
MettEagle: Costs and Benefits of Implementing Containers on Microkernels

Till Miemietz† Viktor Reusch† Matthias Hille† Lars Wrenger∗ Jana Eisoldt† Jan Klötzke‡

Max Kurze♯ Adam Lackorzynski♯‡ Michael Roitzsch† Hermann Härtig†♯

†Barkhausen Institut, Germany ∗Leibniz-Universität Hannover, Germany
‡Kernkonzept GmbH, Germany ♯Technische Universität Dresden, Germany

Abstract
Today, many applications are hosted by cloud providers.

In order to isolate the workloads of different clients, cloud
enterprises mostly rely on containers rather than standard
processes, since the latter are able to exercise a lot of ambient
authority. Containers counter this deficiency by sandboxing
processes. To this end, they use dedicated security mechanisms
such as seccomp-bpf. However, these mechanisms add
complexity to the kernel and increase its attack surface, thus
prompting new security challenges.

Processes in microkernel-based systems do not have
ambient authority. Thus, they do not require additional security
mechanisms to build sandboxes. In this paper, we try to answer
the question whether a microkernel-based OS architecture en-
ables a leaner and more secure container infrastructure. Based
on a CVE analysis, we show that the conceptual simplicity of
containers on microkernels results in a better security posture
than that typically found on monolithic systems.

We furthermore demonstrate the practical feasibility of
implementing containers on state-of-the-art microkernels by
building MettEagle, a prototype container service running on
L4Re. We found that applications running in containers on
L4Re expose performance characteristics comparable to that
of containers on Linux for both synthetic and real-world bench-
marks. In some cases, the container implementation of L4Re
even outperforms Linux, accelerating container startup latency
and improving network performance.

1 Introduction

Currently, virtual machines (VMs) and containers are the
two prevalent mechanisms for isolating untrusted workloads
running on a shared system. Generally speaking, containers
are a more lightweight approach to isolation as they do not
attempt to emulate an entire computing platform. Instead
of spawning distinct operating system instances, multiple
containers running on the same host share a single kernel and
only expose separate instances of userland to applications.

This allows them to achieve runtime performance close to that
of the bare metal system [48]. Moreover, starting a container
is much faster than booting a virtual machine [42]. These
advantages made containers the premier choice for isolating
workloads in settings such as serverless computing [38].

Interestingly, when looking at containers from the perspec-
tive of an OS engineer, they are only little more than hardened
processes (or process groups) that are restricted in their
resource utilization through dedicated in-kernel mechanisms
such as cgroups or seccomp-bpf [1]. These facilities
however, add a lot of complexity to core OS abstractions. This
additional complexity in turn harms cross-container isolation
by exposing a larger in-kernel code base that is shared between
distrusting containers [4, 5].

In fact, the intricacies of implementing an isolation mecha-
nism equivalent to that of containers on traditional, monolithic
OSes largely stems from the fact that these architectures
do not adhere to the principle of least authority (PoLA)
by design. Hence, on such systems, the implementation of
containers needs to prevent applications from exercising
ambient authority that they should not have in the first place.
One example of this problem is the use of seccomp-bpf
to retroactively restrict the set of system calls (and their
parameters) that is available to a container. This does not
only add complexity to the kernel but also introduces a slight
performance penalty since the respective checks need to be
carried out at runtime [34]. Even though this overhead has
been reduced recently [2], it will never disappear completely.

Modern microkernel-based OS designs [35, 37], in contrast,
enforce PoLA by default. On such systems, processes have to
explicitly request access to any system service like drivers or
file systems instead of implicitly having the authority to use
them. As a consequence, implementing container-style isola-
tion on such platforms does not require additional resource con-
straining mechanisms as the OS itself provides strong compart-
mentalization of processes by default. Hence we argue, that on
a microkernel-based OS, the use of processes can provide better
isolation properties than containers on monolithic systems.

From a security perspective, a microkernel design can signif-

icantly decrease the amount of code that mutually distrusting
containers need to share since the core system that each process
has to rely on is small. Moreover, as all other system services
are implemented as separate processes in userspace, the trusted
computing base (TCB) of a container running on a microkernel
only includes services that it actually uses [30]. This is different
from monolithic approaches where kernel parts that are only
used by some containers contribute to the TCB of all clients run-
ning on the same machine. Consequently, microkernels enable
container implementations with an improved security posture.

However today, microkernel-based OS architectures are
mostly used in embedded systems with statically configured
workloads. First, this raises the question of how well micro-
kernel concepts scale to large hardware platforms – the type
of hardware that containers are usually deployed on. Second,
to the best of our knowledge, the performance implications
of using capability-based microkernels to host highly dynamic
workloads like serverless computing services have not been
studied so far.

In order to answer these questions and investigate the cost
and benefits of our concept for containers on microkernels, we
built a prototype container engine on top of L4Re [27], a state-
of-the-art microkernel-based OS. We show how to provide
container-grade isolation, including resource restriction and
the necessary system services on such a system. Following
a detailed discussion on the security properties of the resulting
approach, we analyze its performance for both microbench-
marks as well as in a function-as-a-service (FaaS) setting, using
the SeBS benchmark suite [16] as an evaluation platform.

In summary, this paper makes the following contributions:

• An analysis of what is needed to provide container-grade
isolation to applications (Section 2).

• The design (Section 3) and implementation (Section 4)
of a container-style isolation mechanism on L4Re, a
microkernel-based OS. This includes modifications of
L4Re to improve its performance when facing dynamic
workloads on server-grade hardware.

• A detailed evaluation of our approach from both a security
perspective (Section 5) as well as from a performance
angle (Section 6), with a particular focus on a comparison
to standard frameworks for lightweight virtualization on
Linux, namely runC and Firecracker.

2 Background

Containers or lightweight virtual machines are used for
isolating workloads in cloud environments. In the following
we will discuss their general properties and implementation
on monolithic OSes. Afterwards, we introduce L4Re and
its capability-based access-control mechanism which we
leverage for our secure container architecture.

2.1 Containers on a Monolithic OS
Broadly speaking, a container is an OS mechanism that virtu-
alizes the execution environment of applications while sharing
a single kernel. Examples for such facilities can be found on a
variety of operating systems such as BSD (Jails [33]), Solaris
(Zones [52]), and Linux [22]. Even though the exact imple-
mentation differs, containers on all platforms rely on three
common kernel mechanisms with respect to security: 1. Deny
access to unnecessary (kernel) interfaces. 2. For necessary
interfaces, the visibility of resources is restricted. 3. Where
resources have to be shared, resource accounting is enforced.

