
Separate but Together: Integrating Remote Attestation into TLS

Carsten Weinhold
Barkhausen Institut

Muhammad Usama Sardar
TU Dresden

Ionut, Mihalcea
Arm

Yogesh Deshpande
Arm

Hannes Tschofenig
University of Applied Sciences

Bonn-Rhein-Sieg

Yaron Sheffer
Intuit

Thomas Fossati
Linaro

Michael Roitzsch
Barkhausen Institut

Abstract
Confidential computing based on Trusted Execution Environ-
ments (TEEs) allows software to run on remote servers without
trusting the administrator. Remote attestation offers verifiable
proof of the software stack and hardware elements comprising
the TEE. However, setting up a secure channel to such a TEE
requires a security guarantee that the channel actually termi-
nates inside the TEE. TLS is an existing protocol for secure
channel establishment, and in its most common use on the
Web, it uses a key pair to assert the server identity encoded in a
certificate. Various approaches have been proposed to integrate
remote attestation into TLS. Unfortunately, they all have short-
comings. In this paper, we present a protocol that combines
the existing certificate-based assurances of TLS with remote
attestation-based assurances in a way that they can be deployed
independently and can fail independently. We design these
two assurances to be additive without relying on each other, a
property that has not been considered by existing approaches.

1 Introduction

Remote attestation, originally developed for Trusted Platform
Modules (TPMs) [1], recently experiences a revival due to the
availability of Trusted Execution Environments (TEEs) [2] in
processors and initiatives towards confidential computing [3].
With confidential computing, a cloud server runs client work-
loads inside a TEE, with the security guarantee that the code
being executed and the data being processed is not accessible
even to a malicious system administrator with control over
the hypervisor. During execution, TEE state is shielded from
software outside the TEE and physically never leaves the pro-
cessor unencrypted. Remote attestation offers a cryptographic
proof to a remote party that the TEE is backed by genuine
hardware and asserts which software is running inside it.

However, to communicate with a TEE, the remote party
also requires a secure channel into the TEE. Establishing
such a channel should be compatible with multiple TEE
implementations, and the protocol must guarantee channel

termination inside the TEE. Transport Layer Security
(TLS) [4] is a widely-deployed and well-analyzed protocol
providing secure channels, but needs to be extended to support
remote attestation. Such extensions to TLS were explored
when TPMs were introduced [5, 6] and more recently with
Intel SGX [7, 8] and other TEEs [3]. Such a TLS extension
is non-trivial as it must take care of relay attacks [9, 10], where
the attestation report of a valid TEE is used by a malicious
intermediary to terminate the encrypted connection outside
the valid TEE. Therefore, TLS and attestation cannot be used
side-by-side, but must be cryptographically linked with each
other to guarantee that the encrypted channel terminates at
the origin of the attestation report [9].

The existing approaches differ in the way both aspects are
linked: One option is to establish a regular TLS connection
first and then arrange an attestation exchange through
the TLS channel to establish a second, attestation-based
communication channel inside the outer TLS channel.
However, this construction [8] results in additional handshake
round trips and an additional layer of encryption for the inner
channel. Another option is to include attestation information
in the certificate used to establish the TLS connection, thus
linking both aspects statically at deployment [9]. Such
linking risks losing the attestation-based assurance in case the
long-lived TLS private key is ever leaked, for example through
a Heartbleed-like side channel [11].

In this paper, we present TLS+RA, an attestation extension
to TLS. To maintain best practices and the resulting trust
relationships, TLS+RA keeps the deployment of certification
authorities (CAs), which issue end-entity certificates to TLS
servers, separate from attestation-related information and vice
versa. Therefore, we opt for a late linking of TLS and attes-
tation during the connection handshake, rather than modifying
certificates. Using short-lived, per-session handshake secrets
rather than long-lived TLS keys, the failure behavior remains
independent, resulting in truly additive security assertions. We
have not seen this property considered in existing approaches.
Two key enablers to revisit this problem now are the compul-
sory use of ephemeral Diffie-Hellman key agreement (when



used with certificate-based authentication) and the extension
mechanisms available in TLS protocol version 1.3 [4].

In summary, TLS+RA combines attestation and TLS in a
new way, so that channel termination inside the TEE is guaran-
teed while both connection aspects are kept separate in terms
of deployment and failure behavior. Our contributions are:

1. The introduction of deployment and failure independence
(Section 2) and a survey of related work (Section 3).

2. The TLS+RA protocol (Section 5), a TEE-agnostic attes-
tation extension to TLS offering deployment and failure
independence. While server-side TEEs are our main
motivation for use in confidential computing, the protocol
supports client-side and mutual attestation as well.

