
Bounded Resource Reclamation
Viktor Reusch

Barkhausen Institut
Dresden, Germany

Abstract—Resource allocation is well-studied in operating
systems, but resource reclamation remains largely underexplored.
This paper investigates the impact of unpredictable resource
reclamation latency on system behavior, particularly in resource-
and time-constrained environments like Open-RAN and serverless
functions. We study scenarios of high reclamation times across
various systems. Under adverse conditions, reclaiming resources
can delay process termination by multiple seconds on both
Linux and the L4Re microkernel. We propose a design for
accounting and bounding resource reclamation latency to
enable predictable system operation and mitigate potential
denial-of-service scenarios. We also advocate for optimizing for
the case of bulk reclamation — reducing worst-case reclamation
latency by multiple orders of magnitude.

Index Terms—Operating Systems, Real-time systems and
embedded systems, Reliability, Allocation/deallocation strategies

I. INTRODUCTION

Resource management is a key concern when seeking
predictable system behavior. Processes frequently allocate and
release resources during their lifetime. Thus, the performance
and timeliness of resource allocations through the OS is
critical for stable application performance. This includes
the consideration of tail latencies and worst-case execution
times. Consequently, existing work focuses on improving the
performance of allocation operations.

In contrast, the behavior of resource reclamation is understud-
ied. The operating system has to manage a variety of limited
resources like user memory (e.g., for heaps), kernel memory
(e.g., for page tables), or more specific resources like available
TCP port numbers. Because these resources are limited, the OS
has to reclaim them to make them available to new allocations.
These reclamation operations are especially prevalent during
the termination of processes. Reclamations occur in bulk as re-
sources held by the terminated processes are released. This can
lead to unpredictable system behavior mainly due to two effects:
First, the reclamation operations themselves need to be executed
and thus they occupy the CPU. This is often reflected by termi-
nations of processes taking longer than usual. Meanwhile, the
operating system collects the released resources. Second, if the
whole system is running resource constrained, consecutive allo-
cations (e.g., during startup of a new process) have to wait for
resources to be released. Thus, new processes have to wait on
the termination of previous processes to fully release resources.
In conclusion, the latency of release operations affects the
subsequent system behavior causing a threat to predictability.

There are prominent use cases that could benefit from a
predictable resource reclamation behavior. Predictability can be
ensured by enabling the operating system to proactively enforce

Process

Process Resource

Process

Too Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many MappingsToo Many Mappings

Benign Function Rogue Function

Fast Reclamation
< 100 ms

Unexpectedly Long Reclamation
> 1 s

FaaS Controller

Fig. 1. While most benign functions in a FaaS environment terminate
quickly, some other functions might behave unexpectedly and allocate many
system resources in rather complicated ways. Reclaiming these resources
takes unexpectedly long.

a time bound on reclamation operations. We call this concept
bounded resource reclamation (BRR). A first possible use case
of BRR is a resource-constrained multi-user system as found
in software-defined radio solutions like Open-RAN. Such Open-
RAN units are numerously deployed in the field with limited
system resources due to, e.g., power and cost constraints. Thus,
applications of different stakeholders need to share resources.
These systems also need to be dynamic, allowing termination
and recreation of applications. Resource reclamations of termi-
nating processes could interfere with newly created processes
thus delaying application startup. This shows the necessity of
BRR in resource-constrained systems. Second, also cloud set-
tings, like function-as-a-service environments, can benefit from
bounded resource reclamation. Cloud functions are typically
assigned a fixed main memory allocation and a hard time limit.
This allows the cloud provider to cost-effectively maximize sys-
tem utilization. However, this utilization management is in vain
if resource reclamation is not considered. As shown in Fig. 1,
a rogue function of an untrusted customer could deliberately
prolong resource reclamation and thus delay system operation.
Again, the concept of BRR is needed to solve this issue.

