, [124] uses a top-down lane cost map CNN and the
YOLOv2 CNN to extract feature-input values and a two-point
visual driver control model (TPVDCM) as the controller to
control the vehicle. However, these camera-based perception
approaches rely solely on visual information, neglecting spatial
information, which can lead to limitations in accuracy and
robustness under certain conditions, where the camera is not
robust enough.

LiDAR-based systems have emerged as a compelling alter-
native, leveraging 2D LiDAR sensors for localization and map-
ping via SLAM techniques. A well-established method for lo-
calizing robot cars with LiDAR sensors on the pre-defined map
involves the use of a particle filter (PF) as explored in [44] with
F1TENTH. However, the computational demands of the PF
present challenges, especially for computation resources and
space-constrained small-scale robot cars. To enhance perfor-
mance, [125] introduces the Compressed Directional Distance
Transform (CDDT) on the RACECAR platform. This method
focuses on expediting ray casting within 2D occupancy grid
maps and accelerating sensor model computations to mitigate
computational expenses. While comprehensive survey papers
delve into various SLAM techniques [126]–[129], encompass-
ing feature-based, LiDAR-based, visual, and graph SLAM,
this study offers a concise overview of three prevalent SLAM
methods employed with small-scale cars: GMapping [130]–
[132], HectorSLAM [133]–[137], and Cartographer [138]–
[140]. While 3D LiDAR remains underutilized due to its
size and computational demands, advancements in hardware
miniaturization are making 3D LiDAR SLAM techniques like
LOAM [141] and LIO-SAM [142] increasingly feasible for
small-scale platforms.

Another compelling approach gaining traction involves
leveraging ML methods to address mapping and localization
challenges. One notable instance is the GALNet proposed
in [143] implemented on the Autominy platform. GALNet
employs a Deep Neural Network (DNN), utilizing two times-
tamps of inertial, kinematic, and wheel velocity data to
estimate poses effectively. With the success of Transformer
architecture in various research fields, [144] introduces the
Perception-Action Causal Transformer (PACT) architecture.
This model constructs a representation from sensor data by
autonomously predicting states and actions over time, laying
the groundwork for subsequent task-specific networks for
localization and mapping. Pre-trained models are employed
initially and later fine-tuned for specific tasks, demonstrating
validation on MuSHR with LiDAR sensor data. For image-
based localization, [145] proposes an effective framework
leveraging a pre-trained local feature transformer (LoFTR).
This framework employs a constrained 3D projective transfor-
mation between consecutive key images to establish a visual
map on Jetbot. These studies underscore the growing interest
and potential of ML methodologies, including neural networks
and transformer architectures, in revolutionizing mapping and

TABLE IV
COMPARISON OF METHODS USED FOR LOCALIZATION AND MAPPING.

Method Sensor Analysis Reference

Kalman Filter GPS; IMU;
Encoder

√
Accuracy improvement

× Asynchrony, Latency
× Noise Assumptions

[119]–[121], [146]: BARC;
[123]: QCar

Particle Filter GPS; IMU;
LiDAR

√
Nonlinear dynamics

× High computational demand [44]: F1TENTH; [125]: RACECAR

GMapping LiDAR
√

Robust in static environments
× High memory usage [133]: Roborace; [134], [136]: -

HectorSLAM LiDAR
√

Fast and lightweight
× Performance degrades with noise [130]–[132]: -

Cartographer LiDAR
√

Accuracy, dynamic environments
× High computational demand

[147]: F1TENTH; [139]: Innopolis UGV;
[138], [140]: -

CNN Camera

√
Camera only

× FoV of Camera
× No Spatial infomation

[55], [124]: AutoRally

GALNet Odometry
√

Fast
× Dynamic-dependent [143]: Autominy

LoFTR Camera
√

Camera only
× High computational demand [145]: Jetbot

localization paradigms. However, ML approaches are often
data-intensive and require extensive pre-training and fine-
tuning to generalize effectively. Future research should focus
on improving the robustness and adaptability of these methods,
integrating advanced sensing technologies, and optimizing
computational efficiency to bridge the gap between traditional
and data-driven localization paradigms.

2) Lane Recognition: Lane recognition or lane detection
is another important task for the perception module. It is the
process of identifying and recognizing the lane markings on
a road using algorithms. It typically involves detecting lines
or curves that represent the boundaries of lanes on the road.
For small-scale cars, we categorize the lane detection methods
into traditional and ML-based methods.

a) Traditional methods: Traditional lane detection meth-
ods rely on computer vision techniques to process sensor
data, usually captured by cameras, to identify and track
lane markings. Feature extraction techniques are then used
to compute metrics such as lateral and orientation deviation,
which indicate the position of the car relative to the lane.
In [9], a multi-step image processing pipeline is employed
for lane detection in Duckietown. This pipeline uses tech-
niques such as k-means clustering, the Canny filter [148],
HSV colorspace thresholding, and the probabilistic Hough
transform [149] to extract lane line segments. These features
are further processed by a nonlinear non-parametric histogram
filter to estimate the lateral displacement and angular offset
relative to the right lane center. Similarly, [150] applies an
HSV color-based approach with Gaussian kernel filtering and
Sobel edge detection [151], followed by a probabilistic Hough
transform for lane detection on the Donkeycar platform. While
these traditional methods are computationally efficient and
effective for structured environments, their reliance on explicit
feature extraction limits their generalization to complex or
unstructured scenarios, making them less robust in real-world
applications.

b) ML-based methods: ML-based approaches on the
other hand improve lane detection by leveraging the predictive
capabilities of advanced algorithms. For example, [152] em-
ploys a Convolutional Neural Network (CNN) to predict lateral
displacement and angular offset. Additionally, [42] introduces
a modular system trained on a mix of simulation and real-
world datasets, mapping sensor inputs into a shared latent
space. Recent advancements in Vision Transformers (ViT)
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have also been applied to lane detection. In [153], a pre-
trained ViT is fine-tuned on limited driving datasets to perform
environmental segmentation.

3) Obstacle Recognition: Obstacle detection and avoidance
refers to identifying and navigating around obstacles or po-
tential hazards in its path to ensure safe and uninterrupted
driving behavior. It utilizes various sensors, including cameras,
LiDAR, ultrasonic sensors, and other technologies, constantly
scan the surroundings to detect and classify obstacles. An
effective obstacle detection algorithm necessitates a range of
essential abilities. In this paper, obstacle detection algorithms
are divided into different groups according to the usage of
different sensors, we discuss the most widely used two: camera
and LiDAR sensors.

a) Vision-based approaches: The vision-based approach
relies on images captured by cameras as the primary input
for detection. This approach employs computer vision (CV)
or ML algorithms, prominently leveraging CNN, for effec-
tive detection tasks. Within the realm of cameras used, the
vision-based approach can be categorized into two subclasses:
monocular and stereo. Monocular image-based methods rely
on a single image for processing, while stereo methods utilize
images captured by two synchronized cameras. Details about
the camera sensors are discussed in Section III-A.