3. An implementation based on OpenSSL (Section 6),
which we evaluate regarding handshake latency and
channel throughput (Section 7). The code is available as
open source [12].

2 Background and Properties

After reiterating the fundamental security properties of TLS
and attestation, we explain our desired properties of deploy-
ment and failure independence for the combination of both.

2.1 Properties of TLS and Remote Attestation
The TLS protocol establishes a confidential and integrity-
protected channel between a client and a server. For a typical
use of TLS 1.3 [4] on the Web, the channel is based on
an ephemeral shared secret established by Diffie-Hellman
key agreement. This key agreement ensures that a passive
eavesdropper listening to the exchange cannot derive the
shared secret. To prevent active attacks, the server uses an
X.509 certificate and key confirmation to authenticate to the
client (typically a browser). These server certificates associate
an endpoint identifier, typically a Fully Qualified Domain
Name (FQDN) [13], with a public key. The certificate is
signed by a CA in response to a certificate request from the
operator of the server, after the requester has demonstrated
that it controls the FQDN. Only the valid endpoint can prove
possession of the matching private key, unless this private key
is leaked or stolen. To authenticate a server, the TLS client
compares the expected FQDN (e.g. the URL entered into the
browser) with the FQDN found in the subject name of the
certificate to decide whether to trust the server or not [14].

Rather than demonstrating control over a domain name,
remote attestation offers an assertion of the hardware and soft-
ware stack running on the remote machine [1]. A pre-requisite
for remote attestation is a set of components on the remote
machine that are trusted to reliably ascertain the running
software stack and sign a cryptographic report of its state.
Collectively, this set of components forms the root-of-trust

TLS client hello +
attestation nonce

forward nonce

attestation reportTLS server hello +
certificate +

attestation report

Client Relay Attacker Valid TEE

TLS channel

Figure 1: Relay attack when combining TLS and attestation.

(RoT). Each TEE comes with its own RoT implementation,
typically involving a secret securely kept inside the device
hardware. SGX, for example, implements the RoT as part of
the main CPU, including software components performing
the report signature. Processor-independent RoTs like TPMs
can externally inspect and attest the software being booted
on a CPU, effectively treating this boot state as one large
execution environment. When connecting to a TEE, the TEE
is sent a challenge in the form of a nonce. The TEE asks its
RoT to respond with a signed quote, containing the nonce and
measurements of the current hardware/software state. The key
pair with which this attestation report gets signed is confirmed
to be valid by the RoT’s manufacturer, usually also in the form
of a certificate. As long as the private key pertaining to the RoT
is not leaked, only valid hardware with this RoT can create
the signature. The connecting party can make a trust decision
based on the TEE state encoded in the attestation report.

We believe both trust decisions are useful and orthogonal to
each other: While attestation makes an assertion about the in-
ternal state of the TEE, the TLS certificate asserts the endpoint
identity and administrative control, i.e., factors external to
the TEE. As TEEs do not exist in a vacuum, the infrastructure
around it may influence the trust decision. Therefore, we
intend to combine both assertions into one protocol but keep
them independent enough that their properties are additive.

2.2 Combining TLS and Remote Attestation
Past research [9] has shown that combinations of both these
protocols can be insecure. Figure 1 illustrates a relay attack.
When TLS authentication and attestation are performed next
to each other, i.e., without cryptographically interlinking the
handshake, the resulting secure channel is not guaranteed to
terminate in the TEE issuing the attestation report. In case
an attacker obtains the private key of the TLS certificate, a
fake endpoint can be set up running an invalid software stack.
The attacker forwards the attestation nonce to a correct TEE
and thus obtains a valid-looking attestation report, which
is forwarded to the client. This attack shows that protocol
combinations without adequate cryptographic linking are not
independent in their properties: here, the credibility of the



attestation relies on the protection of the TLS private key. If,
for example, the TLS private key is handled by cloud provider
infrastructure, we suddenly trust the cloud provider as to the
validity of attestation reports, undermining the promises of
TEEs and confidential computing. Therefore, we postulate
five properties a combined TLS+RA protocol should provide:

1. Retain the properties of the secure channel, like confiden-
tiality, integrity, and replay protection, but additionally
transmit an attestation report. Currently, there is no
Internet protocol standard for establishing a secure
channel with remote attestation. Hence, building upon
the battle-hardened [15] TLS protocol is natural. The
protocol must guarantee that the tunnel terminates in the
TEE to prevent relay attacks.

