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Abstract—HPC networking is often characterized by kernel
bypass, which is considered mandatory for large parallel and
distributed applications. However, kernel bypass comes at a
price because it breaks the traditional OS architecture, requiring
applications to use special APIs and limiting the OS’s control
over existing network connections. We make the case that kernel
bypass is not mandatory. Rather, high-performance networking
relies on multiple performance-improving techniques, with kernel
bypass even being detrimental to performance under specific
conditions. CoRD removes kernel bypass from RDMA networks,
primarily to enable efficient OS-level control over the RDMA
dataplane. This control can be used to enhance security or resource
allocation policies, and, as we demonstrate in one of the use
cases, can improve end-to-end application performance by up
to 10%. This architecture can enable Cloud-based distributed
RDMA applications and facilitate deployment of coupled HPC
applications.

Index Terms—RDMA, kernel bypass, high-performance net-
working, cloud computing, operating systems

I. INTRODUCTION

Cloud architectures are increasingly geared towards handling
large distributed workloads [1], [2], [3]. However, in a typical
Cloud deployment, only small partitions offer high-performance
networking [4], [5], [6], limiting where high-performance
applications could run. For such partitioning to disappear,
traditional and high-performance networks must converge into
a unified architecture. In this paper, we demonstrate how
operating systems (OSes) can aid in this integration by making
high-performance networks more accessible. We believe this
approach can significantly improve performance within Cloud
environments and interoperability in the HPC environment.

The main reason for the difference between traditional
and high-performance networks lies in the interfaces the OS
provides. A traditional OS supplies a “rich and robust” [7,
p. 228] abstraction layer between the applications and the
underlying hardware and networking to provide application
portability, implement resource scheduling, and enforce security
policies. High-performance networks, often synonymous to
Remote Direct Memory Access (RDMA) networks [8], [9]
or dataplane architectures [10], [11], subvert this layered OS
architecture by granting user-level applications direct access to
network devices (NICs). These applications bypass OS services
(including the network stack), employing their own NIC drivers
and managing most of the scheduling and resource allocation
themselves [11], [12]. This approach compels the OS to depend
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on the NIC to implement security (IOMMUs [13], [14] or
VLANs [15] are insufficient) and resource-sharing policies [16],
[17], [18]. As a result, the OS becomes nothing more than an
over-engineered bootloader [19], [20], [21], [22].

In response to the demand for flexibility and OS control over
high-performance network communication, the OS community
has proposed several architectures [23], [24], [25], [26], [27],
which enable fine-grained OS control over high-performance
communication. These novel architectures, however, are in-
compatible with both the traditional socket API [28] and with
widespread RDMA APIs, such as ibverbs [29]. And even
when such compatibility exists [17], [18], [30], [31], there
is a need for a translator service, which, while maintaining
backward compatibility, takes precious resources away from
the applications.

One of the fundamental assumptions behind kernel-bypass ar-
chitectures is a popular belief that system calls are performance
killers for high-performance systems [32], [33], [34], [35]. We
challenge this prevalent view and argue that kernel-bypass
is not indispensable for high-performance Cloud applications.
Inspired by these insights, we propose CoRD, a strategically
modified version of the traditional RDMA architecture that
routes the dataplane (i.e., send and receive operations) through
the OS kernel. This critical shift gives the kernel full control
over RDMA communication, enabling it to enforce security
policies [36], [37], provide virtualization [18], [38], manage
resources at a fine-granular level [17], [18], and enhance
application observability [39].

Unlike previous approaches [23], [24], [25], [26], [27],
we prioritize backward compatibility at the API and binary
levels, allowing existing network-sensitive applications to run
on CoRD without modifications. This property can simplify
the coupling of HPC applications [40], [41] by offloading
coordination and scheduling of shared resource access to the OS.
In a Cloud environment, where resource-sharing is omnipresent,
CoRD can facilitate the deployment of RDMA networks by
enabling RDMA-based microservices [42].

Our evaluation shows that CoRD is capable of maintaining
performance for large-scale applications while enabling flexible
OS-level control over the communication dataplane. This
enhanced control can improve security or resource allocation
policies and, as we demonstrate in one use case, improve end-
to-end application performance by up to 10%. Although we
observed a case of kernel bypass being significantly faster than
CoRD (up to 24%), the respective application also had other
requirements for its environment, like a noiseless network.
Such conditions are hard to meet in current shared cloud
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environments and may be hard to guarantee in future high-
performance Clouds. Therefore, Cloud applications will still
be better off if CoRD schedules and manages their resources
in a traditional way.

The main contributions of this paper are: 1) Design
and implementation of an OS-controlled RDMA dataplane
(Sections III and IV), 2) Analysis and evaluation of the
kernel-bypass role for high-performance applications (Sec-
tion V) and 3) Demonstration of use-case scenarios for RDMA
dataplane interception (Section VI).

II. RDMA PERFORMANCE

Compared to traditional socket-based networks, RDMA
networks rely on three properties for high-/performance com-
munication: fast dataplane, operation offloading, and noiseless
environment. Each property consists of a set of techniques,
which come with their own benefits and limitations and can
be employed independently of the rest. These techniques can
be combined in various ways, depending on the use case.

Enabling these techniques in RDMA networks requires a
special API [8], [24], [29] that is very different from the tradi-
tional socket-based API. The opposite is also true: not using a
performance-improving technique can make the programming
model simpler but also sacrifices performance [43].

A. Fast Dataplane

RDMA networks put special attention towards optimizing
dataplane operations (e.g. send and receive). One specific area
for optimization is processing latency, i.e. the delay between
the application issuing a message and the NIC transmitting
it, and the time between the NIC receiving a packet and the
application being able to process it. Compared to traditional
networks, the key techniques for a fast dataplane are kernel-
bypass, zero-copy, and polling.