To tackle the issue of unpredictable reclamation behavior, we
propose to plan ahead for resource reclamation. We especially
focus on the bulk reclamation of resources during application
termination. This seems to be the most prevalent scenario, at
least in the described use cases. A predictable system should
implement accounting of the time needed to reclaim resources
and thus allow setting strict time bounds. This enables controller
services or orchestrators to guarantee timely reclamation
of resources even when untrusted applications exceed their



time budget and have to be forcefully terminated. We also
propose to optimize for bulk reclamations by employing arena
allocation for management data structures, which drastically
reduces the cost of reclaiming whole process trees.

This paper starts with an analysis of the worst-case reclama-
tion time of process resources on various systems (Section II).
We present a design of a system that accounts for the latency of
resource reclamations (Section III). Additionally, we advertise
for grouping resources in prospect of reclamation to accelerate
system operation. The implementation of a prototype of this de-
sign is then presented in Section IV and evaluated in Section V.

II. STUDY OF RECLAMATION LATENCY

To show the necessity for bounded resource reclamation, we
examine whether unbounded resource reclamation can lead to
unexpected delays in system operation. This section first demon-
strates that resource reclamation can actually delay process
termination by noticeable amounts. In the examined scenario,
a process allocates an unusually large amount of resources
in a rather complex way, e.g., by allocating a lot of memory
as singular pages. These allocations are correctly accounted
towards the CPU time quota of the process. However, when the
process gets terminated, e.g., due to exceeding its FaaS time
limit, resource reclamation will take unusually long. This recla-
mation time is not accounted for and might lead to unexpected
system behavior by delaying further application startups.

This study of reclamation latency looks at the resource
reclamation of kernel memory under three different operating
systems: Linux, L4Re [1], and M3 [2]. On all these platforms,
a single process is spawned. It requests the allocation of many
page mappings to the same physical page. So no additional
user memory is needed to back the page mappings. However,
the management structures for these mappings require lots
of kernel memory. Later, the process is forcefully terminated.
The termination latency is measured to see how resource
reclamation prolongs termination latency.

Another, similar benchmark is conducted to assess the poten-
tial of the reclamation process to slow down the progress of the
whole system. During the termination of the process with the
mappings, another workload is started. This workload consists
of spawning processes in a tight loop, stressing the kernel
subsystems. By measuring how much this workload is slowed
down, one can asses how much the operation of a, e.g., FaaS
system would be slowed down by long reclamation operations.

Linux is a very common platform for running FaaS
workloads, which could experience unbounded resource
reclamation. The Linux benchmarks of Fig. 2 are run using
kernel version 6.7.4 on an Intel Xeon Platinum 8358 CPU.
The governor is set to performance, SMT is disabled, and
benchmark programs are pinned to a single CPU core. As the
plot on the top left shows, the termination of a small Linux
process normally takes only around 72.7 µs. However, when the
process has one thousand memory mappings, the termination
latency already increases to 334 µs. In its extreme, the latency
can reach up 13.8 seconds for cleaning up 32 million mappings.
Of course, having these many mappings also requires to a lot

of kernel slab memory — around 8.9 GiB more. The bottom
left plot in Fig. 2 highlights how a workload running during the
termination is affected. For this, the plot depicts the runtime of
the concurrently-running workload relative to its base runtime
in a quiescent system. Thus a relative runtime of one would
imply that termination and reclamation have no effect on the
workload runtime. When the terminating process only has a
single mapping, the concurrent workload is only about 12.2 %
slower than its baseline. If the termination latency is high, we
see a slow down of up to 115 %. So the workload execution
time is roughly doubled. The Linux scheduler seems to equally
distribute CPU time between the reclamation operation and
the workload. This behavior is, of course, not applicable to
all workloads and scheduling strategies but gives one concrete
example of termination latency affecting system performance.