2. Do not add extra network message round trips to the
connection handshake. Attestation should not unduly
increase the cost of establishing a TLS channel.

3. Once the channel is established, do not add encryption lay-
ers. The regular TLS payload encryption should suffice.

4. Independent deployment: To remain compatible with the
existing certificate practices (issuance, expiration, revoca-
tion, use in transparency logs), the use of certificates and
the underlying public-key infrastructure (PKI) should
not be changed. Especially, TLS certificates should not
contain attestation information, which would complicate
load balancing in data centers, where the same domain
name may be served by different machines with different
attestation technologies. Equally, attestation deployment
should only involve the TEE vendor, not a Web PKI CA
issuing certificates typical for use on the Web.

5. Independent failure: If either the TLS certificate private
key or the attestation RoT are compromised, the assertion
of the other should remain intact. The TLS private key
can be leaked through side channels like Heartbleed [11].
Then, the connecting party can no longer be sure
to connect to the expected machine in the expected
administrative environment. But the attestation assertion
to the validity of the software stack should remain correct.
Vice versa, if the attestation RoT is compromised, the
validity of the stack can no longer be assured. However,
the TLS certificate should continue to demonstrate that
the domain is still under the control of the owner.

With these properties in place, TLS+RA offers additive
security properties of TLS and remote attestation.

3 Related Work

While prior work exists that designs such protocols from
scratch [10], we focus on combinations of attestation and TLS,
because we want to retain and augment the properties of TLS

Table 1: Related work compared to the TLS+RA properties.

Prev
en

ts
Rela

y Atta
ck

s

No ad
de

d rou
nd

tri
ps

No ad
de

d en
cry

pti
on

Ind
ep

en
de

nt
de

plo
ym

en
t

Ind
ep

en
de

nt
fai

lur
e

HTTPA [8, 16] ✓ ✓ ✓

Platform Certificate [9] ✓ ✓ ✓

RA-TLS [7] ✓ ✓ ✓

RA-TLS with CA [7] ✓ ✓

Extending TLS [6] ✓ ✓ ✓

RATLS [17] ✓ ✓ ✓ ✓

Trusted Channels [5] ✓ ✓ ✓ ✓

rather than replace it. Points in the solution space differ by the
method of combining TLS and attestation, which we cover
in the following (Table 1) from coarse-grained linking towards
more intricate merging of both. We note that all solutions
offer protection against relay attacks if neither the TLS private
key nor the attestation RoT private key are leaked. However,
only few offer failure independence in case the TLS private
key is compromised. The protocol should still ensure that the
TLS channel terminates in the TEE that created the attestation
report.

HTTPA [8, 16] offers such failure independence. It does
so by nesting an attestation-based encrypted channel inside
the TLS-based encrypted channel, doubling handshake and
encryption effort. To avoid this cost, the linking has to happen
in the TLS handshake, resulting in a single layer of encryption.
Goldman et al. [9] postulate binding the TLS key pair to the
attestation RoT key pair by way of a platform certificate, which
is signed by a regular CA. If the valid TEE obtains such a certifi-
cate and afterwards loses its TLS private key, a relay attack can
be launched by presenting this same platform certificate plus
the relayed attestation report. Since certificates are connection-
independent, they cannot prevent such connection relaying.

Per-connection certificates may offer a way out. RA-TLS [7]
creates an ephemeral, self-signed certificate, which contains
the attestation report itself. Due to the use of self-signed
certificates it does not provide the certificates used in Web PKI
environments. The same paper proposes an extension where
the ephemeral certificate is signed on-the-fly by a PKI CA.
However, this increases connection latency and does not offer
failure independence: to automate this per-connection process,
a long-lived secret or proof-of-domain-control [13] must be
presented to the CA, both of which an attacker could replicate
to mount a relay attack without compromising the TEE RoT.
Instead of using a TLS certificate as a transport vehicle for the
attestation report, Aziz et al. [6] obtain for every connection an
ephemeral attestation-key certificate for the RoT and bind this
RoT to the TLS handshake nonce. This is enough to prevent



relay attacks even when the TLS key is compromised, but the
described approach adds handshake messages and a full round
trip for the certificate signing request to the critical path.