Kernel-bypass removes the OS kernel as an intermediary
between applications and the NIC. The kernel maps NIC MMIO
registers to an application, which can then access the device
directly. This technique avoids the overhead of system calls,
context switches, and the kernel-level software stack. In return,
the application must come with its own user-level NIC drivers
and rely on the NIC for security and resource management.

Traditional read and write system calls copy the content
of messages between kernel and user memory. Zero-copy avoids
this overhead by enabling the NIC to access the application
memory directly. This technique is particularly crucial for large
messages, where the overhead of copying can be significant.
For zero-copy to work, the application memory needs to be
pinned to prevent the OS from moving or swapping out this
memory while the NIC can access it. Moreover, either the
NIC [29] or the application [11] needs to translate applications’
virtual addresses to physical addresses.

Finally, with polling, the application continuously checks
the NIC’s message queues to avoid the overhead of interrupt
processing. If the application requested an interrupt, the OS
would receive the interrupt and only then notify the application
about the message. The required context and privilege-level

switches add extra overhead. In other words, polling is a way
to bypass the OS kernel on the receiver’s side. Unfortunately,
polling is also very resource-intensive, as the application never
gives up the CPU, even without useful work to do.

B. Operation Offloading

RDMA networks strive to relieve the host CPU and offload
work to the NIC whose specialized hardware can perform
these operations faster and more efficiently. There exists a
wide range of operation offloadings, but the two main ones
are network stack offloading and one-sided RDMA operations.
These operations are additionally beneficial because they allow
the NIC to handle a network operation without interrupting
the host CPU.

RDMA operations, like RDMA read or RDMA write, run
directly on the NIC without involving the host CPU. For exam-
ple, Alice wants to send messages to Bob using send/receive
(two-sided) operations. Bob must ensure sufficient buffer space
is available for incoming messages before Alice’s messages
arrive. For that, Bob’s host CPU needs to regularly post receive
buffers to the NIC. If Bob has other important work to do, such
an obligation can interrupt his computation. With the RDMA
write (one-sided) operation, Bob’s host CPU is not involved
at all, but his RDMA NIC writes the message directly to the
designated memory area.

Network stack offloading moves the responsibility for
processing network packets from the host CPU (either in the
OS or the application) to the NIC. Traditionally, the OS kernel
splits application-issued messages into packets and tracks each
packet (e.g. for retransmission), whereas the NIC transfers the
packets over the network. Even when available, offloading in
traditional networks is relatively limited (e.g., checksums or
segmentation offloading). RDMA networks, on the other hand,
expose a message-level interface to the applications, allowing
the application to pass a message descriptor to the NIC, which
runs the packet-level protocol. In particular, RDMA NICs track
the state of outstanding messages and, in case of a network
error, retransmit any missing packets without involving the
host.

C. Noiseless Environment

Considering that the network latency in RDMA networks
can be as low as 1 µs [44], any disruption or delay in the
host system or within the network can significantly impact the
overall application performance. Driven by this observation,
HPC systems minimize contention for any system resource.
Any unexpected delays are considered noise and are avoided
at all costs.

Measures to reduce noise work at both compute node and
network levels. In compute nodes, the OS kernel is configured
to suppress non-essential interrupts, and applications pin each
thread to a dedicated CPU core to avert context switches. A
fixed CPU frequency prevents performance fluctuations, and
hyper-threading is disabled to eliminate contention for CPU
resources. Non-essential services are disabled, and the system
is configured to avoid swapping and paging [45].



RDMA networks rely on lossless flow control to prevent
packet loss and associated retransmission delays [9], [46].
Lossless connection-level flow control is reflected in the user-
level RDMA API by requiring the user to provide enough
buffer space to accommodate all incoming messages in advance.
Although a properly-configured RDMA network does not
lose messages due to congestion, network congestion is still
a problem [47]. Thus, in addition to flow control, RDMA
networks also employ congestion control algorithms to improve
network utilization [48]. Even then, Cloud HPC sites often
prefer to use dedicated networks to avoid contention from other
applications [4], [49].

D. RDMA in the Cloud

All the aforementioned techniques, when used together, can
deliver unparalleled network performance. However, due to
difficulties in deployability and manageability, RDMA networks
often forgo some techniques to achieve higher flexibility and
better resource utilization.

For example, Venkatesh et al. [50] forgo polling to save
energy. KRCORE [26] and LITE [27] reintroduce the kernel
into the dataplane to improve resource utilization. Our approach
is similar to KRCORE and LITE, but we focus on keeping the
interface backward compatible with existing RDMA networks.
This allows us to evaluate the impact of removing kernel-bypass
on unmodified large-scale real-world applications.

Operations offloading, too, is not always beneficial. First,
relying on a particular implementation of a hardware feature
creates vendor lock-in and has long been a concern in the TCP
world [51]. Major cloud providers begin offering their own
RDMA networks [5], [52], [53] with mutually incompatible
offloading capabilities. These offloading capabilities are also
incompatible to NVIDIA’s NICs [54], [55], which are state-
of-the-art in terms of performance. Second, even the standard
RDMA read and write operations can be detrimental to applica-
tion performance [56], [57], [58], because completing a single,
complex request may require multiple RDMA operations.

Finally, a truely noiseless network environment is often
not achievable. For example, physically separating RDMA
networks segments from the rest of the network to avoid
contention works only if the partitions are relatively small [4],
[49]. RDMA networks can share the fabric with traditional
networks, for example, by using the RoCE protocol [59], but
then the lossless flow control is much less efficient [48]. In
such environments, CoRD offers the OS an opportunity to
coordinate resource allocation better than low-level hardware-
centric approaches.

III. CONVERGED RDMA DATAPLANE

Our proposed architecture, CoRD, integrates OS-level control
into the high-performance user-level communication dataplane.
This section first compares socket- and RDMA-based commu-
nication (Fig. 1). Then, it explains how CoRD modifies the
RDMA dataplane to enable control over RDMA connections.
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Figure 1: Socket, RDMA, and CoRD dataplane. To send a
message over a socket, the application invokes the high-level
kernel network stack 1 . The kernel (a) or the application (b, c)
request the NIC driver to send the packet 3 , which copies the
data from pinned memory and sends it over the network 4 .