The second column of plots in Fig. 2 depicts the results
under the L4Re system. The system hardware is the same as
previously under Linux. L4Re is a small, microkernel-based
operating system with real-time capabilities. Discussing
resource reclamation latency on L4Re is not only interesting
when discussing real-time but also in the light of recent work
that is exploring function-as-a-service workloads on L4Re [3].
In the top L4Re plot, we again see a correlation between
mapping count and termination latency. The latency varies
from 9.7 ms up to 3.0 s depending on the number of mappings.
There is again a big increase in kernel memory consumption
of 724 MiB. Concurrent workloads on the L4Re platform are
slowed down by the reclamation operations as shown by the
lower plot. At 100 000 mappings, the concurrent workload
runs 29 % slower. When reclaiming 32 million mappings, the
execution time of the workload even becomes 106 times longer.
The likely cause of this large slowdown is the helping strategy
of the L4Re kernel locks. The reclamation code path in the
kernel often has to acquire locks. Other kernel threads that try
to acquire the already-taken locks will lend the CPU to the
lock-holding thread so that it can make progress and release
the lock eventually. This leads to the termination operation
receiving more CPU time than the concurrent workload.

The third system examined in Fig. 2 is M3, which is a
hardware-software co-design that focuses on security-critical
use cases, such as telecommunication infrastructure [4].
M3 has unique hardware resources, like hardware-based
communication channels, that make it interesting for a study on
resource reclamation. The results under M3 are obtained using
the gem5 [5] system simulator.1 Due to the comparatively slow
speed of simulation, we limited our M3 scenario to thousands
of kernel structures. The M3 system not only supports large
numbers of memory mappings but also of semaphore kernel
objects. Thus, we additionally examined semaphores under
M3. The plots show a similar overall trend for M3 as already
for L4Re. For example, termination latency increases from
313 µs to 16.2 ms when reclaiming 10 000 semaphore objects.
Because the count of kernel objects is lower in the M3

1A simulator is necessary because of the custom hardware components
in an M3 system.



10−4

10−2

100

L
at

en
cy

(s
)

Linux

10−2

10−1

100

L4Re

10−3

M3

10−3

10−2

M3

109

1010

M
em

or
y

(B
yt

e)

105

107

109

106.2

106.4

106.6

106.2

106.4

106.6

100 104 108

1

1.5

2

Mappings

Pa
ra

lle
l

W
or

kl
oa

d

100 104 108
0

50

100

Mappings
100 102 104

2

4

6

Mappings
100 102 104

5

10

Semaphores

Fig. 2. These plots evaluate our study on reclamation latency. The columns represent different OSes and types of kernel objects. The first row shows
the latency of process termination depending on the number of kernel objects allocated. The kernel memory footprint before termination is shown in the
second row. The third row shows the relative execution time slowdown of a workload running concurrent with the termination. All depicted values are
medians with error bars showing the fifth and 95th percentile. Most axes have a logarithmic scale to better show correlations across orders of magnitude.

benchmarks, the increase in kernel memory consumption
is only about 2.88 MiB. Similar to the L4Re scenario, a
concurrent workload is heavily slowed down by concurrent
reclamations. The likely cause is that the scheduling of system
calls in the M3 kernel does not make fairness considerations.

Overall, this study on termination latency reveals that reclaim-
ing resources — at least in the kernel — can take a considerable
amount of time. Of course, allocating high numbers of kernel
objects also entails consuming larger amounts of kernel memory.
Thus, one could try to limit the latency of memory reclamations
by using existing mechanisms for kernel memory accounting,
e.g., via Linux cgroups [6]. However, limiting the kernel mem-
ory usage of specific processes is only a proxy metric for recla-
mation time. There is currently no holistic approach for enforc-
ing a time bound on resource reclamation. Thus, the next sec-
tion will discuss how a system for explicitly accounting recla-
mation time can be designed. This holistic approach also gives
the opportunity to optimize resource management for the case
of bulk reclamation, e.g., on process termination. This might be
particularly interesting for short-lived function is FaaS settings.

III. DESIGN FOR BOUNDED RESOURCE RECLAMATION

The analysis in the previous section has shown that
reclamation latency can be a threat to predictable system
behavior. Hence, there arises the need for a design ensuring
bounded resource reclamation. As motivated by the use cases,
we assume that there is always some controller in the system
that creates and terminates (groups of) child processes. This
controller is also the entity that should enforce a time bound
on the reclamation of resources. For example, a FaaS provider
might want to limit the latency of processes termination to at
most 100 ms. This allows for predictable high-level scheduling
of customer functions. Hence, a controller should be able to
set a bound of 100 ms on the reclamation latency of each child

ProcessProcess

Semaphore

Process

. . .