Walther et al. [17] and Armknecht et al. [5] describe two
protocols very closely integrated with TLS. Both use the
existing TLS extension mechanism to add additional data
fields to regular TLS handshake messages. TLS certificates
remain unmodified. However, both protocols use the TLS
private key to link the attestation report to the TLS connection
being established. Should the TLS private key be leaked, this
linking can be performed outside the TEE on another machine,
thus enabling a relay attack.

Finally, co-authors of this paper contribute to an Internet
protocol draft [18] that aims to standardize how TLS message
extensions carry attestation evidence. The draft seeks inter-
operability with a related standard proposal [19] and therefore
links attestation to the TLS private key. Hence, it offers
security guarantees similar to the works of Walther et al. [17]
and Armknecht et al. [5] that we already discussed above.

In summary, promising approaches exist, but only designs
costly in terms of handshake messages or encryption overhead
fulfill our desired property of failure independence.

4 Deployment and Threat Model

We assume that the TLS public-key infrastructure and its
CAs are operated independently of the TEE manufacturer
and associated remote-attestation infrastructure. However,
we do require that the TLS+RA library, the application using
it, and any security-critical code they depend on run inside a
TEE. This requirement ensures that the code implementing the
combined TLS+RA handshake is captured in the attestation
report; some TLS+RA state must also be included, as
described in the following section. The exact procedure of how
to start software in a TEE, what else to include in an attestation
report, and how to validate it are orthogonal to the TLS+RA
approach. However, we assume that all necessary steps for
TEE provisioning have been executed securely.

Under these assumptions, we consider an attacker who
can compromise either the TLS private key or the attestation
RoT, but not both. A TLS private key or an RoT private
key can be leaked (e.g., through a side-channel attack or
information-disclosure bug) or a fake key can be certified (in
case the responsible CA has been compromised). If an attacker
compromises only the RoT key material but not the isolation
of the associated TEE, then an invalid attestation report can be
forged but the TLS private key inside the TEE is not assumed
to be compromised.

5 Protocol Design

Although our TLS+RA protocol supports mutual attestation of
client and server, let us consider a confidential computing sce-

client hello
attestation request

generate 
reportserver hello

attestation request
server certificate

server attestation reportverify cert
verify

report
generate

report
client certificate
client attestation report
finish handshake

verify cert
verify 
reportTLS channel

Client TEE Server TEE

Figure 2: TLS+RA handshake with mutual attestation (server
attests to client in light green, client attests to server in dark
blue, black is standard TLS).

nario where a client interacts with a workload running inside a
TEE hosted by a cloud provider. The client wants to establish
a TLS channel with the guarantee that the channel terminates
inside the TEE running the expected software. Thus, the server
should attest its TEE state to the client. The flow starts with the
client checking its attestation verifier for supported attestation
evidence formats. This verifier can be a local library or a
remote service, but this is orthogonal to the design of TLS+RA.
The client then initiates the TLS+RA handshake with the server
by sending a client hello message. As part of this message, the
client forwards supported attestation evidence formats and an
attestation nonce for freshness from the verifier to the server
as part of an attestation request. If the server supports one of
the evidence formats presented to it, it returns a corresponding
attestation report as part of its TLS certificate message. If none
of the formats match, the handshake terminates.

Building upon TLS In order to ensure deployment indepen-
dence, we do not want to change how TLS certificates are man-
aged or what information they carry. Thus, attestation data must
be added next to the existing TLS data as part of the TLS hand-
shake. As demonstrated by prior work [5,17], it is possible to ex-
change attestation-related information between the client and
the server via message extensions available in TLS version 1.3.
Figure 2 shows the additional attestation request and report en-
capsulated in extensions to the hello messages (extended with
respective attestation request) and certificate messages (ex-
tended with respective attestation report). These extensions are
transmitted together with the regular TLS handshake messages
and do not incur additional network round trips.

To prevent relay attacks, the TLS+RA session and the at-
testation report must be cryptographically linked. To construct
this link, we exploit another feature of TLS 1.3: the compulsory
use (outside of special cases using pre-shared keys-only mode)
of Ephemeral Diffie-Hellman (DHE) key agreement. DHE
key agreement gives both parties a freshly-generated shared



secret that is unknown to any third party. However, there are no
assurances about who the two parties are. Regular TLS solves
this problem by linking the shared secret to the TLS certificate.
For this, a cryptographic hash called transcript hash is com-
puted over a log of the exchanged messages up until this point
in the handshake, meaning the client hello message received
by the server as well as the server hello response generated
by the server. This hash therefore subsumes TLS nonces and
the public parts of the DHE key material that each peer must
use to compute the shared secret. The transcript hash is then
signed using the private key belonging to the TLS certificate.
This signature offers cryptographic proof of possession of the
TLS private key and thus establishes a link between the TLS
session and the endpoint identity (typically the domain name).