Interface Restrictions: As shown by Canella et al. [14],
many cloud applications indeed only require a fraction
of the rather large kernel interface exposed by monolithic
OS designs. Container implementations exploit this fact to
increase security by preventing a container from executing
certain system calls, thus reducing the attack surface of the
shared kernel. Current solutions like seccomp-bpf on Linux
are built on top of the Berkeley Packet Filter (BPF) [43] and
allow administrators to specify small filtering programs that
the kernel executes upon every system call of a container to
determine whether it adheres to the container’s security policy.

Visibility Restrictions: Containers typically impose
additional visibility restrictions on top of traditional processes.
By using kernel features like Linux’ namespaces, the
administrator is able to hide certain parts of the system from
applications running inside a container.

Within the scope of containers, visibility restrictions are ap-
plied e.g. to the file system by setting a separate root directory
using the chroot system call. Container implementations of-
ten use visibility restriction mechanisms to virtualize network
interfaces, process IDs, and mount points. Also, visibility
restriction measures assure that processes running inside a
container cannot communicate across container boundaries.

Resource Restrictions: For reasons of performance
isolation, operating systems also restrict the resource usage
of containers using dedicated mechanisms. One prominent
example of such resource constraining frameworks is Linux’
cgroups feature. Resource restriction frameworks for contain-
ers are often capable of organizing restrictions in a hierarchical
manner, allowing containers to pass on a fraction of their
already constrained resource budget [10]. Furthermore, they
can prioritize access to system resources, thus guaranteeing
a minimum share of a certain resource to each container.

Beyond these three core mechanisms, most implementa-
tions of containers also provide an ecosystem for managing
containerized applications. For instance on Linux, a high-level
container runtime like containerd [24] manages container
images and the resources that a container requests for

execution such as access to the network. The Open Container
Initiative (OCI) provides standards for the container runtime
interface and container images, which allows OCI-compliant
container managers to interact with any OCI-compliant
low-level container runtime. Low-level container runtimes
like runC [32] are responsible for setting up a container
by configuring the lightweight virtualization mechanisms
provided by the OS. After a container is launched by the
low-level container runtime, the container manager takes over
monitoring and life cycle management of the container.

2.2 Lightweight Virtual Machines

Virtual machines (VMs) provide a higher degree of isolation
than containers, as distrusting applications do not share a
kernel instance. Lightweight virtual machine implementations
like Firecracker [7] and Cloud Hypervisor [6] try to overcome
traditional performance shortcomings of VMs by optimizing
virtual machine monitors for use cases like serverless comput-
ing, thus providing performance close to that of containers [9].
For instance, reducing the hardware emulated by the
hypervisor is one way how Firecracker optimized its boot time.

The use of unikernels as a VM guest [42] is another way to
increase the performance of VMs, as unikernels run in a single
privilege level, saving context switches during execution.
Furthermore, a unikernel can strip unused parts from the OS
and userspace components, reducing the size of the TCB [54].
However, the missing isolation between the OS components
and the application inside a unikernel contradicts the objective
of a multi-layered security approach.

2.3 A Primer on the L4Re Microkernel OS

Being a microkernel, the L4Re kernel itself only implements
functionality that cannot be realized in userspace, such as
page table manipulation or mechanisms for inter-process
communication (IPC). The L4Re microkernel (also known
as the Fiasco kernel) represents each of the abstractions that
it offers to userspace processes as kernel objects. Prominent
examples for kernel objects are threads, IRQs, the scheduler
and IPC gates which represent an IPC channel to a process.

Every other component of the operating system such as the
memory management or device drivers run as processes in
userspace (dubbed tasks in L4Re). During bootup the L4Re
microkernel starts a root task called moe. Moe provides the
basic system abstractions of L4Re such as RAM allocation or
access to the read-only boot file system to other applications.
Moe allows defining quotas for resource allocations, thus being
able to constrain the resource consumption of application tasks.
After initialization, moe starts ned, a service task that loads
actual L4Re applications as specified by a startup script which
is a part of an L4Re boot image. The components of L4Re we
base our system on have single-threaded implementations.

2.4 Capabilities
L4Re, like most modern microkernel-based operating systems,
uses capabilities [18] for implementing access control. A
capability is an unforgeable token of authority, that grants the
possessing process the power of carrying out operations on
objects. For instance such an operation could be an IPC call
to another process.

A central feature of capability-based access control is the
absence of ambient authority. Tasks in L4Re start with no
authority, i.e., no capabilities by default. This is crucial for a
secure container infrastructure. To perform useful work and
interact with the system, tasks must be granted the required
capabilities explicitly. Other parts of the system cannot be
accessed and are in fact not even visible to said task. Sharing
object access is simple, as the owner of a capability is free
to grant it to other tasks (delegation) with equal or less rights
(for example, restricting read/write to read). Contrary to
delegation, the owner of a capability can revoke (i.e., void) it,
preventing its future use for authorization.

In L4Re, capabilities manifest as the permission to interact
with a certain kernel object. Depending on the type of the
respective object and the rights of the capability pointing
to it, such interactions may configure the CPU scheduler,
send an IPC message to another thread via an IPC gate,
or destroy a kernel object. With L4Re, a capability can be
delegated by sending it over an IPC gate connected to another
process, whereupon the kernel takes care of copying the
capability into the target process of the IPC. Similarly, the
owner of a capability can instruct the kernel to revoke it at any
time. Consequently, the L4Re microkernel is responsible for
maintaining the system’s security by shielding the capabilities
of all processes against unauthorized manipulation.

3 Containers on L4Re

This section describes how the functional features and the
security properties of Linux containers can be implemented
on a microkernel-based OS like L4Re. In the following, we
will use the term compartment for referring to an entity with
container-style isolation running on L4Re, differentiating it
from the Linux equivalent which we keep calling container.
We start with an overview of our architecture and exemplify the
interaction of the components by walking through the life cycle
of a compartment. Finally, we explain how the isolation mech-
anisms used by containers on Linux can be transcribed to a
microkernel-based OS, and whether these mechanisms already
exist in L4Re, need to be introduced, or can be omitted entirely.

3.1 L4Re Compartment Architecture
Figure 1 depicts the components of our microkernel-based
compartment system, which runs on top of the L4Re base
system. This base system contains the L4Re microkernel and

L4Re Microkernel

FS
(SPAFS)

Root Task (moe)

Net
(LUNA)

Compartment Service

Compart-
ment ...

Memory
Mgmt

(LSMM)

ROM FS
(PROMFS)

Compart-
ment

Compart-
ment

L4Re Base
System

Compartment
Environment

High-Level Runtime (Phlox)
MettEagle

Figure 1: A sketch of L4Re’s compartment architecture. Each
gray box represents an L4Re process (task).

the root task moe which manages initial memory allocations
to our services at system boot and provides other L4Re system
primitives. The compartment environment contains all services
required to run applications inside L4Re compartments. This
includes services for file systems, networking, and scalable
memory management.