In a traditional socket-based API, as shown in Fig. 1a,
communication starts with the application making a system
call 1 (e.g., send) instructing the kernel to dispatch a message
over an existing connection (e.g., a TCP socket). Subsequently,
the kernel copies 2 the message content into NIC-accessible
(pinned) memory , splits the message into packets, and
prepares corresponding packet metadata. Finally, the kernel
triggers the NIC 3 to start the transmission of message
packets 4 . This entire operation is managed by a complex
kernel-level network stack, designed to maintain scalability
and improve resource utilization across a large number of user
applications. However, this design philosophy inadvertently
hampers network performance.

In contrast, RDMA networks (Fig. 1b) delegate a significant
part of control to the application, allowing it to manage
pinned memory and access the NIC directly 3 . The NIC
retrieves the message content directly from user memory 4 ,
thus bypassing the kernel. Note, that while this requires some
network stack functionality at the application level (including
a user-level NIC driver), a majority of responsibilities, such as
managing concurrent users, are offloaded to the NIC. Despite
the complexity added to the application, this architecture
ultimately yields the lowest possible communication latency.

The existing RDMA architectures expect applications to
access the NIC with the help of user-level RDMA drivers
(Fig. 1b), which are dynamically linked to the application. There
exist similar kernel-level RDMA drivers, which are mostly used
for fast distributed storage [60], [61]. CoRD modifies the user-
level RDMA architecture by prohibiting direct access to the
NIC. Instead, CoRD provides its own user-level RDMA driver,
which forwards data plane operations to the kernel-level RDMA
drivers 3 . From the application’s point of view, the RDMA
architecture remains the same (Fig. 1c).

Although CoRD forces each dataplane operation to go
through the kernel, processing inside the kernel is kept to
a minimum. In contrast to socket-based communication, CoRD
only permits the enforcement of lightweight policies (e.g.
for scheduling or security) to maintain its high network
performance. This limitation is insignificant, however, as CoRD
can afford to uphold simpler, more streamlined CoRD policies
with a complexity similar to that of eBPF programs [62].



CoRD allows policies powerful enough to implement QoS,
security, and isolation similarly to other dataplane interception
techniques [17], [18]. We showcase some exemplary CoRD
policies in Section VI. CoRD inevitably adds a constant per-
message latency from user-kernel switching. The overhead
from enforcing CoRD policies depends on the specifics of the
implemented functionality.

IV. IMPLEMENTATION

The goal of our prototype implementation is to measure the
cost of CoRD’s architecture, which we expect to be higher than
that of just a system call, but low enough to be tolerable for
RDMA application. For that, we modify the user- and kernel-
level mlx5 device drivers for NVIDIA’s ConnectX-series NICs.
These drivers are used by the ibverbs library [29], which is the
“narrow waist” of many high-performance user-level network
stacks [17], which use it either directly [57], [63], [64] or
through a higher-level API [65], [66], [67].

The ibverbs API defines control- and dataplane operations:
Control-plane operations set up communication; they regis-
ter device-accessible pinned memory, create communication
endpoints (queue pairs), etc. Data-plane operations initiate
message sending (ibv_post_send), post receive buffers
(ibv_post_recv), or perform a non-blocking check if any
of these operations have been completed (ibv_poll_cq).
Control-plane operations require kernel support, whereas
dataplane operations usually bypass the kernel. CoRD changes
the user-level dataplane operations by funneling them through
the kernel, so the OS can enforce policies.

To pass the dataplane operations through the kernel, we
reuse the existing ibverbs-mechanism used by control-plane
operations. This mechanism passes the operation parameters
through the ioctl system call for processing by the kernel
driver. To overcome Linux’s limit on the amount of data that
can be passed in a system call through the registers, the
ibverbs library serializes and deserializes the arguments
when invoking the kernel. These operations add to the system-
call overhead but are not performance critical for control-plane
operations. Importantly for CoRD, the ioctl code path allows
the OS to intercept control-plane ibverbs calls and thus enforce
security [36], [37], isolation [68], and resource management
policies [69].

CoRD extends this existing ioctl-based interface to also
pass arguments to dataplane operations. Now, to send or
receive a message the application makes an ioctl system call,
instead of calling into a user-level RDMA device driver. After
entering the kernel, the dataplane operation reaches the kernel-
level device driver, which normally provides high-performance
networking within the kernel [60], [61], for further processing.

We had to make only small changes to the kernel-level
control and data planes, because kernel- and user-level data-
planes have very similar implementations. The main difference
comes from how the kernel-level driver allocates memory, so
we enabled the kernel-level dataplane to work with user-level
ibverbs objects and allowed message transfer of message
buffers provided by user applications.

To simplify our prototype, we modified the implementation
of the user-accessible ibverbs objects. As a result, a CoRD-
enabled kernel can only create CoRD ibverbs objects, but
it cannot create regular kernel-bypass objects. In future work,
we plan to extend the CoRD kernel to support both CoRD and
regular kernel-bypass objects.

Overall, we added or modified ~250 lines in the kernel-
level driver and ~20 lines in the user-level driver. Despite
kernel interposition, the ibverbs API remains unchanged and
introduces no interrupts or asynchronous invocations on the
data plane. In other words, without CoRD policies, the only
overhead comes from crossing the user-kernel boundary and
passing the operation parameters.

Our implementation depends on the NIC being able to access
an application’s virtual memory as applications pass message
buffers to the NIC by virtual address. This feature is common
for high-performance NICs [29], [70], which, in contrast to
other approaches (e.g., io_uring [71]), relieves the kernel
from virtual-to-device address translations on the critical path.
If the application passes an invalid address, the NIC returns an
error but does not access any memory that was not previously
provided to the application by the kernel.