Within monocular image-based methods, as outlined
in [154], the obstacle detection task for small-scale
cars is typically categorized into three primary domains:
appearance-based, motion-based, and depth-based methods.
With appearance-based methods, obstacles are typically iden-
tified as the foreground within images. The primary challenge
lies in distinguishing relevant foreground or background ele-
ments based on established criteria, such as color discrepancies
[155] or texture features [156]. In the work by [35], the RGB
images captured by the monocular camera of a Duckiebot are
initially transformed into the HSV colorspace. Subsequently,
the color filter from OpenCV is employed to detect obstacles
based on color differences. Its reliance on predefined color
criteria significantly limits adaptability to diverse scenarios,
such as environments with varying lighting or differently
colored obstacles. This highlights the need for more robust
methods that generalize well across varied settings, such as
learning-based techniques. Motion-based obstacle detection
refers to identifying obstacles or objects in an environment
by analyzing motion vectors in the image, it involves com-
paring successive frames of images to determine alterations
in position, velocity, or other motion-related characteristics.
Objects that move or exhibit changes in their motion charac-
teristics are then identified as potential obstacles. Optical flow
analysis [157], background subtraction, differential methods.
can be employed for motion-based obstacle detection [158],
[159]. These methods excel in detecting moving obstacles
but struggle with static hazards. Moreover, computational
demands for real-time implementation can be prohibitive for
small-scale platforms, calling for optimization techniques or
lightweight motion estimation algorithms. Depth-based meth-
ods utilize depth information extracted from images to discern
the distances and spatial arrangement of objects within the
environment, aiding in accurate object detection [160], [161].

Employing conventional image processing techniques like this
may fall short in meeting real-time application expectations,
primarily due to their inability to swiftly adapt to dynamic
conditions. Therefore, recent research endeavors have pivoted
towards enhancing obstacle detection speed by employing
CNN and particularly emphasizing the effectiveness of YOLO
[92]. YOLO is specifically designed for real-time object de-
tection, and its variations have been employed to enhance
success rates [162]–[164]. CNN offers promising capabilities
in overcoming the limitations of traditional methods, showcas-
ing greater adaptability and improved real-time performance
in diverse and dynamic environments. However, given the
restricted computational power available in small-scale cars,
a balance must be achieved between accuracy and process-
ing time. In [62], YOLOv3 and Tiny YOLO are selected
as detection algorithms for the Go-CHART platform. [165]
integrate GhostConv to the YOLOv4-tiny model to achieve
faster detection, while in [166], YOLOv5 is used to detect
cones and duckies within the Duckietown environment. These
aforementioned ML methods still face challenges in balancing
detection accuracy and processing time on limited hardware.
A potential solution involves further optimizing CNN archi-
tectures for edge deployment. Stereo image-based methods
work by using a dual-camera system that captures images from
slightly different angles, similar to the human binocular vision.
This setup helps in perceiving depth and reconstructing three-
dimensional scenes by analyzing the differences between the
images from these cameras [167]. However, in the context of
small-scale cars, constraints such as cost considerations and
limited space availability restrict the usage of stereo cameras
to select platforms, notably including RACECAR [24] and
Autominy [27]. Exploring cost-effective stereo setups, such
as single-camera depth estimation augmented with additional
processing, could bridge this gap. Vision-based methods offer
adaptability and versatility but face challenges related to envi-
ronmental variability, computational overhead, and hardware
limitations. Future work should explore lightweight CNN
architectures, as highlighted in [168], where pruning tech-
niques can significantly benefit computation-limited platforms.
Additionally, hybrid depth estimation models and motion-
aware algorithms hold promise for improving performance
within the constraints of small-scale platforms.

b) LiDAR-based approaches: In addition to camera-
based approaches, LiDAR is also widely used for obstacle
avoidance systems. The applications of 2D LiDAR are preva-
lent in compact car platforms due to factors like size, price,
weight, and overall compactness considerations. However, due
to the existing computational limitations of these car platforms,
innovative LiDAR data processing methods are often unavail-
able. Consequently, raw LiDAR point cloud data or minimally
processed data is frequently used, involving procedures like
imputing empty samples and cleansing noisy data, to serve
as input for neural networks executing subsequent control
tasks. In [169] and [47], minimal processing of LiDAR data
is employed, such as filtering and finding the nearest obstacle,
to guide control policies. While computationally efficient,
this approach provides limited contextual information, po-
tentially hindering performance in complex scenarios with
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TABLE V
COMPARISON OF METHODS USED FOR OBSTACLE DETECTION.

Method Sensor Analysis Reference

Appearance-based Camera
√

Simple, lightweight
× Lighting or color variations [35]: Duckiebot

Motion-based Camera

√
Effective for moving obstacles

× High computational demand
× Static obstacles

[158], [159]: -

Depth-based Camera

√
spatial awareness

× High computational demand
× Dynamic scenarios

[160], [161]: -

CNN-based Camera
√

High adaptability
× Accuracy and speed trade-off

[62]: Go-CHART; [165]: JetRacer;
[166]: Duckiebot; [171]: Jetbot;
[172], [173]: -

Minimum value LiDAR
√

Efficient, robust for nearby objects
× Limited contextual information [47], [169]: F1TENTH

FTG LiDAR
√

Effective for reactive obstacle
× Ineffective for narrow gaps [12]: F1TENTH

overlapping or clustered objects. Introducing advanced point
cloud processing methods, such as voxel-based filtering or
clustering, could enhance obstacle classification and avoidance
capabilities. In [12], Follow the Gap (FTG) method [170] is
employed for object detection and avoidance of an F1TENTH
car. This technique involves computing the maximum gap
present within the LiDAR point cloud and subsequently de-
termining the steering control command. This approach is
effective for reactive obstacle avoidance, especially in dynamic
environments. However, it may struggle with narrow gaps.
Combining FTG with predictive path planning or vision fusion
could improve navigation in cluttered spaces. For small-scale
cars, LiDAR remains a cornerstone of obstacle detection, offer-
ing reliable distance measurement and robustness. Enhancing
LiDAR data processing with ML techniques, such as point
cloud segmentation or recurrent neural networks, can address
current limitations while maintaining real-time applicability.

Both vision-based and LiDAR-based approaches offer
unique strengths but are subject to inherent trade-offs. Vision-
based methods excel in rich environmental perception and
are more cost-effective, but their susceptibility to environ-
mental variability and computational demands can limit their
reliability. LiDAR-based methods, while robust and precise,
often lack the contextual depth provided by vision systems
and can be hindered by computational simplicity. Integrating
the two approaches into a multi-modal framework holds sig-
nificant promise. For instance, vision can provide rich scene
context, while LiDAR ensures precise spatial awareness. Tech-
niques like sensor fusion and joint optimization of perception
pipelines could leverage the complementary strengths of these
modalities.

4) Traffic Sign Recognition: Traffic sign recognition (TSR)
is a specialized object detection task that enables autonomous
vehicles to interpret road signage and adjust behavior accord-
ingly. Unlike the generic object detection task, TSR uniquely
relies solely on cameras, leveraging their capability to capture
visual details. The process typically commences with dataset
acquisition, wherein cameras capture traffic signs for later
utilization. These captured images undergo a series of prepro-
cessing steps to refine quality, eliminate noise, adjust lighting,
and employ data augmentation techniques. Subsequently, ML
models [93], [174], [175] are trained using these compiled
datasets for detection and classification. However, research on
TSR is limited for small-scale cars due to the unavailability
of standard datasets that may differ across platforms. Hence,

researchers must prioritize dataset collection as an initial
step to train the networks. Future research should intensify
exploration in this direction, particularly focusing on mixing
TSR with other driving tasks like navigation, lane keeping, or
path following, enabling vehicles to make informed, context-
aware decisions in real time.