The management of compartments on L4Re is handled by a
compartment engine called MettEagle. Similar to the container
stack on Linux, MettEagle comprises two subservices. The
compartment service sets up the OS mechanisms required for
running a compartment and manages the tasks associated with
it. In Linux terminology, the compartment service is similar
to a low-level container runtime like runC.

The compartment service is accompanied by a high-level
runtime called Phlox. Phlox provides a more abstract interface
to the compartment engine and implements a FaaS API that
allows to spawn compartments remotely via network. For
simplicity, we use the term compartment engine to refer to the
service pair consisting of both the compartment service and
the high-level runtime.

As common for microkernel architectures, each of the ser-
vices depicted in Figure 1 runs in a separate task, yielding
strong isolation between them as well as modularity. Note
however, that a microkernel design does neither reduce the com-
plexity of these services nor the effort of implementing them.

3.2 Life Cycle of a Compartment
Upon receiving a request for launching a compartment,
MettEagle first gathers the resources that the respective
compartment needs to run. In detail this means that Phlox
creates new sessions with each of the system services in charge
of managing the requested resources. For instance, this could
be a network or a file system service. As a result of creating a
new session with a system service, Phlox receives a capability
to a new IPC gate via which the compartment is going to
access the system service.

Now, Phlox instructs the compartment service to launch
the compartment. Along with this request, Phlox sends the

compartment service the set of capabilities gathered during the
resource allocation phase. As shown in Figure 2, the compart-
ment service delegates this set of capabilities to each task of the
new compartment. These initial capabilities allow the tasks of
a compartment to access the system services required for run-
ning an application. Now, the compartment service launches
the compartment’s tasks and monitors their exit status.

As the last step in the life cycle of a compartment, the
compartment service collects the artifacts left over from
the execution of a compartment. This includes closing
all remaining sessions allocated for a compartment by
revoking the corresponding capabilities. This in turn triggers
the deletion of the associated kernel objects and frees the
resources attached to them. MettEagle finally reports the
compartment’s exit status and optionally statistics on the
compute time consumed by a compartment.

3.3 Isolating Compartments
With the general operation of MettEagle clarified, we now
detail how microkernel-based compartments differ from
Linux’ containers.

Visibility Restrictions: Just as with Linux, at the core,
a compartment on L4Re consists of a set of processes. All
tasks of a compartment share a set of capabilities, hereinafter
called the compartment’s capabilities. These capabilities
define which parts of the system are visible to the tasks of the
compartment. Thus, by carefully choosing which capabilities
are delegated to a compartment, MettEagle can restrict the
system surface exposed to a compartment in a manner similar
to Linux’ namespaces. MettEagle can for instance constrain
the set of processes a compartment can communicate with,
or the network interfaces that are accessible to a compartment.

Another cornerstone for providing visibility restrictions
in MettEagle is the absence of globally shared resources and
identifiers on L4Re. For example, L4Re has no notion of PIDs
or shared memory keys. Instead in L4Re, the respective objects
are referred to by capabilities. As a consequence, MettEagle
does not need to implement the respective virtualization layers
found in visibility restriction mechanisms on monolithic
kernels.

In order for an application to easily discover the parts of
the system accessible to its compartment, we leverage L4Re’s
namespaces that allow a task to refer to a capability using
a name. Similar to namespaces on Linux, this abstraction
provides some form of virtualization as the compartment
engine can set the mapping of names to capabilities for each
compartment individually. For instance, two compartments
could both see a capability named “/usr”, but for each
compartment the capability linked to the name could grant
access to a different file system service. This mechanism
enables MettEagle to present different views of the system
to compartments. Each compartment on L4Re has access to

Network Service

Session Gate

Control Gate

L4Re Microkernel

Session IF Control IF

– send()
– recv()

– socket()

MettEagle Compartment

Resource Ctx Resource Ctx
Delegation

Figure 2: Example for an L4Re system service exposing
different interfaces (IF) in multiple sessions (white boxes). The
diamonds represent capabilities to the respective IPC gates.

a namespace containing its initial capabilities. Namespaces
can be extended at runtime by adding new mappings to them,
e.g. for capabilities that a compartment receives during its
lifetime. Contrary to Linux’ namespaces, which require to be
integrated for various resource types, L4Re’s implementation
uses capabilities — a generic OS mechanism — to provide
namespaces for any kind of resource.

System Call Restriction: Dedicated mechanisms for
restricting the system interface available to a compartment
(such as seccomp-bpf on Linux) are not required with L4Re.
Instead, system services limit the interface they offer to a
certain group of clients via dedicated IPC gates. This is pos-
sible because a system service in L4Re can securely identify a
client based on the IPC gate used by the client for sending mes-
sages [37]. As shown in Figure 2, system services often expose
a dedicated IPC gate for invoking control plane operations like
the creation of a new session. In the context of compartments,
only the compartment engine gets access to such gates, as
untrusted applications running inside a compartment must
not be able to spawn arbitrary sessions and thus get access to
arbitrary resources, e.g. by creating unrestricted sessions. The
compartments receive capabilities to session-specific gates
that merely expose data-plane operations such as sending or
receiving data from the network. This scheme allows for a
fine-grained limitation of the API accessible to a compartment.

Resource Budgets: The secure identification of clients fur-
thermore allows L4Re services to implement resource con-
straining mechanisms similar to Linux’ cgroups. Usually, sys-
tem services on L4Re create a dedicated IPC gate for each client
session. During a session creation request, the caller specifies
the resource restrictions of the new session and receives the
capability to a session-specific IPC gate in return. Depending
on the type of service, the session resource restrictions could
be a bandwidth limitation, a priority, or a limit for memory al-
locations. The system service reflects the resource restrictions
of a session by attaching a resource consumption context to the
session’s IPC gate as shown in Figure 2. Whenever a request
arrives via a certain gate, a service first decides on whether to

admit it by examining the remaining resource budget in the
resource consumption context of the corresponding IPC gate.

As explained in Section 3.2 the compartment engine takes
care of creating sessions with each system service required by a
compartment before launching it. While doing so, the compart-
ment engine adds a description of the respective resource limits
to each session creation request and delegates the resulting ca-
pabilities to the new compartment. Reusing a session for mul-
tiple compartments and thus letting them share a common re-
source limit is possible as well. Note that unlike with cgroups,
there is no uniform resource constraining mechanism across all
L4Re system services. Instead, our compartment engine pro-
vides a transparent way to translate a compartment’s resource
limits into service-specific session creation requests.