V. PERFORMANCE EVALUATION

Our goal is not only to simplify the usage of existing RDMA
applications in shared environments but also to enable existing
Cloud applications to adopt RDMA networks. However, in our
evaluation, we only study the performance of existing RDMA
microbenchmark and end-to-end applications after introducing
CoRD. We do not evaluate how non-RDMA applications benefit
from RDMA networks because we believe that the existing
works [72], [73], [74] already make a convincing case for us.
Therefore, we focus on CoRD’s performance impact in adverse
circumstances.

To demonstrate the flexibility of CoRD, we evaluate it with
two systems. First, Oracle, comprising eight BM.Optimized3.36
nodes in the Oracle Cloud, each with two hyperthreading-
enabled Intel 6354 18-core CPUs and 100Gbit/s NVIDIA
ConnectX-5 Ex RoCE NICs. The system runs vanilla Linux
6.2-rc7 with or without our patch to support CoRD in the
mlx5 driver. We disable Turbo Boost, pin all the benchmark
processes to dedicated cores, and set the CPU power governor
to the highest performance mode.

Our second target is the two-node Azure system deployed
in the Azure Cloud. We use virtualized HB120 instances
with two 64-core AMD EPYC 7V73X CPUs (only 120 cores
passed to VM) and virtualized 200Gbit/s NVIDIA ConnectX-
6 InfiniBand NICs. In both systems KPTI [75], [76], an
expensive kernel-level Meltdown attack [77] mitigation, is
disabled by the kernel because modern CPUs do not need
it. Specifically, because Azure’s CPUs are not vulnerable to
Meltdown. We run the benchmarks in the same way as on
the Oracle system, except for not disabling dynamic frequency
scaling due to the cloud provider policy.



Table I: Latency of point-to-point operations (expressed as
baseline + CoRD’s overhead) in µs on the Oracle system.

Size RC UD

Read Write Send Send

20 3.1+ 1.4 1.7+ 1.1 1.7+ 1.7 1.7+ 1.5
26 3.1+ 1.4 1.7+ 1.1 1.7+ 1.9 1.7+ 1.9
212 3.9+ 1.4 3.0+ 1.0 3.0+ 1.7 3.0+ 1.5
215 7.0+ 1.3 6.1+ 1.1 6.1+ 1.7 —
218 25.8+ 1.4 24.9+ 1.1 24.8+ 1.7 —
220 89.9+ 1.7 89.2+ 1.1 88.9+ 1.7 —

Table II: Throughput of point-to-point operations (expressed
as baseline / CoRD) in Gbit/s on the Oracle system.

Size RC UD

Read Write Send Send

20 0.04 / 0.01 0.04 / 0.01 0.04 / 0.01 0.04 / 0.01
26 2.6 / 0.7 2.6 / 0.7 2.7 / 0.7 2.6 / 0.6
212 94 / 43 98 / 43 98 / 43 98 / 37
215 98 / 98 98 / 98 98 / 98 —
218 98 / 98 98 / 98 98 / 98 —
220 98 / 98 98 / 98 98 / 98 —

A. Microbenchmarks

First, we measure the overhead CoRD adds to the point-
to-point latency, using the perftest 4.5 benchmark suite [78].
Out of several communication modes (transports) supported
by RDMA networks, we chose the two most popular ones:
Reliable Connection (RC) or Unreliable Datagram (UD). Like
TCP, RC is reliable, ordered, and connection-based; whereas
UD, akin to UDP, lacks ordering guarantees and retransmission
service but does not necessitate connection establishment. Both
RC and UD support two-sided Send/Receive communication,
while only RC supports one-sided RDMA Read/Write and
atomic operations. The message size ranges from 1B to 1MiB,
except for UD, which supports only up to 4KiB messages.
The latency overhead is the difference between the baseline
and CoRD-enabled communication.

Table I shows that CoRD adds a constant overhead to the
baseline latency independent of the message size. The overhead
is slightly different for different operations and ranges from
1.0 µs to 1.9 µs. In relative numbers, a send operation can
experience as much as 100% overhead when sending small
messages and as little as 1% for large messages.

The per-message overhead lowers the throughput, as mea-
sured by the perftest bandwidth benchmark (Table II). CoRD
exhibits low performance because transferring numerous small
messages is a CPU-bound task, and CoRD introduces additional
overhead on the CPU side. As a result, CoRD achieves
maximum throughput of 98Gbit/s only with 32KiB mes-
sages, whereas baseline RDMA communication reaches such
performance already with 4KiB messages.

For each message, CoRD adds overhead at the entry and
exit points of every dataplane operation. Therefore, sender
and receiver contribute to latency overhead independently.
Figure 2 illustrates how CoRD contributes to the absolute
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latency overhead on each side compared to bypass-to-bypass
communication when sending 4KiB messages. The trend is
similar for other message sizes.

When CoRD runs only on the sender, RDMA read has no
overhead because the sender’s CPU does not participate in the
operation. In contrast, with RDMA write, perftest uses two
writes to exchange data: one from the client to the server for
synchronization and another for the server to fetch the data
from the client. Except for RDMA read, enabling CoRD incurs
equal overhead on each side.

Constant overhead per message significantly reduces maxi-
mum throughput for large bursts of small messages. Figure 3
corroborates this statement by showing CoRD throughput
relative to baseline RDMA for different message sizes. On
the other hand, with larger messages, bandwidth degradation
becomes insignificant. This behaviour is similar for all types
of communication (RC/UD, Send/Read/Write) as the per-
message overhead is similar. Specifically, for 32KiB messages
exchanged using send operations, perftest measured ~370k
messages per second and only 1% bandwidth degradation.



Table III: Latency (baseline + CoRD’s overhead, µs) and
throughput (baseline / CoRD, Gbit/s) for RC operations on the
Azure system. The performance of Write is very similar to the
of Read. Send over UD is very similar to Send over RC.