Linking TLS and Attestation Handshakes To this existing
link in standard TLS, TLS+RA adds a second, independent
link: We generate a linking hash and forward it as the chal-
lenge to the attestation RoT. As the key difference compared
to the transcript hash, this linking hash is computed over the
same TLS handshake messages, but also includes the DHE-
derived shared secret. Without this shared secret, the linking
hash would only cover publicly visible information of hand-
shake messages, therefore opening the possibility of a relay
attack. Including the shared secret, which is only known to the
connecting parties, prevents this attack. The verifying peer can
compute the same hash, because it actively participated in the
DHE key exchange. Note that the linking hash also ensures
freshness by including the attestation nonce,which is part of the
attestation request transmitted via a message extension. In sum-
mary, this hash links the attestation report to the TLS session in
the same way the TLS certificate is linked to it. The secure tun-
nel is therefore guaranteed to terminate where the TLS private
key is kept and where the attestation report was generated.

Additive Security in TLS+RA As shown in Figure 3, this
double linking causes both links to be symmetric (they are
derived from the same message log) and independent from
each other (they use different signing keys and deployment
infrastructure). If the attestation RoT fails, but TEE isolation
remains unaffected as described in our threat model (Section 4),
the TLS assurances remain intact. If the TLS private key is
compromised, the client can still trust and verify the attestation
evidence. The attacker can only set up a rogue server with the
same TEE hardware and the same software the client expects;
otherwise the client will reject the attestation evidence.

Furthermore, double linking prevents relay or other intercept
attacks [20]. TLS+RA inherits the property of forward secrecy
from TLS 1.3: A stolen TLS private key cannot be used to de-
crypt previously intercepted traffic, because message payloads
are instead encrypted using a key derived from the randomly-
generated, per-session DHE shared secret. However, unlike the
standard protocol, TLS+RA also prevents the attacker from
using the TLS private key to mount future relay attacks. If the
attacker sets up a fake server running malicious software using

Verifying Peer Attesting Peer

messages

DHE

messages

DHE

Endpoint ID TEE state

TLS private key 
signs transcript 

hash

attestation 
report includes 
linking hash

DHE agreement

Figure 3: Double linking of TLS+RA handshake. While the
TLS private key signs the message transcript, the linking hash
in the attestation report also includes the shared DHE secret.

the stolen key, this fake server cannot attest itself and must there-
fore establish separate channels with the client and the original
server. Since the attacker cannot predict the randomness used
by the other two machines, both TLS+RA channels will use dif-
ferent DHE secrets resulting in different linking hashes. Hence,
the client will detect the mismatch between the linking hash
based on its own DHE computation and the one that has been
attested by the original server; it will then abort the handshake.

Other protocols lack this property, because they link
the attestation with the TLS certificate private key [7, 9],
thus not forming two independent links. Or, they link it
only with the TLS nonce [5, 17] but not with the DHE key
material, which would additionally protect against relay
attacks. The attestation linking we propose matches the
protocol that Stumpf et al. designed from scratch without TLS
integration [10]. TLS+RA thus integrates remote attestation
with the state-of-the-art and widely deployed TLS 1.3 protocol,
benefitting from its known security properties.

6 Implementation

Similar to the work done by Armknecht et. al. [5] and Walther
et. al. [17], we built our TLS+RA prototype on top of OpenSSL.
With SSL_CTX_add_custom_ext, this TLS library offers a
public API for adding callbacks that can create or inspect mes-
sage extensions during the TLS handshake. Another callback
registered with SSL_CTX_set_verify is invoked, when the
attestation report has been received as an extension to a cer-
tificate message. Using SSL_CTX_set_ex_data, we embed
user-defined data in the TLS session context. Using these APIs,
we implement a remote attestation state machine as a set of
callback functions that runs in parallel to the TLS handshake.

However, there is one modification we have to make to the
OpenSSL codebase: to link the attestation report to the TLS
session, we must compute the linking hash over the log of
handshake messages and the DHE-derived shared secret. This
information is readily available internally in OpenSSL, but not
accessible through an API. As part of the TLS specification,



RFC 5705 [21] defines so-called exporters, which do give
applications access to TLS keying material. However, the
corresponding APIs can only be called after the completion
of the handshake. This is too late for our approach. We
therefore add an additional, non-standard exporter function
that generates the linking hash during the handshake, right
after OpenSSL has computed the shared secret using DHE key
agreement. Note that this extension does not change the TLS
wire protocol, but merely derives the linking hash from internal
state of the TLS implementation to facilitate the cryptographic
link between the TLS session and the attestation report.