B. Planning

Path planning in autonomous driving refers to the process
by which a self-driving vehicle determines a safe and effi-
cient route from its current location to a desired destination
while navigating through its environment [176]. This task
involves creating a trajectory or path that the vehicle can
follow, considering various factors such as obstacles, road
conditions, and traffic regulations, and aims to ensure safe
and reliable navigation while optimizing factors like travel
time, and energy efficiency. Path planning algorithms vary in
complexity and we specify them into traditional [177]–[180]
and ML-based techniques [181], [182].

a) Traditional methods: Traditional algorithms remain
foundational in path planning due to their deterministic nature
and efficiency in well-defined scenarios. For example, [183]
applies Dijkstra’s algorithm [177] in conjunction with SLAM
methods to extract global map information. The A* algorithm
[178], noted for its optimality, is employed in [39] to plan
optimal paths for racing cars, while [184] integrates Hybrid A*
[185] with learned cost functions to address dynamic obstacles.
However, reliance on precomputed cost functions may limit
adaptability in novel environments, suggesting the need for
adaptive cost-learning techniques. Genetic algorithms (GAs)
offer advantages in unstructured environments, as explored in
[186] and [187], where stochastic search capabilities gener-
ate global paths. However, high computational demands and
convergence issues in real-time scenarios could be mitigated
by hybrid approaches, combining GAs with deterministic
methods like A*. To extend the planning capabilities beyond
the sensor horizon, [188] utilizes a generative neural network
trained on real-world data to predict occupancy maps be-
yond sensor limitations. This predictive capability assists in
facilitating planning processes. Authors leverage the Rapidly-
Exploring Random Tree (RRT) algorithm [179] to generate
a global path, followed by a local planner that orchestrates
trajectories until the end of the predicted map. While effective,
traditional methods often struggle in dynamic or uncertain
environments, emphasizing the importance of more adaptive
frameworks.

b) ML-based methods: Path planning, treated as an opti-
mization problem, has also seen the successful application of
various ML methods, resulting in notably high-performance
outcomes. For instance, [189] uses Q-Learning, a classical RL
algorithm, to generate a global path for robots, which achieves
a shorter and smoother path compared with the RRT algo-
rithm, though challenges in scalability and training efficiency
remain. Advanced reinforcement learning (RL) methods, such
as Deep Q-Networks (DQN) and Policy Gradient algorithms,
could enhance performance in future studies. A framework
is introduced in [190] comprising a mapper, global policy,
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TABLE VI
COMPARISON OF METHODS USED FOR PATH PLANNING.

Method Analysis Reference

Dijkstra’s Algorithm

√
Deterministic

√
Efficient in static environments

× Inefficient for large graph
[183]: -

A*
√

Efficient in structured environments
× Struggles in uncertain environment [39]: Deepracer

Hybrid A*
√

Dynamic scenarios
× Limited adaptability [184]: QCar

Genetic Algorithm
√

High adaptability
× High computational demand [186], [187]: -

RRT
√

Efficient in high-dimensional spaces
× Produce suboptimal paths [188]: RACECAR

DRL
√

Handles dynamic environments
× High computational demand

[190]: Jetbot; [191]: MuSHR;
[89]: Duckiebot; [189]: -

BRPO
√

Robust in partially observable environments
× High computational demand [192]: MuSHR

IL
√

Efficient in known environments
× Out-of-distribution error [193]: Donkeycar

and local policy for image-based navigation for Jetbot. The
mapper undergoes supervised learning using camera images
to generate an occupancy grid map. Subsequently, a global
policy employing DRL techniques takes both the map and the
position as input to determine the long-term goal. Following
this, a planner, employing the A* algorithm, computes the
short-term goal, which is then forwarded to the local planner
for further execution. Even with prior maps and acquired in-
formation, managing uncertainty during planning and driving
remains a significant challenge. To address these uncertainties,
[191] introduces a model-based RL algorithm incorporating a
probabilistic dynamic model. This method aims to mitigate
uncertainty during planning stages and prevent shortsighted
decisions. In the related approach, [192] uses Bayesian Resid-
ual Policy Optimization (BRPO) with an ensemble of expert
policies. Authors train the policy ensemble with BRPO to
diminish overall system uncertainty, enabling safe navigation
within partially observable environments. Demonstrated on the
MuSHR platform, the proposed framework integrates a global
localization system, ensuring destination-reaching capabilities
while avoiding collisions with other moving vehicles.

For path planning, traditional methods excel in static and
structured environments due to their computational efficiency
and deterministic outputs. However, their inability to adapt
to dynamic or uncertain conditions limits their application
in complex real-world scenarios. Conversely, ML-based ap-
proaches offer flexibility and adaptability, capable of predict-
ing and reacting to unforeseen changes, but they are com-
putationally demanding and heavily reliant on large datasets.
Future research should focus on hybrid frameworks that com-
bine the computational efficiency of traditional methods with
the adaptability of ML approaches. This could include transfer
learning techniques to reduce data dependency, integration of
predictive modeling to address uncertainties, and optimization
of computational frameworks for real-time applications.

C. Control

Once the path planning module establishes a desired path,
the control module becomes the subsequent step. In this sec-
tion, we will discuss the control methodologies that leverage
the reference trajectory to compute control actions to navigate
the car.

1) Path Following: Path following is the most simple
control task for small-scale cars, it necessitates a contin-

TABLE VII
COMPARISON OF METHODS USED FOR THE CONTROL MODULE.

Control Category Method Analysis Reference

Path Following

Kinematic
Controller

√
Streamlines tuning efforts

× Relies on accurate system modeling [194]: QCar; [195], [196]: -

PID Controller
√

Simple, effective in structured systems
× Limited adaptability [9]: Duckiebot

MPC

√
Robust in structured environment

× Requires maps
× Unsuitable for dynamic environment

[197]: MuSHR; [198]–[200]: -

IL
√

Adaptable to varied scenarios
× Struggles with unseen scenarios [201]: ART/ATK

DRL
√

Adaptive to dynamic environment
× High computational demand

[202]: Autominy;
[203]: JetRacer

Lane Keeping

PID Controller
√

Simple, effective in structured systems
× Limited adaptability [9], [152], [204]: Duckiebot

Rule-based
√

Straightforward, efficient
× High computational demand [150]: Donkeycar

IL
√

Adaptable to varied scenarios
× Struggles with unseen scenarios

[205], [206]: Duckiebot;
[207]: -

DRL
√

Handles dynamic environments
× Limited adaptability

[85], [86], [208]: Duckiebot;
[41], [42]: Donkeycar

Car Following DRL
√

Handles dynamic environments
× Limited adaptability

[86]: Duckiebot;
[209]: Donkeycar;
[210]: QCar

Overtaking
MPC

√
Robust in structured environment

× Requires maps
× Unsuitable for dynamic environment

[211]: MuSHR

DRL
√

Handles dynamic environments
× Limited adaptability [85]: Duckiebot

Racing

MPC

√
Robust in structured environment

× Requires maps
× Unsuitable for dynamic environment

[11], [52], [54]: Autorally;
[20], [212], [213]: ORAC;
[214]: F1TENTH

MPPI
√

Real-time adaptation
× High computational demand [50]: Autorally

Tube-MPC
√

Safe and stable under dynamic conditions
× High computational demand [215]: Autorally