Size Latency Throughput

Read Send Read Send

20 3.2+ 1.5 1.7+ 2.1 0.04/ 0.01 0.04/ 0.01
26 3.2+ 1.4 1.7+ 2.1 2.3 / 0.6 2.3 / 0.6
212 4.0+ 1.3 2.9+ 1.7 103 / 39 138 / 39
214 5.0+ 1.4 3.9+ 1.7 179 /136 196 /131
216 7.6+ 1.3 6.4+ 1.7 191 /192 198 /197
218 15.7+ 1.4 14.4+ 1.7 195 /194 198 /197
220 48.1+ 1.7 46.6+ 1.7 197 /197 198 /198

The Azure system exhibits similar behaviour (Table III),
except for a few minor differences: The latency variation is
higher as a direct result of enabled dynamic frequency scaling.
The per-message overhead is slightly larger, especially for
small messages, because the CoRD implementation we tested
on Azure lacked support for inline messages1, whereas baseline
supported them. Moreover, for some message sizes (e.g. 4KiB),
CoRD shows a higher relative throughput on Oracle than on
Azure because Azure’s network offers double the throughput,
making the constant per-message overhead more significant.
Nevertheless, bandwidth overhead becomes negligible for large
messages also on Azure (see Table III).

Overall, CoRD adds 1 µs to 1.7 µs of latency overhead
depending on the operation type. The results for both of our
systems (InfiniBand and RoCE) are similar and rather depend
on the CPU’s type and configuration, because CoRD adds work
on the CPU side. In relative terms, the overhead varies widely
from 1% to 100% depending on the message size, therefore
it is only possible to judge the viability of CoRD for a specific
application.

B. Collective Communication

In many cases, point-to-point operations serve as building
blocks for more complex collective communication operations.
A collective operation exchanges information among many
processes of a distributed application, sometimes aggregating
and processing the data during the operation. Theoretical LogP-
based models [79], [80], [81] predict that CPU overhead
accumulates proportionally to the number of point-to-point
operations along the longest chain of hops in a particular
operation. Therefore, it is essential to understand how CoRD
performs with such operations.

To study the performance of collective operations, we
measured the latency of MPI [67] collectives. MPI libraries
offer dozens of highly optimized collective operations and are
easy to scale for large numbers of communicating processes. We
used the OSU Micro-Benchmarks [82] 7.1-1, a popular MPI
microbenchmark suite, together with OpenMPI [83] version
4.1.5rc4, a popular open-source MPI library. Each run of

1Inline messages store the message content in the message descriptor instead
of a registered memory region, thus reducing pointer chasing on the NIC side.
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the benchmark executed an MPI operation with a specific
message size over 1000 iterations with 100 warm-up iterations.
We report the average latency and standard deviation from
3000 iterations, measured across three distinct runs.

Figure 4 compares the latency of MPI collective operations
with 1-byte operands that ran on 288 processes across 8 nodes
on the Oracle system. To amplify network effects, we disabled
shared memory communication between the processes running
on the same node. The communication intensity of operations
varies, with Reduce transferring the least amount of data, and
All-to-all transferring the most.

With CoRD, latency doubles for all presented operations
except All-to-all, which is on par with the baseline RDMA
communication. Considering CoRD incurs overhead multiple
times on the communication critical path, a naive extrapolation
of point-to-point overhead would predict higher latency than
we measured. This means much of CoRD’s overhead can be
masked when applied to complex communication patterns.

When looking at 1024-byte messages (see Fig. 5), CoRD
was very close to the baseline performance in two cases.
This effect is similar to point-to-point communication, where
CoRD’s overhead diminishes with larger message sizes. Further
investigation of larger message sizes (figure omitted due to
space constraints) shows that, starting from 16KiB operands,
CoRD catches up with baseline communication for virtually all
operations. Moreover, with the Gather operation (see Fig. 5),
CoRD outperformed the baseline. We attribute this anomalous
result to network congestion and elaborate on this issue more
in Section VI-C.



Overall, we have demonstrated that, despite relatively high
point-to-point overhead, CoRD’s performance does not degrade
with complex communication patterns. We consider our results
to be applicable for a cost-optimized Cloud-operator-run
RDMA network and expect CoRD to perform much worse
when scaled to hundreds of compute nodes on a flagship
supercomputer. Nevertheless, we demonstrate that in a very
typical case of having less than 1000 communication processes,
CoRD can match the performance of the baseline RDMA
network.

C. Real-world Applications

To estimate the effect on real-world applications, we mea-
sure the performance of several MPI applications using the
Open MPI library. For RDMA communication, Open MPI uses
the ibverbs library, which provides a low-level interface
to the InfiniBand network. We believe that MPI applications
serve as suitable benchmarks because they scale effectively
large numbers of processes and can fully utilize the network’s
potential. As a general example, we use the NAS Parallel
Benchmarks (NPB) [84], a popular MPI benchmark suite.
Gromacs [85], our second benchmark, is a molecular dynamics
simulation software known for its sensitivity to latency, making
it an extreme example and worst-case scenario for CoRD.

On the InfiniBand system (Azure), we compare communica-
tion over baseline RDMA, CoRD, and IPoIB. On the RoCE
system (Oracle), we compare communication over baseline
RDMA, CoRD, and TCP/IP. To amplify the influence of
the network, we prevent the MPI library from using shared
memory for communication. These results are pessimistic
for CoRD but highlight the differences better. We chose
IPoIB and TCP/IP for comparison because these protocols
can communicate using high-performance NICs (InfiniBand
and RoCE, respectively) while also offering fine-grained control
over dataplane operations, making them functionally equivalent
competitors to CoRD. Each NPB benchmark has limitations
on the number of processes allowed for a run, which in our
case ranged from 128 to 240 on Azure, from 256 to 278
on Oracle without hyperthreading, and from 512 to 576 on
Oracle with hyperthreading. Gromacs does not impose such
limitations, allowing us to utilize all available cores in each
system configuration.