4 Implementing a Prototype Compartment
Infrastructure

This section describes the implementation aspects of
components necessary for supporting compartments on L4Re.

4.1 The L4Re Compartment Environment
One option to implement the services of the compartment
environment would be the use of a paravirtualized Linux
(L4Linux) VM running on top of the L4Re base system. L4Re
integrates such an L4Linux instance as a system service,
allowing the latter to donate functions like device drivers to
other L4Re applications [31].

In the context of compartments however, we chose to
reimplement the required system services as native L4Re
applications to avoid the drawback of the huge TCB that is
entangled with using a single Linux VM as a provider for
functionality. Mitigating this problem would be possible by
spawning a dedicated L4Linux VM per compartment, but
we discarded this approach as it would foil the benefits of
lightweight virtualization. We thus started from L4Re’s public
development repository1 and extended the L4Re base system
with the multiple components to enable compartments.

First, we wrote an in-memory file system service called
SPAFS. Unlike L4Re’s ROM FS, SPAFS has write support
and implements directories. These changes also required
extending L4Re’s VFS to support SPAFS functionality.

In order to make the MettEagle service accessible remotely,
we equipped L4Re with a native network stack. To this end, we
ported the driver for a 10 GBit Ethernet NIC from the Ixy driver
framework [20] to L4Re. We also designed and implemented
LUNA, a network service that multiplexes a NIC between
multiple applications and implements a simple UDP/IP stack.

For the purpose of demonstrating compartments with an end-
to-end benchmark, we integrated a simple FaaS agent into the
Phlox high-level runtime. Phlox allows remote users to execute

1https://github.com/kernkonzept

https://github.com/kernkonzept

code on an L4Re system. To do so, a function needs to be regis-
tered with MettEagle by uploading a code archive and assign-
ing a name to it. Later on, users can instruct MettEagle to exe-
cute this function with input sent over the network. MettEagle
sandboxes each function instance in a separate compartment.

Often, FaaS clients use interpreted languages for imple-
menting function code [16]. We thus ported python3 to L4Re
to offer some form of standardized and widely used runtime
that is also found with major cloud providers. Python3 for
L4Re was built using a novel cross-compiler that generates
L4Re executables from standard Linux source packages.

Lastly, we implemented parallelized versions of both moe’s
memory management (called LSMM) and its ROM FS (dubbed
PROMFS) to increase the performance of L4Re on large ma-
chines. To this extent, we ported the LLFree page frame alloca-
tor [55] to L4Re and wrapped it in a user-level service in charge
of managing the majority of the system’s memory. The use of
both LSMM and PROMFS is transparent to compartments, letting
them act as a refinement of selected services usually offered
directly by moe. We also enabled moe to run on multiple cores,
avoiding cross-core IPC when interacting with it. As L4Re im-
plements cross-core IPC synchronously using inter-processor
interrupts (IPIs), this modification increases the overall system
performance. However, unlike with LSMM and PROMFS, the in-
ternals of moe are still serialized and protected by a single lock.

4.2 Implementing Compartment Restrictions

As pointed out in Section 3, MettEagle implements visibility
restrictions and virtualization by providing a minimal set
of capabilities to compartments. If a compartment requires
networking, MettEagle spawns a dedicated session with LUNA
and passes the resulting capability to the compartment. LUNA
sessions are bound to a specific address upon creation, forcing
the compartment to use a fixed network endpoint.

For each compartment, MettEagle spawns a separate file
system instance for data that the respective compartment
needs to modify. In the future, this could be optimized by
implementing overlay file systems. Read-only files (e.g., the
python binary for executing the scripts of function) are hosted
in a file system shared between all compartments.

Resource restrictions are implemented using quotas. In
the current implementation, MettEagle can configure limits
on resources like CPU allocation, memory consumption,
or network bandwidth for each compartment. The concrete
resource restriction mechanism is implemented in the system
service that manages a resource. For instance, the scheduler
in the L4Re microkernel allows to configure the set of CPU
cores the threads of a task can use. MettEagle leverages
this mechanism to restrict the CPU core allocation of a
compartment according to a user-defined policy.

4.3 Lessons Learned

When implementing MettEagle, we came across a number
of performance issues in the implementation of L4Re. We
describe selected issues here which we consider generally
insightful for the development of microkernel-based OSes.

Callbacks and Resource Pools: It turned out that L4Re’s
policy of having only a single reply capability limits perfor-
mance. As the implicit reply capability of a thread voids when
receiving the next IPC message, a server thread in L4Re can
only serve one client at a time. Thus, each request arriving at
the compartment service requires spawning a new thread for
the execution and monitoring of a compartment. We avoided
this overhead by using a callback mechanism. Upon invoking
the compartment service, a client specifies a capability to an
IPC gate to which the service communicates the result of the
operation. The client then waits for messages on this gate to
receive an answer from the compartment service.

Resource Reclamation on Critical Path: We observed that
unmap (i.e., capability revocation) operations dramatically
slow down the system when occurring on the critical path. The
reason for this is the RCU-based implementation of the L4Re
kernel. Threads revoking a capability can be blocked for an
entire scheduling tick (10 ms by default) to ensure that a safe
time point for deleting a kernel object is reached. Consequently,
we implemented the compartment service and the auxiliary
system services in a way to never carry out revocations on the
hot path. We mitigated this issue by reusing system resources.
For example, in the compartment service, instead of spawning
new threads for monitoring the exit status of a compartment,
we deployed thread pools to avoid the recurring overhead
of spawning and deleting monitoring threads. Likewise, we
carried out deletion operations in dedicated threads that do
not block the actual service interfaces.

Locking of Capability Data Structures: We noticed a scal-
ability bottleneck in map and unmap operations (i.e., capability
delegation and revocation). For a delegation, the task structures
of the source and destination task were locked, preventing
parallel mapping from one task to multiple other tasks. We
removed the lock for the source task due to the fact that the af-
fected capabilities are already locked in the kernel’s capability
data structures. A similar optimization could be done for the
unmap operation. However, even with these optimizations map
and unmap do not scale well for highly parallel workloads, re-
quiring further improvements. This demonstrates that even on
a microkernel, sophisticated fine-grained locking strategies are
needed to provide good performance for parallel workloads.

Component of MettEagle SLOC

L4Re kernel 41,406
Sigma0 (root pager) 1,249
Moe (root task) 4,810
Ned (system loader) 2,870
IO (PCI driver) 22,012

LSMM (parallelized memory manager) 4,289
PROMFS (parallelized boot FS) 780
SPAFS (file system) 501
LUNA (NIC driver & UDP stack) 8,735
Compartment Service 1,793
Phlox (FaaS launcher) 826

Σ 89,271

Table 1: TCB size of MettEagle container infrastructure.