LMPC

√
Adaptability to uncertain dynamics

√
Improvements with limited information

× Large datasets
× High computational demand

[146], [216]: BARC

LPV-MPC
√

Real-time implementation
× Limited in highly nonlinear dynamics [121]: BARC

PAPC
√

Improves safety
× High computational demand [53]: Autorally

Pure Pursuit
√

Lightweight, computationally efficient
× Less robustness in high-speed [217]: TUNERCAR

Drifting
LQR

√
Effective in structured environment

× Accurate dynamic models required [13], [218]: BARC

NMPC
√

Improves control in dynamic environments
× Computational cost

[219]: BARC;
[220]: RACECAR

Parking

Rule-based
√

Robust for well-defined cases
× Limited flexibility [221]–[223]: -

Fuzzy
√

Simple, interpretable
× Adaptability in dynamic environments [224]–[230]: -

Neuro-fuzzy
√

Adaptable to diverse scenarios
× Training data required [231], [232]: -

GRBF
√

Dynamic parking environments
× Complex implementation [233]: -

IL
√

Improves parking precision
× High computational demand [234]: -

DRL
√

Highly adaptable to dynamic environments
× High computational demand [235], [236]: -

Cooperative driving

Centralized
Control

√
Globally optimized coordination

√
Effective for requiring high precision

× High computational demand
× Limited scalability

[28]: CoRoLa; [40]: DeepRacer;
[58]: UDSSC; [237]: Jetbot;
[238]: QCar

Decentralized
Control

√
Robustness and scalability

× Effective communication protocols required
× Potential for suboptimal solutions

[63]: CamMini; [239]: QCar;
[240]: MuSHR; [241]: µCar;
[21], [56], [242], [243]: UDSSC;
[244]: Jetbot

ual adjustment of the movements based on real-time sensor
feedback and environmental alterations, ensuring the vehicle
maintains the desired trajectory accurately. Solutions for path
following encompass a wide spectrum, including classical
control methods like the PID controller, kinematic controller
[194]–[196], MPC [197]–[200], and extending to ML methods
[190], [201]–[203].

In [194], an adaptive trajectory tracking control scheme
is introduced with adjustable gains to facilitate adherence to
predefined paths. The designed adaptive control gains aimed
to streamline tuning efforts, augment the convergence rate
of tracking errors, and elevate trajectory tracing performance.
However, a key disadvantage is its reliance on accurate system
modeling and gain adjustment, which may struggle under
significant environmental disturbances or non-linear dynamics.
The strategy introduced by [197] involves expert interventions
with pre-existing LiDAR-derived maps to further improve
performance. Nevertheless, the dependency on pre-existing
maps and the requirement for expert input make it less suitable
for dynamic or unstructured environments. For ML-based
methods, in the work presented by [201], error states relative
to reference trajectories are determined using vehicle state data
obtained from sensor fusion involving IMU and GPS with an
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EKF. A Neural Network (NN) is trained using IL methods
with a dataset collected from human-controlled and MPC-
controlled driving scenarios. Trained NN maps error states to
control commands. While this method significantly reduces
the need for complex hand-crafted control laws, it inherits
biases from the training data, especially when collected from
suboptimal human drivers. To mitigate the need for extensive
datasets, [202] applies Deep Deterministic Policy Gradient
(DDPG) algorithm to guide an Autominy car along the desired
path, aiming to minimize cross-track errors. Similarly, in the
study by [190], a global policy is determined using DRL,
while a local planner processes received images with another
DRL agent to derive the final action for the path following. To
address the data inefficiency challenges with RL, [203] then
introduces a policy gradient-based policy optimization frame-
work leveraging a first-principles model for path following
task with a JetRacer. This framework facilitated the learning
of precise control policies with limited real-world data. While
promising, the reliance on first-principles modeling may limit
its adaptability to systems with uncertain or highly non-
linear dynamics. Furthermore, the approach assumes access to
accurate and reliable simulation environments, which might
not always reflect real-world variability.

2) Lane Keeping: When small-scale cars drive on tracks
without obstacles, the optimal planned trajectory typically
aligns with the center of the right lane. Together with the lane
detection methods discussed in Section IV-A2, the primary
objective is to guide the vehicle within the designated lane,
adhering to predefined tolerances for deviations from the
lane center. This task requires the car to dynamically adjust
its path in real time, based on its position relative to the
lane. Consequently, the task heavily depends on visual input,
typically utilizing RGB cameras to monitor the lane position
of the vehicle continuously. This process, commonly referred
to as lane keeping for small-scale vehicles, has been a central
focus of extensive research across various platforms [9], [10],
[23]. Research in lane keeping can be broadly categorized into
two approaches: traditional methods and ML-based methods.

a) Traditional methods: Traditional control methods reg-
ulate the trajectory using outputs from the perception module,
ensuring it remains within the designated lane. Algorithms
such as PID controllers are commonly used to adjust the
steering angle based on deviations from the lane center. For
instance, in [9], the PID controller utilizes lateral displacement
and angular offset estimates from the perception pipeline to
minimize deviations in real time. Similarly, [150] integrates a
rule-based approach to compute steering angles directly from
detected lane lines. These methods are straightforward and
interpretable, making them suitable for simple lane keeping
tasks. However, their reliance on precise input metrics and
static tuning parameters limits their effectiveness in dynamic
environments or when system dynamics are nonlinear.

b) ML-based methods: ML-based control methods en-
hance lane keeping by either augmenting traditional control
systems or replacing them with more adaptive algorithms.
For example, DRL has been successfully used to replace
traditional controllers. [85], [86] employ DRL algorithms to
process outputs from the perception module of [9], achieving

superior performance in multitask driving scenarios beyond
lane keeping. Additionally, these systems improve Sim2Real
transfer capabilities, as demonstrated by [42], where a modular
system integrates a list of DRL algorithms, utilizing these
latent features from the perception module as inputs to control
the Donkeycar. While ML-based control methods provide
adaptability and can learn optimal policies from data, they
are often sensitive to hyperparameter tuning and may require
extensive training.

3) Car Following: In addition to navigating tracks without
other vehicles, a key driving scenario for autonomous vehicles
involves operating alongside other vehicles on the road. One
crucial capability in such scenarios is car following, which
refers to the ability to maintain a safe and appropriate distance
from the vehicle ahead. This requires tracking the movements
of the leading vehicle and dynamically adjusting speed and
position to ensure safe, comfortable, and efficient driving. The
literature on car following maneuvers with small-scale vehicles
remains relatively limited, though several notable studies have
emerged. A DDPG algorithm with an extended look-ahead ap-
proach is proposed in [209] for longitudinal and lateral control
within vehicle platooning scenarios. For perception, LiDAR
technology gauges inter-vehicle distance, while an IMU pro-
vides acceleration data. Additionally, a V2V system employing
Wi-Fi communication transmits leader information to the
follower vehicle. Similarly, in [210], a Cooperative Adaptive
Cruise Control (CACC) system is implemented utilizing Deep
Q-learning (DQN) [245]. This system enables the follower
vehicle to dynamically adapt and maintain appropriate inter-
vehicular distances. Notably, both these studies rely on V2V
communication to achieve effective car following behavior,
which increases system complexity and costs. In contrast, [86]
introduces a new perspective by realizing multitasking driving,
encompassing car following and lane keeping, solely relying
on visual sensors without the need for communication with
other vehicles. In this approach, a pattern of circles is affixed
behind the leading Duckiebot, aiding the ego Duckiebot in
sensing distance and speed to mimic human driver behavior.
A modular system is deployed, where the perception module
extracts compact affordance information, and a DRL algorithm
controls the Duckiebot based on this information. Despite its
simplicity, this system yields promising results.