When running the NPB benchmarks on Azure (see Fig. 6),
CoRD has nearly zero overhead over baseline kernel-bypass
communication whereas IPoIB is up to 2× slower. IPoIB is the
slowest with the IS (integer sorting) and SP (matrix factoriza-
tion) benchmarks. These two benchmarks are simultaneously
data-intensive (each process sends 72Gbit/s and 34Gbit/s,
respectively) and message-intensive (≈1300messages/second
per process). IPoIB implements a full-fledged TCP/IP software
stack running on top of InfiniBand, negating many of the
performance advantages high-performance networks offer. EP
(embarrassingly parallel), which communicates very little,
and CG (conjugate gradient), which communicates using few
large messages, see a slight performance boost with CoRD.
Similarly to CG, we observe CoRD marginally outperforming
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Figure 6: Runtime of NPB on Azure, relative to baseline.

30
.8

%

29
2.

0
%

1.
1

%

22
6.

3
%

0.
7

%

13
4.

8
%

3.
7

%

-9
.2

%

0

1

2

3

4

MEM PEP PEP-h RIB
Benchmark

R
el

at
iv

e
ru

nt
im

e

CoRD TCP

Figure 7: Runtime of Gromacs on Oracle. Annotations show the
runtime overhead of CoRD and TCP communication compared
to the baseline.

kernel bypass in large-message bandwidth microbenchmarks.
This behavior is due to baseline RDMA experiencing more
congestion than CoRD, a phenomenon that we elaborate on
in Section VI-C. Overall, our implementation of CoRD has
small or negligible overhead for the NPB benchmarks on both
systems.

To evaluate the performance impact of CoRD on real-
world applications, we measured the runtime of three Gromacs
benchmarks [86] on the Oracle system. Gromacs uses input files
to describe different molecular dynamics simulations. Figure 7
shows the relative runtime of the Gromacs runs with CoRD and
TCP/IP communication compared to the baseline kernel-bypass
version. In this experiment, TCP/IP communication shows up
to 4× slowdown, whereas CoRD has only 30% overhead in
the worst case.

The difference in performance between the benchmarks is
due to different problem sizes (Table IV): The MEM benchmark
has the smallest problem size, running only for 18 s. As a result,
MEM spends relatively more time communicating, sending on
average 56 000 packets per process and second. On the scale
of a node (72 processes), this results in 4 million packets per
second, or 34Gbit/s of data sent (1/3 of the NIC’s line rate).
Less communication-intensive benchmarks reduce the runtime
overhead to 1% to 3%.



Table IV: Packet rate (Ptks) and throughput (TP) of Gromacs
on the baseline Oracle configuration.

Per Process Per Node

Runtime Pkts TP Pkts TP
s k/s Mbit/s M/s Gbit/s

MEM 18 56.1 478 4 34
PEP 222 7.1 166 0.5 12
PEP-h 218 6.7 161 0.5 12
RIB 240 5.4 92 0.4 6.7

When measuring application benchmarks, we observed that
the overhead of CoRD still ranges wildly from 1% to 30%.
This range is much smaller than for the microbenchmarks,
and for most experiments it remained within the single-digit-
percent range. Our results also represent the worst-case scenario,
because we disabled shared memory communication, which is
the most efficient way to communicate between processes on
the same node.

VI. USE CASES

CoRD enables the OS to intercept and control RDMA
dataplane operations for various purposes. This section presents
three use cases for CoRD: a traffic monitoring tool, a rate
limiter, and a simple congestion control mechanism.

A. Traffic Monitoring

In traditional RDMA networks, the NIC is responsible for
sending/receiving packets and reporting statistics about the
traffic. However, a NIC typically reports only aggregated
statistics for all processes running on the same node. This
limitation makes it difficult to analyse and understand the
traffic patterns of individual processes or applications.

Some per-process traffic statistics are available through the
iproute2 tools [87]. Unfortunately, these statistics do not include
the number of bytes or packets sent. Applications may use the
ibv_read_counters API to query statistical information
on their traffic [88]. However, this API is designed for use by
the application itself, and the OS does not have easy access
to these statistics. Moreover, both approaches work only for
high-end NVIDIA NICs and not for NICs from other vendors.

To address this shortcoming, we added a Linux kernel trace-
point [89] to the ib_core driver right before it invokes the
device-specific function to send a message. Such a tracepoint
allows a user-defined function to be attached to a specific place
in the Linux kernel. When the tracepoint is not in use, the
overhead is virtually zero. We developed a simple user-level
service that uses the Aya [90] framework to attach an eBPF [62]
program to the newly defined tracepoint. This program records
the number of bytes and packets sent by each process.

Figure 8 shows the monitoring results from one of the four
nodes running the Gromacs benchmark with the MEM data
set and dynamic load balancing enabled. In total, our tool
observed 72 threads belonging to 36 different MPI processes.
Each MPI process has two threads: a main thread and an
asynchronous helper thread. The figure shows two groups
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Figure 8: The per-thread traffic of Gromacs is concentrated in
12 high-traffic and 24 low-traffic threads. The 36 asynchronous
MPI threads produce little to no traffic.

of main threads: one group with 12 high-traffic threads and
another group with 24 low-traffic threads. This separation aligns
with Gromacs’s architecture, which assigns processes to two
dedicated roles [85]. A sudden drop in traffic from the period
from 11 s to 21 s corresponds to work rebalancing among the
processes.

Compared to hardware-offloaded monitoring, our approach
can deploy arbitrary monitoring logic without modifying the
application. If necessary, we can attach eBPF programs to other
existing tracepoints or create ones. CoRD-based monitoring is
aware of high-level OS concepts, like processes and threads,
making it more flexible than hardware-offloaded monitoring.
Finally, CoRD is portable because it does not depend on any
specific hardware support.

B. Rate Limiting

When multiple applications share the same node, it can
be desirable to enforce a limit on the amount of traffic each
process can send at once. Existing RDMA solutions offer two
main approaches to rate limiting. In the first approach, the
application itself implements rate limiting by relying on the
InfiniBand verbs API [29] to enforce a per-flow maximum
packet rate. In the second approach, the OS employs hardware
virtualization to enforce rate limits [91].