Page Table

Memory

. . .

. . .

Reclamation Group

Reclamation Quota: 54/100 ms

Group

5 ms 5 ms

1 ms

5 ms

10 ms

20 ms

Controller

Fig. 3. The abstract design of BRR assigns each reclamation group a
reclamation time budget. Whenever a kernel object is allocated, the expected
time needed to reclaim this object is subtracted from the group’s quota. If
the quota reaches zero, no further allocations can be performed.

group of processes. Reclamation latency thus has to become
a virtual resource on its own with budgets and accounting.

For the simplest form of BRR, the controller would assign
every (group of) processes with a specific reclamation time
budget. Then, whenever a resource is allocated the OS checks
if this resource will be reclaimed when the group is terminated.
For such allocations, the OS subtracts the anticipated reclama-
tion time from the group’s quota. The combined reclamation
latency of all allocations made by the group must thus not
exceed its budget. We call a group of processes and resources
sharing the same reclamation quota a reclamation group. An
example of this approach is shown in Fig. 3. In summary, the
OS accounts for the reclamation time of processes in advance.

Of course, there are some complications in real-world operat-
ing systems. Most prominently, processes can nest by forking of
child processes. These should also be subject to the same budget
constraints. Thus, reclamation budgets have to be inherited.



Controller

Process Process

IPC IPC Capability

Cap.

Service

Semaphore Child

Reclamation Tree

Fig. 4. Whenever a process group or a process hierarchy is terminated,
many kernel resources get freed. This includes child processes and derived
capabilities. All these released kernel objects form the reclamation tree. There
are also connections from the outside to objects inside the reclamation tree,
e.g., IPC channels to system services.

Furthermore, the reclamation of a process might trigger the
deletion of other OS objects like network sockets or capabilities.
Capabilities on microkernels, like L4Re and M3, are especially
interesting as they can be delegated and derived. This essentially
creates inheritance trees inside the kernel that also need to be
honored for BRR. Overall, these interdependencies in the differ-
ent OS objects mean that upon termination of a process, a whole
subtree of objects will be reclaimed. We call this subtree the
reclamation tree starting from some root process. An example
is given in Fig. 4. The reclamation latency of all the objects in
the reclamation tree of a reclamation group has to be accounted
in the associated reclamation quota for accurate accounting.

The observation of the reclamation tree leads to a possible
optimization. For the use cases of FaaS and Open-RAN,
one can assume that there are few interconnections between
the reclamation tree of a customer process and the rest of
the system. These interconnections are likely limited to user
memory and networking. Presumably, the bulk of reclamation
operations for these customer processes are internal to the
reclamation tree. Examples for such reclamation operations
are deleting user memory mappings, terminating inter-process-
communication channels, or deallocating process objects in the
kernel. These cleaned-up objects are only linked internally with
respect to the reclamation tree. So all objects in the reclamation
tree will be reclaimed during a bulk reclamation. Henceforth,
there is actually no need to unlink individual objects. Both
sides of these object-to-object links will be freed and reclaimed.
Thus, only interconnections to the rest of the system that link
outside of the reclamation tree need to be unlinked.

Going a step further, one can optimize the deallocation of
all these objects inside the reclamation tree by using some
form of arena allocator for all objects inside the reclamation
tree. The reclamation group would get a single, large chunk of
memory (the arena) in advance. Afterwards, all objects in the
reclamation tree of the group are allocated in memory inside
of the arena. This grouping of objects allows the reclamation
of a whole tree by simply reclaiming one large chunk of
memory and unlinking a couple of outside interconnections
— opposed to deallocating each object individually. This

optimization should greatly reduce reclamation time and thus
help to keep bounds on reclamation time low.