4) Overtaking: Overtaking, like car following, is another
critical driving behavior that involves interaction with other
vehicles on the track. It refers to the maneuver where an
autonomous vehicle changes lanes or positions itself to safely
pass another vehicle traveling in the same direction on the
road. The purpose of overtaking is to move ahead of the slower
vehicle safely and efficiently while maintaining proper traffic
flow. For small-scale cars, overtaking is particularly challeng-
ing due to the need for precise localization to avoid collisions
throughout the maneuver. Consequently, limited research has
been conducted on this task. A first contribution comes from
[85], where authors employ a modular system equipped solely
with onboard sensors to execute diverse driving tasks, en-
compassing lane keeping and overtaking for Duckiebots. The
framework leverages traditional machine vision technologies
to acquire compact affordance information, as discussed in [9],
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and utilizes LiDAR sensors for distance estimation relative
to other vehicles. Afterward, the Long Short-Term Memory
Soft Actor-Critic (LSTM-SAC) algorithm assumes the role of
the controller. Notably, LSTM aids the agent in recognizing
distinct phases within the overtaking process. Demonstrated
results affirm the efficacy of this proposed framework, man-
aging both lane keeping and overtaking tasks, and showcasing
superior performance when benchmarked against baselines.
Another work regarding the overtaking task is [211], where
a dual control approach with MPC towards active uncertainty
reduction is proposed. This approach automatically balances
the exploration-exploitation trade-off, enabling the MuSHR
car to actively minimize uncertainty concerning the hidden
states of other agents without compromising expected planning
performance. The difference compared with [85] from the
hardware side is that the vehicle being overtaken will yield,
and the usage of a known grid map of the track. While
these methods showcase promising results, they highlight the
current research limitations in overtaking tasks for small-
scale cars. Future work should prioritize the development of
more generalizable frameworks capable of handling diverse
overtaking scenarios without relying on assumptions such as
yielding vehicles or predefined maps.

5) Racing: Autonomous racing, distinct from traditional
autonomous driving, emphasizes high-speed navigation, rapid
reaction, and dynamic trajectory planning. Unlike standard
driving tasks, racing pushes vehicles to attain high velocities,
extensively testing the dynamic limits of these automated
systems. When racing at high speeds, vehicles must swiftly
detect other vehicles or obstacles, demanding rapid reaction
times. Additionally, they must accurately localize their position
concerning the track and strategize dynamic trajectories to
optimize performance [246]. While extensive research has
been dedicated to full-size racing competitions like Roborace,
our primary focus centers on small-scale car racing events
such as AutoRally [11], F1TENTH [12], Donkeycar, ORCA
[20] and others.

For racing tasks, the control module has a high demand
for timely reactions, often surpassing the importance of the
perception module. The most commonly used control module
in racing is MPC, which is a control strategy that utilizes a
dynamic model of the system to predict its future behavior
and make control decisions based on optimization criteria.
In [20], a path planner and a Nonlinear MPC (NMPC) are
utilized to guide the racing process within the ORAC platform.
Later, in [50], a sampling-based MPC algorithm called the
Model Predictive Path Integral Control algorithm (MPPI) is
introduced for Autorally. This algorithm presents a novel
derivation of path integral control, offering an explicit formula
for controls across the entire time horizon. A notable attribute
of MPPI is its capability to generate entirely new behaviors
dynamically, enabling the controller to drive the vehicle to
its operational limits. Then, a few improved versions are
proposed, such as the robust sampling-based MPC framework
based on a combination of model predictive path integral
control and nonlinear Tube-MPC [215] and best response
model predictive control based on a combination of the game-
theoretic notion of iterated best response, and an information-

theoretic model predictive control algorithm [247]. Despite
its effectiveness in dynamic trajectory planning and adapt-
ability to high-speed scenarios, MPC has notable drawbacks.
It depends heavily on accurate dynamic models, which, if
imperfect, can lead to disparities between predicted and actual
behavior. Additionally, the high computational demand poses
challenges for real-time implementation.

To address this challenge, Learning Model Predictive Con-
trol (LMPC) integrates learning algorithms with MPC, aiming
to refine control strategies in the face of uncertain or changing
dynamics. Compared to traditional MPC, LMPC continu-
ally enhances its performance, especially in scenarios where
complete knowledge of system dynamics is unavailable or
subject to variation. The learning mechanism algorithms such
as RL, Gaussian processes, neural networks, or other adaptive
learning methods in LMPC continuously update the predictive
model based on collected data and feedback from the system,
to achieve better performance, adaptability to changing system
dynamics, and robustness in scenarios where precise models
might be unavailable or incomplete. [52] establishes the con-
nection between MPC and online learning, and proposes a new
algorithm based on dynamic mirror descent (DMD) and MPC
(DMD-MPC), which provides a fresh perspective on previous
heuristics used in MPC. In [216], historical data is used to
construct secure sets and approximate the value function,
facilitating LMPC to learn and improve from past experi-
ences within BARC platform. Later, [214] applies Gaussian
processes to correct the model mismatch, then uses MPC for
tracking pre-computed racing lines using this corrected model
for an F1TENTH car. For more responsive control, [121] uses
Linear Parameter Varying (LPV) theory to model the dynamics
of the vehicle and combine it with MPC (LPV-MPC), which
can be computed online with reduced computational cost. To
swiftly identify unsafe conditions, [53] propose a Perceptual
Attention-based Predictive Control (PAPC) algorithm, where
MPC is first used to learn how to place attention on relevant
areas of the visual input and ROI, and output control actions
as well as estimates of epistemic and aleatoric uncertainty
in the attention-aware visual input of an Autorally car. [146]
introduces a local, linear, data-driven learning method for error
dynamics within the LMPC framework. This approach exhibits
increased robustness against parameter variations and limited
data compared to prior LMPC implementations. While LMPC
offers significant advantages, it also has limitations. These
include high computational costs due to continuous model up-
dates, dependency on sufficient high-quality training data, and
the need for additional hardware for onboard real-time learning
and processing. Pure pursuit, another control algorithm used
in racing tasks, is simpler and more computationally efficient
[217]. It is particularly suitable for scenarios with limited
computational resources. However, it lacks the adaptability
needed for dynamic environments and may struggle in high-
speed racing where precise trajectory prediction is essential.

One of the significant challenges in autonomous racing is
localization. Current methods, such as motion capture systems
and pre-mapped tracks, rely heavily on external infrastructure
[248], [249]. This dependence creates scalability issues and
imposes hardware and environmental constraints. To overcome
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these limitations, future research should focus on developing
map-free or vision-based localization systems. Lightweight
neural networks could also be leveraged for real-time learn-
ing and decision-making, reducing the reliance on extensive
infrastructure.

Although autonomous racing does not commonly occur in
daily driving scenarios, it is still an emerging field in intelligent
vehicles and transportation systems. The intriguing aspect lies
in the operation of autonomous small-scale cars pushing the
boundaries of vehicle capabilities [246]. Operating at high
speeds with minimal reaction time within dynamic environ-
ments, autonomous racing with small-scale cars emerges as a
compelling area within the autonomous driving domain.