The disadvantage of the first approach is that the OS has
no influence over what the application sets as the rate limit.
Therefore, it is hard for the OS to manage and coordinate
multiple applications running on the same node. The second
approach, on the other hand, is coarse-grained because it allows
only for a single limit per VM or application instance. Moreover,
similar to the traffic monitoring case, some rate-limiting features
are only available for advanced NVIDIA NICs [92].

In contrast, CoRD allows for a fine-grained, vendor-agnostic
rate-limiting implementation. To support this claim, we imple-
mented a straightforward rate-limiting mechanism as a CoRD
policy. Our rate limiter enforces a specific throughput limit at
the level of Linux cgroups [69]. This interface allows the OS
to enforce a limit on the traffic each process or process group
can send.
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Figure 9: Rate limiting on the Oracle system. Without rate-limiting (∞), the two groups of processes use the RDMA network
in an imbalanced manner (phases I and VII). CoRD allows the OS to impose rate limiting either on a per-process basis (x/P,
phases II–V) or on a per-cgroup basis (x/G, phases V and VI). With per-cgroup rate limiting, the throughput of individual
processes is noisy because our prototype implementation does not guarantee fairness.

For each cgroup, the rate limiter maintains a counter of the
number of bytes sent by all processes belonging to the cgroup
within a 200ms sliding window. If the process attempting to
send a new message is about to exceed the limit allocated
for its cgroup, the rate limiter puts the process to sleep for a
short period of time. The sleep time is calculated based on
the current throughput of the cgroup and the amount of data
the process is trying to send. The cgroup interface allows for
the creation of hierarchical resource limits, so the rate limiter
needs to ensure that the limit is enforced for every cgroup in
the hierarchy.

Previously, we stated that the policies must have minimal
overhead for CoRD to be competitive. In contrast to traffic
monitoring, the rate limiter has a latency overhead of around
300 ns, even when rate limiting is not enforced. We attribute
this overhead mainly to the requirement of grabbing a mutex to
access the cgroup data structure. We believe that using a faster
mutual exclusion mechanism would reduce this overhead, but
from our point of view, the convenience of the cgroup interface
outweighs the overhead.

To demonstrate how our rate limiter works, we conducted
an experiment on two Oracle Cloud nodes. Each node ran
18 instances of the ib_send_bw benchmark, split into two
groups of 9 processes. The benchmarks on one node were
sending 64KiB messages to the benchmarks on the other node.
A process in the first group (group A) sends messages over a
single queue pair (connection), whereas a process in the second
group (group B) sends messages over 64 queue pairs in parallel.
Every 10 s, each process reports its observed throughput.
Approximately every 180 s, we change the configuration of
the rate limiter to observe how the benchmarks react to the
change.

Figure 9a shows the aggregate throughput observed by each
group. The rate limiter changes configuration 6 times, creating
7 periods with different configurations. The benchmarks start

by sending at full speed (phase I) with no intervention from the
rate limiter. Processes in group B receive a disproportionate
share of the bandwidth because the NIC implements load
balancing on a per-queue-pair basis. The aggregate throughput
of all the processes is 98.4Gbit/s, just a little short of the
theoretical maximum of 100Gbit/s.

Next, we prioritize the processes in group A over those in
group B. To achieve this, we set the rate limit to 4Gbit/s
for each process in group B, so that group A can claim the
remaining available bandwidth. To set the rate limit for each
process in group B precisely, we created an individual cgroup
for each process. As a result, in phase II, processes in group A
receive approximately 6.9Gbit/s throughput. The aggregate
throughput of all processes remains the same as in phase I.

Phase III limits each process in group A to 6Gbit/s.
Considering that the aggregate throughput of all processes
is thus limited to 9 · 4Gbit/s + 9 · 6Gbit/s = 90Gbit/s, the
observed aggregate throughput also drops. Phase IV limits each
process in group A to 3Gbit/s and each process in group B
to 8Gbit/s. In all these cases, all the processes observe the
expected throughput.

In phase V, we moved all the group B processes to a single
cgroup and set the rate limit for this cgroup to 30Gbit/s.
Our current algorithm does not guarantee fairness among the
processes within the same cgroup. As a result, processes sharing
a cgroup may experience variation in observed throughput (see
Fig. 9b). A better algorithm would also provide fairness [93],
but rate limiting algorithms are beyond the scope of this paper.

In phase VI, we set the aggregate rate limit to 40Gbit/s
for group A and to 60Gbit/s for group B. In this case, most
of the processes within group A observe equal throughput, but
there is even more variation in group B. Again, we do not
guarantee fairness between the processes within one cgroup.
Finally, in phase VII, we remove the rate limit for all processes,
and the bandwidth distribution returns to the state of phase I.
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Figure 10: Reducing network congestion with CoRD

C. Congestion Control

The final use case demonstrates how CoRD can implement
RDMA congestion control. Hardware-level protocols like
DCQCN [48] rate limit the sender in response to congestion
by delaying send operations. We simulated this behaviour, by
adding a CoRD policy to delay the posting of new send requests.
To have a complete protocol, we would also need to implement
congestion sensing or dynamic send delay adjustment, which
we omitted for our experiment.

To test potential congestion control scenarios, we ran
Gromacs on the Oracle system and compared the performance
with and without CoRD. CoRD can delay the posting of new
send requests by a variable interval. Figure 10 shows Gromacs
with the RIB dataset running on 8 nodes with hyperthreading
enabled. Although the baseline RDMA configuration suffers
from congestion, CoRD still runs slower without adding a delay.
However, when adding a send delay to CoRD, the application
performance improves by up to 10%. This result suggests
that CoRD can implement congestion control for real-world
applications.

When Gromacs ran with the PEP and PEP-h datasets, we
observed no significant changes in the performance of the
application when adding a send delay. On the other hand,
when running Gromacs with the MEM dataset, adding any
send delay increased CoRD’s overhead even beyond the already
existing 30%. So, these mechanisms need to be able to sense
congestion and dynamically adjust the delay to be effective.