Component of Linux SLOC

Linux kernel v6.7.4 (including ramfs) 1,454,290
NIC driver module 31,675

containerd 922,901
runc 290,946

Σ 2,699,812

Table 2: TCB size of Linux container infrastructure.

5 Security Evaluation

To the best of our knowledge, there is no hard and precise
metric on the trustworthiness of a computing base. First, by the
very nature of it, one does not know how many undiscovered
security bugs are present in a given system. Second, it is
hard to judge how many of these security bugs would be
(partially) mitigated by the isolation architecture of a given
platform. And third, the real-world security posture of a code
base also depends on the activeness of development and the
thoroughness with which bugs are investigated.

Because of these difficulties, we decided on using two
proxy metrics as evidence that a container infrastructure
based on a microkernel is more secure compared to Linux
implementations. We provide a rough estimate of overall TCB
size by counting lines of code and a vulnerability study based
on past CVEs. At the end of this chapter we furthermore give
insights on how a microkernel-based container architecture
can mitigate timing-based attacks.

5.1 Trusted Computing Base Comparison

Table 1 and Table 2 list the TCB sizes of the MettEagle and
Linux container implementations. We show source lines
of code (SLOC, generated using SLOCCount [53]) as an

established proxy metric for TCB complexity. Although
SLOC does not directly measure the likelihood of code vul-
nerabilities, it gives an order-of-magnitude impression of the
relative differences between the two systems. A significantly
smaller number of code lines indicates that a software project
might contain less bugs and it might be easier to uncover bugs
as there are fewer moving parts. For our approach, we list the
L4Re kernel and the userspace components sigma0, moe, ned,
and IO as fundamental L4Re services. The network service
LUNA, the SPAFS file system, and both MettEagle services
constitute new components developed for this paper. On the
Linux side, a kernel 6.7.4 was measured, limited to those C
files actually contributing to the running kernel binary. In
addition, the NIC driver module is listed. Contrary to L4Re,
these components all run in kernel mode. We also mention the
two pieces of container infrastructure containerd and runC
(Go code counted using cloc [17]), although caveats apply as
these components clearly offer more functionality compared
to our research prototype. However, splitting that functionality
in multiple isolated components, where only some are part
of the core infrastructure TCB, may be possible.

In general, the microkernel implementation runs less code in
CPU privileged mode compared to Linux. The small size of the
kernel makes it easier to reason about it as part of a certification
process. For instance, L4Re is certified according to both secu-
rity (EAL4+ [13], SECRET level by the the German Federal
Office for Information Security [12]) and safety (ASIL B [26])
standards. Outside the kernel, microkernel-based systems
benefit from the absence of an all-powerful root account, and
capability-based access control which encourages a system
design following the principle of least authority.

5.2 Vulnerability Study

The small TCB size and privilege-reduced components of
MettEagle should result in a better security posture. To
demonstrate this point, we conducted a study of existing
vulnerabilities in container infrastructure on Linux. Our ap-
proach is inspired by Biggs et al. [11]. We evaluated Common
Vulnerabilities and Exposures (CVEs) collected by NIST [46],
which describe known cybersecurity vulnerabilities in present
and past software versions and assign vulnerability scores. The
scoring follows the Common Vulnerability Scoring System
(CVSS) [3], ranging from 0 (low) to 10 (critical).

To find relevant CVEs, we searched the NIST database for
the terms ‘linux kernel seccomp’, ‘bpf’, ‘ebpf’, ‘linux kernel
namespace’, and ‘linux kernel cgroups’. We limit our study to
isolation compromises between containers, which we consider
to be the highest impact vulnerabilities. The most prominent
avenue are severe kernel-level exploits, so we filter our search
results for Linux kernel exploits with high (CVSS 7.0–8.9)
and critical (CVSS 9.0–10) scores according to CVSS scoring
system v3.1.

The resulting list of 33 vulnerabilities is shown in Ta-

CVE Cat. Eval. CVE Cat. Eval. CVE Cat. Eval.

CVE-2023-39191 sc FM CVE-2021-4197 cg PM CVE-2017-18509 ns FM
CVE-2023-35001 ns PM CVE-2021-3600 sc FM CVE-2017-18367 sc FM
CVE-2023-31248 ns PM CVE-2021-3493 ns PM CVE-2017-17450 ns N
CVE-2022-34918 ns PM CVE-2020-25220 cg PM CVE-2017-17448 ns N
CVE-2022-32250 ns PM CVE-2019-11815 ns N CVE-2016-4805 ns PM
CVE-2022-30594 sc FM CVE-2019-10639 ns PM CVE-2016-2853 ns PM
CVE-2022-24122 ns N CVE-2019-9893 sc FM CVE-2016-1576 ns PM
CVE-2022-1055 ns FM CVE-2019-2054 sc FM CVE-2015-1328 ns PM
CVE-2022-0492 cg PM CVE-2018-16884 ns PM CVE-2015-8709 ns FM
CVE-2022-0185 ns PM CVE-2018-18955 ns FM CVE-2014-1733 sc FM
CVE-2021-4204 sc FM CVE-2017-1000111 ns PM CVE-2011-2189 ns N

Table 3: List of CVEs classified by category (Cat.) and evaluation (Eval.). The categories consist of seccomp and / or eBPF (sc),
namespaces (ns) and cgroups (cg) on Linux. The evaluation is marked as FM (fully mitigated), PM (partially mitigated), and
N (not mitigated).

ble 3. This number may seem small, but these are potential
high-severity exploits as they directly affect the Linux
kernel. Mistakes in the userspace container infrastructure
may contribute additional vulnerabilities, but these are not
considered here as our FaaS runtime is not feature-comparable
to the Linux implementation. For the 33 vulnerabilities
considered, we categorize our findings the following way:
Fully Mitigated by MettEagle (FM): We do not see a
possibility how a similar exploit could be constructed on our
microkernel-based system.
Partially Mitigated by MettEagle (PM): If a similar imple-
mentation mistake is made, a similar vulnerability may exist
in our system. However, immediate, total container-isolation
compromise would not occur.
Not Mitigated by MettEagle (N): Our system would be
affected the same way as the Linux system. In the following,
we will discuss some sample vulnerabilities individually.