6) Other tasks: In addition to the control tasks discussed
earlier, we also explore tasks that are less commonly studied
for small-scale cars, broadening the scope of research in this
domain.

a) Drifting: Autonomous drifting, often associated with
high-performance racing, represents a complex and sophis-
ticated challenge in autonomous vehicle control. It requires
precise coordination of speed, steering, throttle, and braking,
alongside an in-depth understanding of vehicle dynamics and
kinematics. Effective state estimation methods are equally crit-
ical to ensure stability and accuracy during drifting maneuvers.
Traditional approaches heavily rely on dynamic models, such
as the dynamic bicycle model used in [13], which employs
EKF to fuse sensor data and integrates a Linear-Quadratic
Regulator (LQR) controller with equilibrium drifting points
for control. While this method is effective within its design
constraints, its performance is tightly coupled to the accuracy
of the dynamic model and the predefined operating condi-
tions. Similarly, [218] expands upon this by introducing a
six-state bicycle model, yet it struggles with generalizing
to more complex and dynamic scenarios. This highlights a
fundamental challenge: precise vehicle dynamics models are
often impractical or unattainable in real-world environments.
To address these limitations, [219] proposes an approach to
tackle the drifting park problem with BARC cars by seg-
menting it into distinct phases: the normal driving regime
and the sliding regime. During the normal driving phase, a
nonlinear MPC operates with a predefined kinematic model.
As the vehicle transitions into the sliding phase, reliance on
this model diminishes. To navigate this shift, a feedforward-
feedback controller takes charge, orchestrating safer maneu-
vers adeptly under sliding conditions. While effective, this
segmentation introduces additional computational complexity
and coordination challenges. Moreover, tire model singularities
at low speeds exacerbate control difficulties, especially in the
sliding regime. In response to these challenges, [220] presents
a novel solution by integrating a fused kinematic-dynamic
bicycle model with a nonlinear MPC framework tailored for
a RACECAR platform. This unified approach harmonizes the
planning and execution of dynamic vehicle maneuvers within
a unified framework, optimizing the entire process cohesively.
Despite these advancements, conventional dynamic models
are constrained by their reliance on simplified assumptions,
limiting their applicability. Future research should prioritize
integrating data-driven methods, such as neural network-

based controllers or DRL controllers, to improve adaptability
and performance in uncertain environments. Additionally, the
development of robust state estimation techniques that can
operate effectively with noisy sensor inputs and less precise
dynamic models is crucial for advancing autonomous drifting
capabilities.

b) Parking: Besides driving behaviors, parking is also a
crucial research area in AD for both small-scale and normal-
scale cars. Research on the car parking problem generally
stems from the broader motion planning problem and is
typically defined as finding a collision-free path that connects
the initial configuration to the final one. Traditional parking
methods generally follow a three-phase approach: mapping the
parking space, planning a collision-free path, and executing
the maneuver. For small-scale cars, fuzzy logic algorithms
dominate traditional methods. These systems rely on distance
sensors, such as ultrasonic, infrared [224]–[226], or LiDAR
[227]–[230], to detect parking spaces and use predefined fuzzy
rules to determine steering angles. While these methods are
simple and effective in structured environments, they lack
adaptability and struggle with complex, dynamic scenarios.
Closed-loop controllers and rule-based strategies, while robust
for specific cases, also suffer from limited flexibility [221]–
[223].

ML-based methods offer adaptability and learning capabil-
ities, making them better suited for dynamic parking environ-
ments. Neuro-fuzzy systems combine neural networks with
fuzzy logic [250] to dynamically update rules and membership
functions based on training data [231], [232], improving per-
formance in diverse scenarios. Other ML approaches segment
the parking process for better control, such as the use of a
General Radial Basis Function (GRBF) classifier and Random
Forest kernel to identify behavior transitions, as seen in
[233]. Later, [234] proposed a two-stage learning framework
to predict steering angles and gear status for parking using
front and back-mounted monocular cameras. In the first stage,
an encoder-decoder architecture estimates the initial steering
angle trajectory. This trajectory, along with the heading angle
and absolute position, is then fed into an LSTM network to
estimate the optimal steering angle and gear status for parking.
DRL approaches such as DDPG and other end-to-end learning
frameworks have also shown promise in learning complex
parking maneuvers, incorporating environmental feedback for
precise control [235], [236]. While ML methods excel in
adaptability, they often require large datasets, extensive train-
ing, and computational resources.

Despite the importance of autonomous parking for small-
scale cars, research in this area has been lacking over the past
few decades. However, with the development of current ML
methods, there is a growing need to employ more advanced
techniques in this research topic.

c) Cooperative Driving: Compared to the previously
discussed scenarios, which typically involve a single controlled
vehicle, cooperative driving entails a collaborative approach
where multiple autonomous vehicles communicate, with V2V
communications. In this setting, vehicles interact to achieve
shared goals, navigate complex environments, and enhance
traffic efficiency and safety. This involves exchanging data
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such as positions, speeds, and intended trajectories to enable
collective decision-making, which is generally categorized into
centralized and decentralized control strategies.

In centralized control, a central entity coordinates the
actions of all vehicles by processing shared data to make
globally optimized decisions. This approach excels in tasks
like collaborative SLAM and multi-vehicle path planning,
where precise coordination is crucial. For instance, [239]
utilizes feature-based map registration for collaborative SLAM
among three vehicles via V2V communication, enhancing
mapping speed and accuracy. The centralized strategy excels
in achieving global optimization and consistency but is limited
by scalability challenges and potential single points of failure.
The dependency on robust communication infrastructure also
makes it vulnerable to latency and data synchronization issues.
In contrast, decentralized control distributes decision-making
among vehicles, which act based on local sensor data and peer
communication. An example is the decentralized MPC method
in [240], where MuSHR cars plan collision-free trajectories
through negotiation, enabling precise and independent control.
Safety is further addressed by [241], which proposes a priority-
based distributed MPC (P-DMPC) algorithm to minimize
collision risks. The decentralized control is advantageous
for scalability and fault tolerance but can face challenges
in achieving global optimization due to limited information
sharing and potential inconsistencies among individual vehicle
actions.

Specific applications of cooperative driving highlight its
versatility. In roundabout navigation, vehicles communicate
and negotiate entry, adjusting speeds and trajectories to yield
to those already in the roundabout. RL-based coordination
methods like those used in [58] and decentralized control
frameworks from [56] demonstrate smooth merges and re-
duced stop-and-go traffic in scaled testbeds. Similarly, traffic
jam mitigation emphasizes synchronized vehicle actions to
maintain optimal flow, as seen in frameworks like [63], which
adapts the IDM and MOBIL models for cooperative behavior,
and studies like [242] and [243], which reduce travel times
through decentralized optimal control. Emerging areas extend
beyond autonomous cars. For example, [28] achieves adap-
tive cruise control for multi-vehicle platooning, while works
such as [238] explore cooperation between UGVs and UAVs,
pushing the boundaries of collaborative traffic management.

For future works, we propose to include hybrid control
systems that combine centralized coordination with decen-
tralized adaptability, robust V2V communication systems that
minimize latency and security risks, and cross-platform col-
laboration between diverse vehicle types to enhance traffic
management and operational flexibility. These advancements
promise to unlock the full potential of cooperative driving in
real-world applications.