The way in which TLS+RA extends standard TLS is agnos-
tic to the TEE in which it is running, the underlying attestation
RoT, and the data formats used in attestation reports. TLS+RA
treats these reports as opaque data when shipped inside TLS
message extensions, so any data format can be carried. To
demonstrate the separation between TLS+RA as a protocol
and the underlying attestation RoT, we integrate a simple API
for platform-specific TLS+RA plugins. At the core, plugins for
this API must implement two functions: remote_attest and
check_report, which request and validate attestation reports,
respectively. Two of these plugins, one for industry-standard
TPMs and one for AMD’s Secure Encrypted Virtualization
with Secure Nested Paging (SEV-SNP), will be evaluated
quantitatively in the next section. Another plugin targeting
Arm Confidential Compute Architecture (Arm CCA) has been
developed and tested using an emulator. This plugin will not
be used in benchmarks, because Arm CCA-enabled hardware
is not available to the public yet.

7 Evaluation

With our experiments, we want to demonstrate the following
properties of TLS+RA:

1. Qualitatively show interoperability with different TEE
implementations.

2. Quantify the overhead of TLS+RA over standard TLS
to demonstrate the feasibility of TLS+RA.

3. Compare TLS+RA against approaches that layer
attestation on top of TLS to demonstrate the benefit of
merging TLS and attestation into a combined protocol.

We evaluate TLS+RA on AMD SEV-SNP (representing
a cloud server TEE), firmware TPMs (representing end user
devices), and hardware TPMs (representing Internet-of-things
devices). For AMD SEV-SNP, we use an Amazon c6a.large
instance running Amazon Linux 2023 with Linux kernel 6.1.
The firmware TPM (fTPM) implements the TPM 2.0 specifica-
tion and is provided by a 13th Gen Intel Core i5-13400 desktop
machine running Ubuntu Linux kernel 6.5. The discrete
hardware TPM (dTPM) is an Infineon Optiga SLB 9670, also
implementing TPM 2.0. It is connected to a Raspberry Pi 4

TLS	baseline
TLS+RA	messages
generate	report
verify	report

H
an
ds
ha
ke
	L
at
en
cy
	(m

s)

10

20

30

40

210

220

SEV fTPM dTPM

Figure 4: Handshake latency for TLS+RA compared to stan-
dard TLS. Note: The y-axis skips the range from 50 to 210 ms.

Model B Rev 1.4 with four Cortex-A72 cores and running
kernel 5.15. For Arm CCA, we use an emulator by Arm which
allows to test functionality, but is not suitable for performance
measurements. To qualitatively test the interoperability of
TLS+RA, we successfully executed combined TLS and remote
attestation flows with these four technologies. TLS+RA sup-
ports server-to-client, client-to-server, and mutual attestation.

Attestation Overhead TLS+RA does not add any network
round trips compared to standard TLS. Thus, to measure the
worst-case processing overhead of the combined protocol,
we co-locate both client and server on different cores of the
same machine and let them communicate over the loopback
interface. We disable idle sleep states on these cores to reduce
measurement noise. Figure 4 compares a standard TLS
baseline against TLS+RA for each attestation technology.
Each measurement is repeated 100 times after two warmup
runs; mean and standard deviation (some error bars are too
small to be visible) are plotted. The overall handshake duration
for TLS+RA is broken down into the time required to generate
the attestation report on the server, the time required to verify
the report on the client, and the processing and transmission
of all messages by the OpenSSL library.

We see that TLS+RA adds overhead over standard TLS,
which is dominated by the generation and verification of
the attestation report. The remaining gap between TLS+RA
message processing and baseline TLS is caused by increased
computation and system-call overhead, as TLS+RA handshake
messages are larger due to the additional report data. While
baseline TLS sends approximately 1.5 KiB of data, TLS+RA
for the fTPM technology has to transfer 6.4 KiB. The increase
in data volume is dominated by the attestation report (called a
quote) and the public part of the TPM’s attestation identity key.
The prototype plugin for TPMs serializes this information into
JSON format. The SEV plugin forwards the original binary
representation of both the roughly 1 KiB attestation report
and the key certificate of the host platform. All reports are
coarse-grained, describing the software stack as a whole.