5.2.1 seccomp-bpf

Seccomp-bpf uses the extended Berkeley Packet Filter
(eBPF), to restrict available system calls at kernel level [1].
With eBPF being a code interpreter at kernel level and
seccomp-bpf using eBPF to express its filter rules, security
issues can arise from flaws in either seccomp-bpf itself
or the underlying eBPF. MettEagle does not require such
filtering mechanisms. Only interfaces, for which capabilities
are granted are visible to a container. To bypass this access
control, the capability implementation itself would need to
be compromised, which is part of the microkernel. While
implementation bugs in the capability management may exist,
we consider these less likely due to the lower complexity com-
pared to a complete code interpreter and checking mechanism
as required for seccomp-bpf. To substantiate this claim we
gathered the SLOC count for the BPF directory in the Linux
source. We counted 50,200 lines of code which is more than

our entire microkernel (41,406 SLOC). While the SLOC of
the BPF directory includes BPF debugging tools in addition to
the eBPF interpreter and checker, we note that the microkernel
also includes much more than the capability management.
We found six CVEs directly related to seccomp-bpf and two
CVEs related to eBPF in the Linux kernel. We argue that all of
them are fully mitigated by MettEagle as the capability system
provides seccomp-bpf functionality.

5.2.2 namespaces

We found 22 CVEs related to Linux namespaces. Out of these,
we classified four as fully mitigated by MettEagle, 13 as par-
tially mitigated, and five as not mitigated. Two more CVEs are
actually related to cgroups and are therefore included in Sec-
tion 5.2.3. As an example, we consider CVE-2018-18955 to
be fully mitigated by MettEagle. It describes a vulnerability in
the implementation of namespace restrictions, allowing privi-
lege escalation via mishandling of nested user namespaces. In
L4Re, resource access is enforced by capabilities, so such an
escalation can only occur by compromising the capability sys-
tem itself. Other vulnerabilities are only partially mitigated. An
example is CVE-2018-16884, a vulnerability in the Linux ker-
nel’s NFS41+ subsystem, in which NFS41+ shares are simul-
taneously mounted in different network namespaces. We con-
sider this to be a bug in the NFS component, causing it to mis-
configure the isolation afforded by namespaces. Such miscon-
figurations by a resource provider component like NFS can oc-
cur in MettEagle as well. However, this specific CVE on Linux
causes memory corruption and privilege escalation in the ker-
nel. On MettEagle, such a mistake would only compromise a
userspace component and thus does not immediately allow con-
tainers to access each other’s memory. Inter-container isolation
on MettEagle still holds, thus our ranking as partially mitigated.

CVE-2022-24122 is an example of the third category, not
mitigated. It describes a use-after-free bug in the implemen-

tation of unprivileged user namespaces. This could lead to
compromise of the Linux kernel. Equivalently, the L4Re could
contain a memory bug in the code for capability management,
compromising the kernel. However, the smaller size and
certification of L4Re suggest that these kinds of bugs are less
likely to occur.

5.2.3 cgroups

We found three CVEs related to Linux cgroups. These can
all be partially mitigated by MettEagle. CVE-2022-0492 for
instance describes an exploit, where a container can escalate
privileges and bypass namespace isolation due to a flaw
in a cgroups feature, allowing to execute arbitrary code
with root privileges. In MettEagle, resource restrictions are
implemented by resource contexts in userspace components.
As these components may exhibit similar implementation
flaws, resource restrictions may be equally evadable. However,
such a compromise would only affect a single resource and
would not result in breaking the kernel or inter-container
memory isolation due to root privilege escalation as there is
no all-powerful root on a capability-based OS.

5.3 Timing-Based Attacks

In this section, we discuss classes of security problems
that are related to time, which are underrepresented in the
CVE analysis. These issues include performance-related
denial-of-service and timing side-channel attacks. In general,
these problems can occur when an attacker and a victim share
some state in a system for which timing properties can change
based on the behavior of tenants.

One example of such an attack is KernelSnitch [41]. This
attack can leak process information by observing the variance
in access time to Linux kernel data structures. This variance in
access time is due to the variable occupancy of such structures
depending on the behavior of other processes. Similarly, Patel
et al. [47] use this correlation to attack the performance of
victim processes. They strategically trigger worst-case execu-
tion time of operations on kernel data structures. The attack
described by Mergendahl et al. [44] targets a different, but also
shared, component, the scheduler. The authors discovered that
a low-priority adversary can arbitrarily delay a specific schedul-
ing instance of an attacked thread by exploiting non-constant
operation latency in scheduling data structures on seL4.

There are also shared data structures in L4Re, like the
scheduler or capability inheritance trees. Consequently, similar
attacks might also exist for L4Re. However, two properties
of L4Re make it more resilient to these kinds of attacks. First,
the L4Re kernel is real-time capable. Thus, many kernel oper-
ations are guaranteed to have bounded execution time, which
reduces the likelihood of cross-process timing influences.
Second, the microkernel approach offers fewer opportunities
for such attacks than traditional systems as the amount of data

structures that applications inevitably share can be reduced
by careful system design, e.g., by using a separate instance of
each system service per compartment. A downside of such mit-
igation strategies is their increased memory demand. However,
the extent of this overhead is to be evaluated in future studies.

The idea of using separate system service instances for each
container can also be extended to the kernel itself. For example,
Ge et al. [25] implement temporal isolation of applications
by running them in fully cloned kernel instances. Thus, we
believe that the architecture of MettEagle can provide a
better resilience against timing-based attacks compared to
Linux-based approaches.

6 Performance Evaluation

In the following, we compare the implementation of compart-
ments on L4Re with standard solutions for lightweight virtu-
alization from a performance perspective. As we want to focus
on the bare OS mechanisms, i.e. the isolation and virtualization
of containers, we did not deploy warm start optimizations
such as provisioning of standby containers with pre-initialized
runtimes. In our evaluation we answer the following questions:

• What is the startup time of compartments on L4Re
compared to their Linux counterparts?

• Is it possible to build I/O services on L4Re with a
performance competitive to monolithic systems?

• What is the end-to-end performance of an application
benchmark using standard runtimes running in L4Re
compartments?

As a comparison for L4Re compartments, we measured
Linux stock processes, runC [32], and Kata Containers [23]
with Firecracker [7]. While Linux processes do not guaran-
tee container-grade security properties, they represent an
optimal baseline with respect to performance. RunC is the
OCI’s reference implementation for a low-level container
runtime on Linux. It deploys the aforementioned Linux
mechanisms like seccomp-bpf, cgroups, and namespaces
to create sandboxed execution environments. Firecracker is
a lightweight VM framework that builds on top of KVM. It
is used with cloud providers like AWS. In our setup, both runC
and Firecracker use containerd [24] as high-level container
runtime. To integrate Firecracker in a containerd-based system
we used Kata Containers [23] as a backend.

6.1 System Setup
All measurements were done on two identical dual-socket
servers that are equipped with two Intel Xeon Platinum 8358
CPUs (32 cores per CPU) and 500 GiB of main memory each.
For all benchmarks, we disabled both hyperthreading (SMT)
and temporary overclocking (TurboBoost). We furthermore

set the CPU’s pstate configuration to maximum performance
mode. Additionally, the servers both feature a 10 Gbit (Intel
82599 / Intel X540) Ethernet NIC.