D. End-to-end Driving
After discussing the modular system, we then delve into the

end-to-end systems for small-scale cars. Here, we primarily
focus on two main streams: lane keeping and racing.

For the lane keeping task, the end-to-end system has re-
ceived more extensive research compared to modular systems.

In this paradigm, the agent processes raw sensor input and
outputs control commands directly, bypassing the modular
perception, planning, and control layers. This framework
primarily encompasses two methods: IL and DRL. Among
IL methods, BC is foundational due to its simplicity, as
it maps observed states directly to corresponding actions
without modeling the underlying decision-making process. For
example, in [48], [251], CNNs are trained with image data to
predict directly the steering angle for control under various
evaluation metrics within the DeepRacer platform. BC offers
the advantages of straightforward implementation and com-
putational efficiency, making it effective in scenarios where
expert behavior is well-defined and consistent. However, its
drawbacks include vulnerability to compounding errors, where
deviations from expert behavior escalate in unseen states, and
a heavy dependence on the quality and diversity of training
data, which often hinders its ability to generalize to out-of-
distribution scenarios. To address these issues, enhancements
to BC have been proposed. For instance, [83] introduces uncer-
tainty modeling during training to improve Sim2Real transfer
on the Donkeycar platform. Similarly, [252] augments datasets
using image style transfer [253] to enhance generalization.
Comparative studies, such as [254], evaluate BC, GAIL, and
DAgger in the Duckietown environment, highlighting the po-
tential of Domain Adaptation techniques for better Sim2Real
transfer. IDRL, in contrast, learns control policies directly from
raw sensor data. Studies such as [10], [255], [256] employ
raw images as input to DRL controllers, while preprocess-
ing methods like dimensionality reduction are used in [90],
[257], [258] to improve convergence speed. Addressing control
smoothness, [259] introduces Conditioning for Action Policy
Smoothness (CAPS), which reduces jerky control behaviors.
Sim2Real transfer capabilities are improved by including
delays and sampling rate as additional observations during
training, as demonstrated by [37], enhancing the robustness
of DRL policies on the DeepRacer platform. Beyond image
inputs, raw LiDAR data serves as input in studies such as [46],
where DRL algorithms navigate F1TENTH cars in structured
environments. Although DRL eliminates the need for expert
demonstrations and is highly adaptable to complex and dy-
namic environments, it often suffers from high computational
cost and data inefficiency. Additionally, ensuring smooth and
stable control remains challenging, particularly in real-world
scenarios, and achieving reliable Sim2Real transfer is difficult
due to discrepancies (Sim2Real gap) between training and de-
ployment environments. To further enhance generalization and
convergence, autoencoders are frequently integrated into end-
to-end systems [260]. By compressing input data into lower-
dimensional latent representations, autoencoders provide an
efficient representation for downstream tasks such as control
or policy learning. For example, [205], [206] preprocess im-
age data with autoencoders before training Duckiebots using
BC with expert trajectories. Variational Autoencoders (VAEs)
[261] have also been explored in DRL, as demonstrated in
[41], [208], where compressed latent features facilitate faster
convergence and improved learning efficiency compared to
raw image inputs. Despite their advantages in computational
efficiency and feature extraction, autoencoders risk losing crit-
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ical information during compression, particularly in dynamic
or noisy environments, and introduce additional computational
overhead during training and integration.

For racing with end-to-end systems, IL and DRL [262] have
been widely explored. The authors in [82] introduce an end-
to-end IL system, where a learner network needs to imitate an
expert. The expert fuses GPS and IMU for state estimation and
uses an MPC as controller, the learner uses a DNN as control
policy to map raw, high-dimensional observations to contin-
uous steering and throttle commands. Building on this, [263]
presents a deep imitative RL framework for end-to-end racing
with camera input, where IL is used to initialize the policy, and
model-based RL is used for further refinement by interacting
with an uncertainty-aware world model. This hybrid approach
achieves improved adaptability and performance by leveraging
the strengths of both IL and RL. To improve the stability of
the racing system, [264] designs a residual control system, in
which multiple Bayesian Neural Networks (BNNs) are trained
with two camera inputs and GPS measurements to control
an Autorally car in an end-to-end fashion. The integration
of LiDAR technology has further expanded the capabilities
of end-to-end systems. In [265], a model-based RL approach
effectively utilizes raw LiDAR input to navigate racetracks
with an F1TENTH car. Following this, [266] employs LiDAR
data as input for a DQN to control the F1TENTH car, offering
a comparative analysis of neural network architectures for Li-
DAR data processing. This study also evaluates two Sim2Real
approaches, demonstrating the importance of transferability for
real-world deployment. Despite the demonstrated potential of
DRL for racing tasks, the well-known issue of low sample
efficiency continues to hinder its broader application. For
this issue, [267] propose an efficient residual policy learning
method with the raw observation of LiDAR and IMU, in which
first a controller based on the modified artificial potential field
(MAPF) is used to generate policies, then DRL algorithms are
used to generate a residual policy as a supplement to obtain
the optimal policy with increased efficiency. Similarly, [268]
presents a trajectory-aided learning (TAL) method that trains
DRL with raw LiDAR input by incorporating the optimal
trajectory into the learning formulation. [269] also presents
a residual vehicle controller that learns to amend a traditional
controller with a similar idea. To tackle the safety issues that
usually occur in RL training, [270] uses a Viability Theory-
based supervisor to recursively feasible vehicle safety during
the training. Furthermore, to improve the robustness of RL,
[271] first train a teacher model that overfits the training track,
moving along a near-optimal path, then use this model to
teach a student PPO model the correct actions along with
randomization.

Looking ahead, hybrid approaches that combine IL and
DRL for end-to-end systems show significant promise. Pre-
training policies with IL to capture expert knowledge, followed
by DRL fine-tuning for adaptability, can improve both sample
efficiency and performance. Furthermore, advanced Sim2Real
techniques, such as generative models and adversarial train-
ing, are critical for bridging the gap between simulated and
real-world environments. Exploring multi-modal input fusion,
and integrating diverse sensors like images, LiDAR, and

radar, could enhance robustness and adaptability. Additionally,
incorporating interpretable ML techniques would make the
decision-making process of end-to-end systems more trans-
parent, a crucial step for safety-critical applications. Finally,
developing real-time adaptation algorithms that allow models
to learn and adjust online without requiring retraining could
ensure more reliable performance in dynamic, real-world
settings. By addressing these challenges and pursuing these
research directions, end-to-end systems can become more
robust, efficient, and scalable, enabling broader adoption in
real-world autonomous driving scenarios.

E. Proposed Framework
After reviewing the benchmarked tasks and techniques,

it is evident that ML and DL methods form the backbone
of AD research for small-scale cars. These methods play
an important role across key modules such as perception,
planning, and control. In perception, techniques like CNNs
and autoencoders enhance object detection, lane detection, and
semantic segmentation. For control, IL and RL enable models
to make efficient and safe decisions in diverse and dynamic
conditions. Connected driving leverages the Internet of Things
(IoT) to create an interactive ecosystem, enabling real-time
data exchange via V2V and V2I communication. This supports
coordinated behaviors like platooning and optimized traffic
flow management.