To understand how send delay affects network congestion,
we measured the latency of individual MPI collective operations.
These operations facilitate data exchange among multiple
processes of the same MPI application. To isolate the overhead
added by CoRD, we reimplemented the send delay in the user-
level InfiniBand verbs driver communicating using baseline
kernel-bypass.

Figure 11 shows the average latency of MPI Gather across
576 processes with a varying send delay. This operation gathers
the data supplied by each participating process at a designated
root process. The MPI library is responsible for establishing
a communication graph, which reduces latency and improves
network utilization.
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Figure 11: MPI Gather operation with varying send delay.
Even in a lossless network, delaying each send operation limits
each process’s throughput and reduces congestion measured
in CNP packets sent and ECN-marked packets received. Once
congestion disappears, higher send delays are detrimental to
latency.

We measure congestion by counting the average number
of Explicit Congestion Notification (ECN) marked packets
received by the NIC and Congestion Notification Packets (CNP)
sent by the NIC. The zero-send-delay case records up to
890 ECN-marked packets, 25 CNP packets, and 91 µs latency
per Gather operation, which is a clear sign of high congestion.
With a 4 µs send delay, the number of ECN-marked packets
drops to 15, the number of CNP packets drops to 0.5 (on
average), and the latency drops to 30 µs. Adding more delay
cannot reduce congestion further, resulting in an increased
Gather operation latency.

CoRD with zero send delay achieves 53 µs latency, which
is faster than the baseline kernel-bypass with zero send delay.
The latency achieved by CoRD is the closest to 6 µs send delay
implemented in the userspace for the baseline kernel, but it
would be wrong to conclude that CoRD adds that much latency.
CoRD adds latency before and after each dataplane operation,
which is not comparable to the user-level send delay.

Although it is faster than the baseline kernel without send
delays, CoRD is still slower than what is achievable with
the optimal send delay. This result suggests that CoRD can
implement RDMA congestion control, but also has low enough
overhead for having a window for useful send delay values.

A possible criticism of using CoRD for such a task is that
it is too slow to react timely to congestion events [94]. Our
results suggest that there are high-level sources of congestion,
for which CoRD is quick enough. This role becomes even
more important when applications on the same host fail to
coordinate their communication patterns, preventing NICs and
switches from alleviating congestion.

VII. DISCUSSION AND CONCLUSION

Modern cloud systems primarily rely on socket-based
networking to manage a myriad of distributed applications.
Key to this operation is the precise control over application
communication channels using tools such as Linux packet



filtering [95] or eBPF [62]. Despite persistent enhancements in
high-performance TCP/IP [96], [97], it still falls significantly
short of the performance of RDMA networks.

High-performance networking is diverse and complex [8],
[11], [25], [29], [98], so, unsurprisingly, there are no “one
size fits all” solutions [99]. Striving for optimal problem-
specific solutions, researchers have abandoned polling [50],
[100], zero-copy [99], [101], lossless congestion control [102],
[103], hardware offloading [10], [51], [104], [105], and one-
sided operations [56], [106], [107] to achieve higher flexibility
and resource utilization. Thus, forgoing performance-enhancing
features is not entirely new.

Nevertheless, the RDMA-networking community avoids
placing the OS kernel on the data path. Instead, existing work
adds another device to the path of a packet, either in the form
of dedicated CPU cores [17], [25], [27], [71], [108], [109] or
by offloading complex data-path interception logic to the NIC.
Such offloading requires either an expensive SmartNIC [110],
[111], [112], [113] or hardware modifications [43], [114], [115].

Some functionality — including the use cases we demon-
strated in Section VI — can also be implemented in the
application logic using, for example, based on user-level
tracepoints. Despite being better for performance, the OS cannot
use this approach to reliably enforce policies or coordinate
shared resource access among multiple applications running on
the same system (see Section VI-B). Moreover, coordinating
coherent behaviour among independent applications may turn
out to be infeasible in practice.

CoRD’s performance with small messages is a major
limitation. Regrettably, we cannot assess the severity of this
limitation in real-world scenarios due to limited research on
application characterization in this area. A study of the Mira
supercomputing system analyzed the volume of data sent by
point-to-point and collective MPI operations [116, Fig. 10
and 20]. Most MPI operations transmitted data ranging from
kilobytes to hundreds of kilobytes per operation. We measured
that GROMACS sends approximately 2KiB per message,
placing it on the lower end of this spectrum. Although some
applications do transmit very small messages, typical data sizes
fall within ranges where CoRD’s overhead remains modest.

We consider per-core message rate as the most important
application characteristic to ensure low overhead from CoRD.
For instance, if an application sends 100 000 messages per
core every second, and CoRD adds 1 µs overhead per message,
the application can suffer no more than 10% overhead.
Applications with complex user logic (e.g., GROMACS; unlike
ToR-switches) spend significant time computing, naturally
limiting the maximum per-core message rate. Based on the Mira
study [116], real-world per-core message rates are likely much
lower than our hypothetical example. Future high-performance
networks are also more likely to coincide with higher per-node
core counts, which should keep CoRD’s overhead the same,
but making multi-tenancy more relevant.

Our work is based on the idea that the problem with system
calls is not the cost of user-kernel transitions in hardware but
rather an obsolete and inefficient API; in this case, POSIX. This

idea aligns with the existing body of work [24], [26], [117],
[118], [119], and our results support the observation of kernel
bypass being dispensable. We propose a small incremental
change to the existing RDMA network architecture, which, in
the context of a Cloud environment, has a very small negative
performance impact but allows for a substantial increase in OS
control over network communication.

In the future, we strive for a smaller per-message overhead
and to incorporate more elaborate policies. Our early results
suggest that going below 1 µs is achievable. If successful, CoRD
can be applied in additional domains like high-performance
storage [120], [121], where APIs are built on similar concepts.
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