The results for benchmark setups running on Linux were
recorded using kernel version 6.7.4, runC version 1.1.10,
containerd version 1.7.9 and Kata version 3.3.0 with a
small patch to enable the measurement of startup times in
Firecracker. As SPAFS currently lacks a disk backend, we used
in-memory file systems on all platforms.

6.2 Container Startup Latency

First, we measured the startup latency of a container. In this
benchmark, the containers started consist of a single process
and do nothing but recording a timestamp directly after boot-
ing. For runC the startup latency reported includes the setup
of cgroups, seccomp filters, and file systems. To measure
best-case performance, we set empty seccomp filters. For Kata
Containers with Firecracker we measure the time from starting
the microVM until the container inside prints its first message.
To ensure a fair comparison, meta operations for spawning
a compartment on L4Re, such as creating a new session with
the MettEagle service, contribute to the startup latency.

Figure 3 shows the cumulative distribution function (CDF)
of container cold start latency when starting multiple instances
in parallel. The benchmark launches N containers at once
and then waits for all containers to terminate before starting
the next iteration. Note that in practice, many workloads are
less extreme with regards to concurrency and rather launch
containers in a staggered fashion, making the results shown
in Figure 3 an estimation of worst-case performance.

Linux processes have an almost constant startup time,
independent of the number of processes spawned in parallel
(roughly 200 µs). Similarly, Kata Containers remain constant
in their startup latency, albeit at a higher level, as the setup
of a VM is more costly than launching a process. On L4Re,
it takes 1 ms to start a container on an empty and idle system
(N = 1). This startup latency gradually increases when more
containers are launched in parallel peaking at 100 ms for 64
parallel launches. With runC, it takes around 70 ms to start
a single container. Like with L4Re compartments, this number
grows with increasing parallelism, reaching up to 200 ms
when starting 64 containers in parallel.

The difference between the cold start latency of a Linux
process and an L4Re compartment for N = 1 largely stems
from the fact that L4Re loads two binaries when starting a task.
Due to the implementation of L4Re’s memory management,
a task always starts with executing a common helper binary.
This helper runs in the first thread of a task and in turn loads
the binary of the actual application, effectively doubling the
startup overhead. Note however, that this procedure is not
intrinsic to a microkernel OS and could be optimized e.g. by
running the helper’s code directly in the application threads.

The reasons for the growing startup latency of L4Re

compartments when facing increased parallelism are rooted in
system components not optimized for parallel workloads. We
verified that the increase in startup latency is not a consequence
of growing IPC latency. However, the L4Re kernel uses
coarse-grained locking on its internal data structures which
affects the performance of carrying out capability delegation
and revocation operations in parallel, which occur a lot when
spawning a compartment. A similar issue can be found with
moe, which uses a single lock to protect its internals. While
LSMM and PROMFS parallelize the memory management and
the boot file system, moe is still needed for creating objects
like scheduling quotas, causing another bottleneck.

In addition to our previous benchmark, Figure 4 shows
the startup latency of a single container as a function of idle
containers that are present in the system. In this context
idle means that all threads of the respective containers are
blocked. The container whose startup time is measured and
the idle containers are not started in parallel. Figure 4 thus
gives insight into whether the management data structures
of a specific container engine or OS themselves become a
bottleneck when many containers are present. The results of
the benchmark show that on all platforms, the number of idle
containers does not significantly impact their startup latency.

6.3 I/O Performance
To evaluate I/O performance, we compare the network
performance available to L4Re compartments to that of Linux
processes and containers. We measured the latency of a UDP-
based ping-pong benchmark over a 10 GiB/s Ethernet interface.
The remote host that was pinged ran Linux, while the latency
was recorded on the respective platform. On all platforms the
latency was roughly the same with an average value of 40 µs.

Figure 5 shows the bandwidth achieved using multiple sock-
ets in parallel. As expected, Linux and runC perform similarly
as they use the same network stack. With a low degree of
parallelism, Linux achieves a higher bandwidth than L4Re
(900 MiB/s vs. 350 MiB/s) since L4Re does not implement
advanced NIC features such as receive side scaling, and all
driver processing is done on a single core, which is also used by
the first thread of the benchmark. With increasing parallelism
and thus more threads sending traffic from different cores, this
effect diminishes. While L4Re was able to achieve throughput
at line rate using many sockets, Linux performance decreased
when using the NIC in parallel. Our efforts to tune Linux’ net-
work stack did not significantly improve its performance. This
is surprising as a bandwidth test using iperf [21] achieved line
rate throughput for many parallel TCP connections but yielded
results similar to our custom benchmark when using UDP.

6.4 Application Benchmark
We chose SeBS [16], a client for benchmarking serverless
execution environments, to simulate an application workload.

100 102 104
0

1
N = 1

100 102 104

N = 2

100 102 104

N = 8

100 102 104

N = 32

100 102 104

N = 64

Time [ms]

CD
F

Linux Process runC Kata+FC L4Re

Figure 3: Cumulative distribution function of the container startup latency when launching N containers in parallel. The leftmost
subplot (N = 1) shows the startup latency of a single container on an empty system.

1 2 4 8 16 32 64 128 256 384
No. of sleeping background tasks

100

101

102

Av
g.

 st
ar

tu
p

tim
e

of
sin

gl
e

ta
sk

 [m
s]

Linux Process
runC

Kata+FC
L4Re

Figure 4: Average startup latency of a single container as
function of the number of idle containers present in the system.

1 2 4 8 12 16 20 24 28 32
Number of Threads

0
250
500
750

1000
1250

Ba
nd

wi
dt

h
[M

iB
/s

]

Linux Process
runC
L4Re

Figure 5: Bandwidth for transmitting data over a 10 GBit
Ethernet interface (using 1472 B UDP packets) as a function
of the number of parallel data streams.

SeBS deploys a set of benchmarks written in python to
benchmark a FaaS server running on a remote machine.
To avoid performance advantages for L4Re due to missing
functionality, we implemented service similar to MettEagle’s
FaaS agent on Linux. This custom FaaS agent executes the
benchmarks as a process, a container, or a Kata Container
using a Firecracker backend respectively.

The use of a python-based benchmark yields multiple
insights: First, it demonstrates that L4Re is capable of running
a standardized runtime. This allows for executing unmodified
code written for a platform like Linux on L4Re, giving a
hint on how to deploy existing applications in compartments.
Second, python is a program that makes heavy use of OS
services. During startup, python interacts with dozens of files

and performs a lot of memory allocation and deallocation. Due
to their intrinsic communication overhead, microkernel OSes
are known to have performance deficits for such operations.
Hence, from a microkernel perspective, the use of a python
benchmark approximates a worst-case example with respect
to performance, allowing us to explore L4Re’s limits.