We would like to propose a baseline framework that inte-
grates these methods into a cohesive structure. By extracting
an effective framework from the literature, we aim to provide
valuable insights for researchers. In a modular pipeline system,
the process begins with the perception layer. Sensor fusion
combines data from multiple sensors such as cameras and
LiDAR using DNN, IMU, GPS, and encoders using KF
alongside SLAM techniques. This integration ensures robust
environmental perception and creates a comprehensive under-
standing of the environment. The fused feature or raw sensor
input is then used for object detection, employing ML or
shallow learning models to identify and classify objects in the
vehicle’s vicinity. Compared with deep ML methods, shallow
models have simple structures, usually consisting of one or a
few layers of processing units, but are effective for resource-
constrained environments, in our case, small-scale cars with
lower-end computing units. Support vector machines or K-
Nearest Neighbors can be used for perceptions. Subsequently,
path planning and behavior planning are performed, either
separately or within a single module. Classical methods like
A*, Dijkstra’s, and RRT can be utilized for path planning,
while behavior planning can leverage finite state machines,
DRL, IL, MPC, and decision trees to handle tasks such as lane
keeping, lane changing, overtaking, and obstacle avoidance.
A safety and redundancy module ensures system reliability,
incorporating PID or rule-based controllers for safe stopping
during failures and redundant systems for robustness. For
end-to-end systems, raw sensor data is processed directly
using IL and RL or their hybrid approaches for driving
tasks, with safety modules remaining integral. This cohesive
framework aims to guide researchers in advancing small-scale
autonomous driving systems.
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V. FUTURE TRENDS

In the previous sections, we have gone through the cur-
rently available small-scale car platforms, their hardware
configurations, and the autonomous driving tasks achieved
by these platforms. In pursuit of augmenting the capacity
and applicability of these small-scale car platforms across
diverse age groups, facilitating educational use for students,
and supporting sophisticated research purposes, we list the
following opportunities for further exploration.

A. Enhancing Accessibility and Usability

It is imperative to contemplate transforming the small-
scale platform into a more widely accessible resource for
educational purposes and academic research. This necessitates
the establishment of a lower entry barrier, reduced pricing,
and the implementation of a comprehensive learning pipeline.
For educational usage, the first consideration should be given
to the ease of learning and maintenance for teachers. A
more user-friendly starting point will likely foster increased
enthusiasm among educators, encouraging them to incorpo-
rate the platform into their daily teaching activities. This,
in turn, will provide students with a challenging learning
experience, ultimately preparing them for the intricacies of
fully autonomous driving in the near future. For research
applications, an in-depth exploration of the accessibility of
the small-scale car platform is essential. This entails tailoring
entry levels to accommodate various research goals, catering to
individuals with zero experience in robotics to seasoned pro-
fessionals. The platform should not only serve as a testbed for
autonomous systems but also ignite enthusiasm for exploring
diverse robotic configurations. While some platforms currently
offer support for different entry levels, a more comprehensive
development is warranted to meet the diverse needs of the
research community.

B. Improving Versatility and Advanced Technology Adoption

Regarding the more academic research consumption, the
versatility of the platforms should be more considered. Specif-
ically, concerning individual small-scale cars, attention should
be directed towards enhancing their functional dimensions. In
line with advancements in semiconductor technology, where
computation and sensor units are becoming more compact
yet powerful, platforms should incorporate more sophisticated
sensors, thereby augmenting the overall capabilities of the sys-
tem. As discussed in Section IV, most of the current techniques
applied in small-scale car platforms are old methods developed
for full-scale cars, with simplified apply conditions. With the
rapid advancement of AD research, increasingly sophisticated
techniques in sensing, perception, and control are being de-
veloped for full-scale vehicles. These novel methods typically
require advanced sensor suites, including 3D LiDAR and
cameras, which demand significant computational resources
and power supply—requirements that most small-scale car
platforms cannot meet. Additionally, deploying these tech-
niques in real-world systems necessitates fast communication
between components. As a result, more powerful platforms are
becoming increasingly attractive.

C. Bridging Gaps in Smart City Configurations

We propose a thorough examination of smart city con-
figurations. While smart cities hold significant potential in
advancing research on autonomous driving for small-scale
cars, there exists a gap in terms of accessibility, reproducibility,
and standardization of best practices. There is an urgent
need for a common framework across the research commu-
nity, encompassing both hardware and software aspects. By
addressing these two aspects, small-scale car platforms can
more closely resemble real-world AD systems. It unlocks the
potential for deploying widely used open-source AD systems,
such as Apollo and Autoware, on small-scale car platforms.
These AD systems necessitate a comprehensive ecosystem
encompassing sensing, perception, localization, planning, and
control. Furthermore, existing smart city setups often overlook
key elements such as weather conditions and pedestrian inter-
actions, which are important in real-world driving scenarios.
Addressing these factors in future research is essential for
developing comprehensive and realistic autonomous driving
solutions within smart city environments.

D. Advancing V2V and V2I Integration

Achieving fully autonomous driving necessitates the inte-
gration of critical technologies such as V2V, V2I, and V2X.
While these technologies have been extensively researched in
the literature, there remains a noticeable gap in discussions
of small-scale car platforms. Consequently, the community
needs to pivot towards exploring and advancing V2V and
V2I communications as the next steps in the pursuit of
comprehensive autonomous driving solutions.

VI. CONCLUSION

In this survey, we offer an overview of the current state-of-
the-art developments in small-scale autonomous cars. Through
an in-depth exploration of past and ongoing research, we iden-
tify critical challenges and highlight the promising trajectory
for advancing small-scale autonomous driving technology. We
begin by enumerating the presently predominant small-scale
car platforms widely employed in academic and educational
domains, detailing the configurations and specifications of
each. Similar to their full-scale counterparts, the deployment
of hyper-realistic simulation environments is imperative for
training, validating, and testing autonomous systems before
real-world implementation. To this end, we show the com-
monly employed universal simulators and platform-specific
simulators. Furthermore, we provide a detailed summary and
classify the literature into distinct categories: end-to-end sys-
tems versus modular systems and traditional methods versus
ML-based methods. This classification facilitates a nuanced
understanding of the diverse approaches adopted in the field.
We introduce methods used for perception, path planning,
control, and end-to-end driving. To provide a holistic guide for
researchers and practitioners, we also outline the commonly
utilized components and tools across various well-known plat-
forms. This information serves as a valuable resource, enabling
readers to leverage our survey as a guide for constructing their
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own platforms or making informed decisions when considering
commercial options within the community.

We additionally present future trends concerning small-scale
car platforms, focusing on different primary aspects. Firstly,
enhancing accessibility across a broad spectrum of enthusi-
asts: from elementary students and colleagues to researchers,
demands the implementation of a comprehensive learning
pipeline with diverse entry levels for the platform. Next, to
complete the whole ecosystem of the platform, a powerful car
body, varying weather conditions, and communications issues
should be addressed in a smart city setup. These trends are
anticipated to shape the trajectory of the field, contributing
significantly to advancements in real-world autonomous driv-
ing research.

While we have aimed to achieve maximum comprehensive-
ness, the expansive nature of this topic makes it challenging to
encompass all noteworthy works. Nonetheless, by illustrating
the current state of small-scale cars, we hope to offer a dis-
tinctive perspective to the community, which would generate
more discussions and ideas leading to a brighter future of
autonomous driving with small-scale cars.
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