Network Latency To quantify the end-to-end overhead
of TLS+RA across various network distances, we plot in



post	RA
TLS+RA
TLS	baseline

H
an
ds
ha
ke
	L
at
en
cy
	(m

s)

0

100

200

300

400

500

600

Network	Delay	(ms)
0 20 40 60 80

SEV

Network	Delay	(ms)
0 20 40 60 80

dTPM

Figure 5: Handshake latency for TLS+RA compared to
standard TLS and TLS with post-handshake attestation for
various network delays. Lines between measurement points
are linear fits to help with readability.

Figure 5 the handshake duration including network latency.
We use Linux’ netem facility to simulate network delays of
up to 80 ms per direction, which is representative of client
and server being on different continents. Again, the mean of
one hundred runs is presented, after two warmup rounds. For
SEV, which takes only 6 ms to generate the report, the relative
overhead of TLS+RA shrinks to 5 percent at 80 ms network
latency. With dTPM, report generation needs 210 ms, resulting
in a 1.3x handshake overhead at 80 ms network distance.

Comparison to Related Work To compare TLS+RA not
only against standard TLS as a baseline, we re-implemented
the composition approaches of related works, while keeping
the TLS protocol version, its implementation, and the
hardware the same. The lines labeled “post RA” in Figure 5
show the performance impact of extra network round trips,
when attestation is performed after the TLS handshake. For
this experiment, we re-implemented the approach used by
related work solutions such as HTTPA [8] and others, which
require twice as many network round trips between client and
server. In the case of SEV, for 10 ms network delay and greater,
performing the TLS and attestation handshakes sequentially
incurs more than 100% overhead compared to baseline TLS.

Solutions like HTTPA also nest two independent channels,
requiring redundant encryption and integrity protection
of all message payload. To quantify the associated costs,
we compare throughput of standard TLS, TLS+RA, and a
re-implementation of the nested channel solution. The nested
channel is simulated using a second layer of AES-GCM authen-
ticated encryption for sending 1 GiB of payload from server
to client. Client and server again run on the same machine, so
throughput is limited by cryptographic operations protecting
the payload. The mean of 10 runs after two warmup runs is
plotted. Figure 6 illustrates that TLS and TLS+RA perform
similarly after the initial connection handshake, because they
perform exactly the same cryptographic operations. Adding
remote attestation introduces no overhead post-handshake.
Throughput is therefore not determined by the TEE technology,

0.010.020.02

TLS	baseline
TLS+RA
nested	channelsTh

ro
ug

hp
ut

	(G
iB

/s
)

0

0.5

1

1.5

2

SEV fTPM dTPM

Figure 6: Channel throughput for TLS+RA compared to
standard TLS and nested channels.

but by the processor performing cryptographic operations. A
nested channel solution achieves a lower overall throughput
because of the additional cryptographic overhead.

Similar to TLS+RA, related works such as [5, 7, 17] avoid
the cost of additional network round trips and nested channels,
too. However, they offer weaker security properties by lacking
failure independence (Table 1).

8 Conclusion

We have presented TLS+RA, a network protocol combination
of TLS and remote attestation. TLS establishes an encrypted
and integrity-protected channel to a specific endpoint, whereas
remote attestation cryptographically verifies the hardware and
software state of that endpoint. Both protocols are combined
at the handshake level using standard TLS message extensions.
The novel properties of deployment and failure independence
set TLS+RA apart from related work. During the handshake,
double linking of both the TLS certificate and the attestation
report against the secret established during handshake is per-
formed. Thereby, TLS+RA guarantees that the encrypted chan-
nel terminates at the attested machine even if the TLS certificate
private key is compromised. By adding this security assertion
to standard TLS, we hope to make attestation more accessible
and thus more pervasively used in today’s connected world.

Acknowledgements

We thank the anonymous reviewers of the USENIX ATC’24,
ATC’25, and ACM/IFIP Middleware’24 program committees
for their valuable feedback, which helped us to improve this
paper. We thank our shepherd Joel Wolfrath for his feedback
on drafts of the final version. This research is funded by the Eu-
ropean Union’s Horizon Europe research and innovation pro-
gram under grant agreement No. 957216 (iNGENIOUS), No.
101094218 (CYMEDSEC), No. 101092598 (COREnext), and
via German Research Foundation (DFG) grant No. 389792660
as part of TRR 248 (CPEC). It is also financed on the basis of
the budget passed by the Saxon State Parliament in Germany.