IV. PROTOTYPICAL IMPLEMENTATION

To test the effectiveness of our approach, we have
implemented a prototype of bounded resource reclamation. We
chose the M3 operating system as our implementation platform.
M3’s microkernel design fits well to the idea of a reclamation
tree. Kernel objects and capability inheritance already
span a graph inside kernel memory. Furthermore, M3 is a
hardware/operating-system co-design with interesting hardware
resources that need to be considered during reclamation. The
fundamental design idea of M3 is to isolate individual CPU
cores using custom hardware-based isolation units. This tiled
architecture already sketches boundaries for process groups
that can be leveraged for BRR. In this first prototype, we
limit our implementation to the grouping mechanism in the
kernel itself including arena allocation. The actual accounting
of the reclamation time, especially for connections leading
outside of the reclamation tree, will be added in future work.

First, one has to consider how a reclamation tree looks
like in the M3 kernel. The M3 microkernel is capability-
based and thus the kernel manages a list of capabilities for
each process. This means that processes can only access
the kernel functionalities/abstractions they have a capability
to. In the kernel, these capabilities point to kernel objects
like semaphores, process structures, or page mapping entries.
Processes on M3 can collaborate by exchanging capabilities
pointing to these objects. Thus, an inheritance graph of
capabilities and kernel objects is created. When a process
is terminated and the process structure is reclaimed in the
kernel, all capabilities held by the process will be freed as well.
Consequently, all inherited capabilities (even when exchanged
with other processes) are reclaimed. Kernel objects that are
no longer referenced by any capability are reclaimed. Because
kernel objects can be process structures themselves, reclamation
can recurse into child processes. This can lead to the cleanup of
whole process trees in a single system call under M3.2 All this
recursion has to be reflected in the reclamation tree of processes
and thus has to be respected by our implementation of BRR.

In this implementation of bounded resource reclamation, the
kernel enables controllers to assign processes to reclamation
groups. Whenever then such a process creates or inherits
capabilities/kernel objects, the group affiliation is inherited too.
This ensures that all objects in the reclamation tree are assigned
to the same reclamation group and can thus be accounted for.
Additionally, the kernel allocates each object belonging to a
group in a group-local memory arena as shown in Fig. 5.

Some objects in the reclamation tree might also point outside
of the reclamation group. These could be, e.g., semaphore
objects that are shared with an outside, system-wide network
service. The BRR implementation addresses these outside
connections by referencing the offending objects in a group-
local scrub list. When reclaiming a group, the objects in the

2This is similar to what can be achieved with PID namespaces under Linux.



Process Process

Capability

MappingCapability

Capability

Semaphore

Capability

Capability

Sc
ru

b
Li

st

inherited

inherited

Reclamation Group

Memory Arena

O
ut

si
de

Fig. 5. Kernel objects of the same reclamation group are allocated together
inside the same memory arena to optimize for the case of bulk reclamation.
Connections leading out of the reclamation group need to be handled
individually and are thus noted in a scrub list.

scrub list are unlinked first before the whole arena allocation
of the group is deallocated at once. The individual objects
inside of the group do not need to be individually unlinked
or deallocated, which greatly reduces reclamation latency.

In the future, the arena allocation and each element in
the scrub list need to be accounted for in a reclamation time
quota. Furthermore, the implementation is currently only fully
realized for semaphore kernel objects — just to serve as a
proof-of-concept. Nevertheless, we think this implementation
can serve for an initial evaluation of the feasibility and
effectiveness of the approach as shown in the next section.

V. EVALUATION

For the evaluation, we perform measurements on M3 using
the gem5 simulator for RISC-V. We compare three different
system configurations. First, we measure on a baseline M3

system that does not contain any custom modifications for BRR.
Second, we use a modified kernel that implements the changes
outlined in the previous section. However, the processes under
test are not added to any reclamation group. The results of
this configuration show the overhead of the performed code
changes to the overall system. For the third configuration,
the created processes are actually put inside of a reclamation
group to take advantage of the reclamation optimizations.

Figure 6 shows the influence of the modifications on the
latency of application startup. The median startup latency
increased by only 4.69 µs or 0.81 % from a baseline of 581 µs
due to the modifications to the M3 kernel. The increase in
latency is higher when starting up the process inside of a
group. It increases by 15.3 µs or 2.6 %. This shows that the
overhead for the additional bookkeeping of kernel objects
inside of reclamation groups and additional branch instructions
in system call handlers is small but noticeable.