References

[1] Boris Balacheff, Liqun Chen, Siani Pearson, David
Plaquin, and Graeme Proudler. Trusted Computing Plat-
forms: TCPA Technology in Context. Prentice Hall, 2003.

[2] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel
Stapf. Trusted Execution Environments: Properties,
Applications, and Challenges. IEEE Security & Privacy,
18(2):56–60, March 2020.

[3] Muhammad Usama Sardar, Thomas Fossati, and Simon
Frost. SoK: Attestation in Confidential Computing.
ResearchGate pre-print, January 2023.

[4] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018.

[5] Frederik Armknecht, Yacine Gasmi, Ahmad-Reza
Sadeghi, Patrick Stewin, Martin Unger, Gianluca
Ramunno, and Davide Vernizzi. An Efficient Implemen-
tation of Trusted Channels based on OpenSSL. In 3rd
ACM workshop on Scalable Trusted Computing (STC),
pages 41–50, October 2008.

[6] Norazah Abd Aziz, Nur Izura Udzir, and Ramlan
Mahmod. Extending TLS with Mutual Attesta-
tion for Platform Integrity Assurance. Journal of
Communications, 9(1):63–72, January 2014.

[7] Thomas Knauth, Michael Steiner, Somnath Chakrabarti,
Li Lei, Cedric Xing, and Mona Vij. Integrating Remote
Attestation with Transport Layer Security. Technical
report, Intel Labs, January 2018.

[8] Gordon King and Hans Wang. HTTPA: HTTPS
Attestable Protocol. In Future of Information and
Communication Conference (FICC), pages 811–823.
Springer, March 2023.

[9] Kenneth Goldman, Ronald Perez, and Reiner Sailer.
Linking Remote Attestation to Secure Tunnel Endpoints.
In 1st ACM workshop on Scalable Trusted Computing
(STC), pages 21–24, November 2006.

[10] Frederic Stumpf, Omid Tafreschi, Patrick Röder, and
Claudia Eckert. A Robust Integrity Reporting Protocol
for Remote Attestation. In Workshop on Advances in
Trusted Computing (WATC), page 65, November 2006.

[11] Common Vulnerabilities and Exposures: CVE-2014-
0160 ("Heartbleed bug"), April 2014.

[12] TLS+RA Source Code on GitHub. https://github.
com/Barkhausen-Institut/ratls, May 2025.

[13] Richard Barnes, Jacob Hoffman-Andrews, Daniel Mc-
Carney, and James Kasten. Automatic Certificate Man-
agement Environment (ACME). RFC 8555, March 2019.

[14] Peter Saint-Andre and Rich Salz. Service Identity in
TLS. RFC 9525, November 2023.

[15] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre.
Summarizing Known Attacks on Transport Layer
Security (TLS) and Datagram TLS (DTLS). RFC 7457,
February 2015.

[16] Gordon King and Hans Wang. HTTPA/2: a Trusted
End-to-End Protocol for Web Services. In Future of
Information and Communication Conference (FICC),
pages 824–848. Springer, March 2023.

[17] Robert Walther, Carsten Weinhold, and Michael
Roitzsch. RATLS: Integrating Transport Layer Security
with Remote Attestation. In 4th Workshop on Cloud
Security and Privacy (Cloud S&P), pages 361–379.
Springer Nature, June 2022.

[18] Hannes Tschofenig, Yaron Sheffer, Paul Howard, Ionut,
Mihalcea, Yogesh Deshpande, Arto Niemi, and Thomas
Fossati. Using Attestation in Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS),
Internet-Draft. https://datatracker.ietf.org/
doc/draft-fossati-tls-attestation/09/, April
2025.

[19] Henk Birkholz, Dave Thaler, Michael Richardson, Ned
Smith, and Wei Pan. Remote ATtestation procedureS
(RATS) Architecture. RFC 9334, January 2023.

[20] N. Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-
in-the-Middle in Tunnelled Authentication Protocols.
In 11th International Workshop on Security Protocols,
pages 28–41. Springer, April 2003.

[21] Eric Rescorla. Keying Material Exporters for Transport
Layer Security (TLS). RFC 5705, March 2010.

https://github.com/Barkhausen-Institut/ratls
https://github.com/Barkhausen-Institut/ratls
https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/09/
https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/09/

	Introduction
	Background and Properties
	Properties of TLS and Remote Attestation
	Combining TLS and Remote Attestation

	Related Work
	Deployment and Threat Model
	Protocol Design
	Implementation
	Evaluation
	Conclusion