The overhead of the M3 modifications are also noticeable
when creating new kernel objects via system calls. Figure 7
shows that the overhead of grouping is 377 ns or 3.8 % from
a baseline of 9.9 µs for creating a single memory mapping.
The overhead is more pronounced when creating a semaphore
object in the kernel. With the baseline being 3.10 µs, the
increase in latency is 1.20 µs or 39 %. This shows that the

Baseline Modified Grouped
0

200
400
600

St
ar

tu
p

(µ
s)

Fig. 6. This plots shows the latency of application startup under an
unmodified version of M3, the modified one, and the modified one when
starting the process inside of a reclamation group.

Baseline Modified Grouped
0

5

10

L
at

en
cy

(µ
s)

Mapping

Baseline Modified Grouped

Semaphore

Fig. 7. This shows the latency of allocating a single kernel object under
the three tested system settings.

modification to the kernel, which are needed for bounded
resource reclamation, can have an effect on short, simple
system calls. However, this effect disappears for more involved
operations like application startup in Fig. 6.

The preliminary implementation of BRR is already able
to drastically speed up termination as shown in Fig. 8. The
left most data points show the termination latency of a
process with only a single semaphore object allocated inside
the kernel. The measured latency is very similar between
not using reclamation groups (398 µs) and using the feature
(370 µs). Without the group feature and with 10 000 allocated
semaphores, the reclamation latency reaches 17 ms. However,
with the group feature, the latency increases by only 12 %
to 414 µs. This is achieved by allocating kernel objects of a
single reclamation group inside a memory arena and freeing
them in bulk. The semaphore objects allocated for Fig. 8
do not have any outside connections and can therefore be
freed without unlinking individual outside connections. In
contrast, the figure clearly shows that without using groups,
the reclamation latency increases as all semaphore objects
need to be cleaned up individually. Overall, our preliminary
implementation already highlights the potential time savings
that are possible when optimizing for the case of bulk resource
reclamation as often seen in time-constrained FaaS settings.

VI. DISCUSSION

The proposed grouping technique — as a sideeffect —
makes memory accounting in the kernel easier and more
precise. Normally, kernel memory budgeting can only be an
estimate because of fragmentation between different-sized
slab allocators and general kernel allocators. Because of this
fragmentation, a kernel, like the L4Re microkernel, could
run out of memory even though no processes exceeds its
kernel memory budget. This imprecise accounting could be
avoided by using the proposed grouping approach using an



100 101 102 103 104

10−3

10−2

Number of Semaphores

L
at

en
cy

(s
) Without Groups

Using Groups

Fig. 8. This plots depicts the time needed to terminate a process depending
on the number of semaphore objects it allocated via the kernel. The usage of
reclamation groups keeps the termination latency low even for high numbers
of objects.

arena allocator. All memory is accounted for in advance and
fragmentation issues are contained to the individual groups.
Although this comes at the cost of flexibly and dynamically
using kernel memory, one could argue that this flexibility
is not needed in settings like FaaS. Resources are typically
assigned in advance to the various customer’s processes to
allow partitioning the multi-tenant cloud machines.

Though, there are challenges when elevating BRR to the
whole operating system. System services also need to reclaim
resources once client processes terminate. This includes
network services closing sockets and memory services freeing
user memory. One possible solution could include some
interplay between OS services and the kernel to manage
reclamation time quotas. Alternatively, the controller could
allocate separate reclamation budgets at every service. To
keep the first prototype simple, this paper focuses on the
kernel-internal reclamations of kernel memory.

VII. RELATED WORK

To the best of our knowledge, there is no previous work about
a holistic approach to account for reclamation time and optimize
for it. Nevertheless, there are related works that partially
overlap with the goals of bounded resource reclamation.

Blackham et al. [7] analyze the worst-case execution time
of operations in the seL4 kernel. They make sure that non-
interruptible sections in the kernel are bounded — thus making
it feasible to swiftly react to interrupts. A similar timing analysis
would also aid BRR as it is important to estimate the latency
of individual reclamation operations. The analysis of Blackham
et al. does not put a bound on the latency of reclamations as a
whole, only on the individual non-interruptible sub-operations
of which there can be unboundedly many. This gap can be filled
with by the described design of bounded resource reclamation.

There are quite a few works that are concerned with real-time
memory management using dynamic garbage collection [8],
[9], [10]. This also entails reclaiming memory with predictable
latency to make it available for future allocations. For example,
Baker [8] designs a real-time garbage collector that reclaims
memory during subsequent allocations. Thus, system progress
is not stalled when releasing memory or during periodic scans.
Every operation is rather bounded by constant time. However,
it is unclear how this concept could be practically transferred

to operating systems. First, resources need to be handled by
a global garbage collection algorithm. This does not fit the
common design of manual resource management typically
found in OS kernels. Second, application performance would
depend on the amount of resource reclamations that have to
happen during allocation operations. Thus, the performance of,
e.g., FaaS functions would still depend on the behavior of the
previous tenant of the system — just with better predictable
time bounds. In contrast, bounded resource reclamation
eliminates this correlation by reclaiming all resources directly
on termination in bounded time.

The Thundering Herd attack by Mergendahl et al. [11] is
an example of why predictable system behavior is important.
Mergendahl et al. are concerned with attacks that use the
kernel in unusual ways to introduce unexpected timing
behavior in victim threads. The described attacks make use
of the inner workings of the seL4 scheduler implementation
to break temporal isolation. This allows many low-priority
threads to arbitrarily delay scheduling of a high-priority thead.

Furthermore, there are existing OS mechanisms to enforce
restrictions on resource consumptions. Both Linux’ cgroups and
L4Re’s factories allow processes to restrict (kernel) memory
consumption of children. However, simply restricting the
maximum allocation of memory does not serve as an adequate
proxy for limiting reclamation latency on termination. For
example, the cgroup owning shared memory is in-deterministic
when multiple cgroups are involved [6]. The factory abstraction
in the L4Re microkernel is only concerned with accounting
kernel memory. Thus, memory consumption in services on
behalf of applications needs to be handled separately. In
general, using existing memory accounting to enforce a bound
on reclamation latency is imprecise as the latency to reclaim
different objects varies. For example, reclaiming a single, large
allocation for a task stack might be a lot faster than reclaiming
individual, small semaphore objects. BRR offers a holistic
solution by accounting for reclamation latency in advance.

VIII. CONCLUSION AND FUTURE WORK

This paper has demonstrated the critical impact of resource
reclamation latency on system predictability. Our study
showed that uncontrolled reclamation can significantly prolong
process termination. The observed delays under Linux, L4Re,
and M3 underscore the need for proactive management
of reclamation behavior. Our proposed design, focused
on accounting and bounding reclamation latency, allows
for more reliable systems. Additionally, the possibility of
optimizing for bulk reclamations emerges with the potential
for orders-of-magnitude latency reductions.

The current implementation is only in a prototypical state
with lots of improvements for future work. We would like
our implementation to support the actual, precise accounting
of reclamation time and to work with more kinds of kernel
objects (especially memory mappings). In the end, BRR needs
to be expanded to the whole operating system, including
services, to fully bring predictable reclamation behavior to
real-world scenarios.



REFERENCES

[1] A. Lackorzynski and A. Warg, “Taming subsystems: Capabilities as
universal resource access control in L4,” in Proceedings of the Second
Workshop on Isolation and Integration in Embedded Systems, IIES ’09,
Nuremburg, Germany, March 31, 2009, M. Engel and J. Nolte, Eds.,
ACM, 2009, pp. 25–30. DOI: 10.1145/1519130.1519135. [Online].
Available: https://doi.org/10.1145/1519130.1519135.

[2] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. P. Fettweis,
“M3: A hardware/operating-system co-design to tame heterogeneous
manycores,” in Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6,
2016, T. Conte and Y. Zhou, Eds., ACM, 2016, pp. 189–203. DOI:
10.1145/2872362.2872371. [Online]. Available: https://doi.org/10.
1145/2872362.2872371.

[3] T. Miemietz et al., “A perfect fit? - towards containers on microker-
nels,” in Proceedings of the 10th International Workshop on Container
Technologies and Container Clouds, WOC 2024, Hong Kong, Hong
Kong, December 2-6, 2024, ACM, 2024, pp. 1–6. DOI: 10 .1145/
3702637 . 3702957. [Online]. Available: https : / / doi . org / 10 . 1145 /
3702637.3702957.

[4] S. Haas et al., “Trustworthy computing for O-RAN: security in a
latency-sensitive environment,” in IEEE Globecom 2022 Workshops,
Rio de Janeiro, Brazil, December 4-8, 2022, IEEE, 2022, pp. 826–831.
DOI: 10.1109/GCWKSHPS56602.2022.10008543. [Online]. Available:
https://doi.org/10.1109/GCWkshps56602.2022.10008543.

[5] N. L. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011. DOI: 10.1145/2024716.2024718.
[Online]. Available: https://doi.org/10.1145/2024716.2024718.

[6] T. Heo. “Control group v2,” The Linux Kernel documentation,
Accessed: Apr. 16, 2025. [Online]. Available: https: / /docs.kernel .
org/admin-guide/cgroup-v2.html.

[7] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and G.
Heiser, “Timing analysis of a protected operating system kernel,”
in Proceedings of the 32nd IEEE Real-Time Systems Symposium,
RTSS 2011, Vienna, Austria, November 29 - December 2, 2011, IEEE
Computer Society, 2011, pp. 339–348. DOI: 10.1109/RTSS.2011.38.
[Online]. Available: https://doi.org/10.1109/RTSS.2011.38.

[8] H. G. Baker Jr., “List processing in real time on a serial computer,”
Commun. ACM, vol. 21, no. 4, pp. 280–294, 1978. DOI: 10.1145/
359460.359470. [Online]. Available: https://doi.org/10.1145/359460.
359470.

[9] H. Lieberman and C. Hewitt, “A real-time garbage collector based on
the lifetimes of objects,” Commun. ACM, vol. 26, no. 6, pp. 419–429,
1983. DOI: 10.1145/358141.358147. [Online]. Available: https://doi.
org/10.1145/358141.358147.

[10] P. Cheng and G. E. Blelloch, “A parallel, real-time garbage collector,”
in Proceedings of the 2001 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Snowbird, Utah,
USA, June 20-22, 2001, M. Burke and M. L. Soffa, Eds., ACM,
2001, pp. 125–136. DOI: 10.1145/378795.378823. [Online]. Available:
https://doi.org/10.1145/378795.378823.

[11] S. Mergendahl, S. Jero, B. C. Ward, J. Furgala, G. Parmer, and
R. Skowyra, “The thundering herd: Amplifying kernel interference
to attack response times,” in 28th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2022, Milano, Italy,
May 4-6, 2022, IEEE, 2022, pp. 95–107. DOI: 10.1109/RTAS54340.
2022.00016. [Online]. Available: https://doi.org/10.1109/RTAS54340.
2022.00016.

https://doi.org/10.1145/1519130.1519135
https://doi.org/10.1145/1519130.1519135
https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1145/3702637.3702957
https://doi.org/10.1145/3702637.3702957
https://doi.org/10.1145/3702637.3702957
https://doi.org/10.1145/3702637.3702957
https://doi.org/10.1109/GCWKSHPS56602.2022.10008543
https://doi.org/10.1109/GCWkshps56602.2022.10008543
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://docs.kernel.org/admin-guide/cgroup-v2.html
https://docs.kernel.org/admin-guide/cgroup-v2.html
https://doi.org/10.1109/RTSS.2011.38
https://doi.org/10.1109/RTSS.2011.38
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/378795.378823
https://doi.org/10.1145/378795.378823
https://doi.org/10.1109/RTAS54340.2022.00016
https://doi.org/10.1109/RTAS54340.2022.00016
https://doi.org/10.1109/RTAS54340.2022.00016
https://doi.org/10.1109/RTAS54340.2022.00016

	Introduction
	Study of Reclamation Latency
	Design for Bounded Resource Reclamation
	Prototypical Implementation
	Evaluation
	Discussion
	Related Work
	Conclusion and Future Work