In the following, we present results for a subset of the SeBS
benchmark suite. We omitted benchmarks for uploading data
to cloud storage, as this workload does not relate to our work.
Also, we refrained from porting both the pytorch machine
learning library and squiggle, a python library for DNA
visualization to L4Re. Both benchmarks are compute-heavy
and thus do not exercise the operating system. Lastly, we also
had to omit an FFMPEG benchmark since it assumed support
for the fork system call which does not exist on L4Re. In
the end, we evaluated benchmarks for executing an empty
python function, HTML manipulation, file compression, and
several graph processing algorithms, whose dependencies
were ported to L4Re.

Whenever possible, we ran the SeBS benchmarks with both
a standard problem size as well as with a tiny problem size.
While the tiny size is too small to represent a real-world use
case, it provides us with an approximation for the runtime
initialization overhead introduced by python, which differs
for each benchmark due to a different set of python modules
being loaded. The empty function and the file compression
benchmark do not offer a configurable problem size.

Figure 6 depicts the latency for sequentially executing
the SeBS benchmark. For all benchmarks except ZIP, the
end-to-end performance of L4Re compartments is at most 15%
worse than that of runC. When running the HTML benchmark,
L4Re was 10% faster than runC. The right subplot reveals
that the pure execution time spent in python (execution
time of python code with module loading, excluding the
startup latency of the core interpreter) is higher with L4Re
compartments than on any other platform. However, the fast
startup latency of compartments levels out this disadvantage,
leading to a comparable end-to-end latency of function
execution. For all benchmarks, the end-to-end latency for Kata
was the highest which we attribute to the slower startup of

Em
pty

HTM
L (

Tin
y)

HTM
L ZIP

Ra
nk

 (T
iny

)
Ra

nk

Tre
e (

Tin
y) Tre

e

Se
arc

h (
Tin

y)

Se
arc

h

Benchmark

0

500

1000

Ti
m

e
[m

s]

End-to-End

Em
pty

HTM
L (

Tin
y)

HTM
L ZIP

Ra
nk

 (T
iny

)
Ra

nk

Tre
e (

Tin
y) Tre

e

Se
arc

h (
Tin

y)

Se
arc

h

Benchmark

0

200

400

600

0.
3

1.
4

1.
6

2.
8

Function Execution

Linux Process
runC
Kata+FC
L4Re

Figure 6: Median latency for sequential execution of the SeBS serverless benchmark. The left subfigure depicts end-to-end latency
as observed by the client, while the right subfigure shows the execution time in python. Benchmarks run with the tiny size are
marked by the Tiny suffix. The whiskers show the 5th and 95th percentile, respectively.

the VM and the fact that the container images Kata is copying
into the VM upon initialization are much larger for a python
benchmark than those used in the microbenchmark.

Interestingly, the absolute difference in execution time
between L4Re and the other platforms is the same for both
benchmark sizes, regardless of the benchmark type. For
instance, the latency difference between running the page rank
benchmark (Rank) in L4Re compartments and runC is around
45 ms for both the tiny benchmark size (graph with 10 nodes)
and the standard size (graph with 10,000 nodes). Since the
benchmark function script itself loads several modules and this
time is included in the function execution latency, it is likely
that the performance disadvantage of L4Re is caused by a
slower initialization of python modules. This in turn indicates
that the execution of python code on L4Re is not slow per se.

While investigating the numbers for python on L4Re, it
turned out that L4Re’s file system performance is much worse
compared to Linux. For instance, a single call to stat takes
around 4 µs on L4Re, but only 460 ns on Linux. This roughly
tenfold performance disadvantage also applies to other
file-related operations such as open or read. As even running
an empty python script involves hundreds of calls to these
functions, L4Re’s shortcomings in file system performance
strongly influence the benchmark as a whole. This also
explains the weakness of L4Re in the ZIP benchmark, which
executes many file operations also after the initialization phase.

Lastly, Figure 7 shows the results for running the SeBS
benchmark in burst mode. In this mode, the client triggers
16 function invocations in parallel, leading to the parallel
execution of 16 container instances with python on the server
side. In general, all platforms performed worse than in the
sequential setting. Comparing runC and L4Re, the end-to-end
latency for an empty function and for the HTML benchmark is
again similar. The ZIP and the graph processing benchmarks,
however, take one to two times longer on L4Re than on runC.
Yet again, the performance deficits are not caused by the

compartment mechanism itself, but rather by the execution
of the python code. However, L4Re consistently outperforms
Kata containers.

As with the sequential pattern of the SeBS benchmarks, our
file system implementation accounts for a large share of the
performance deficits of L4Re compared to runC. The increase
in function execution latency of the graph benchmarks (rank,
tree, and search) is caused by the dynamic loading of shared
objects required by the python scripts. Surprisingly, loading
shared objects from within different tasks in parallel appears
to slow this procedure as a whole. The exact reason for this
is still subject to investigation.

7 Discussion

As the performance evaluation in Section 6 has shown, the
implementation of containers on microkernels is feasible.
Also on large machines, a microkernel-based container
framework is able to provide performance competitive to
standard solutions for most workloads. While the microkernel
architecture introduces some intrinsic overhead, we believe
that implementation optimizations could further improve
the performance of L4Re compartments significantly. For
example, L4Re’s file system overhead could be reduced by
deploying a file system design similar to approaches used with
persistent memory where most file operations are implemented
as accesses to shared memory instead of IPC [15].

Also, the FaaS agent of MettEagle currently lacks warm
start optimizations [8, 19] found in current production-grade
lightweight virtualization solutions. We do not see conceptual
limitations that would prevent the adaptation of these opti-
mizations with the compartment framework of L4Re. In fact,
microkernels conceptually offer means of optimization even
beyond those of monolithic kernels. On a microkernel-based
system, different compartments could be using separate

Em
pty

HTM
L (

Tin
y)

HTM
L ZIP

Ra
nk

 (T
iny

)
Ra

nk

Tre
e (

Tin
y) Tre

e

Se
arc

h (
Tin

y)

Se
arc

h

Benchmark

0

1000

2000

Ti
m

e
[m

s]

End-to-End

Em
pty

HTM
L (

Tin
y)

HTM
L ZIP

Ra
nk

 (T
iny

)
Ra

nk

Tre
e (

Tin
y) Tre

e

Se
arc

h (
Tin

y)

Se
arc

h

Benchmark

0

200

400

600

0.
3

1.
4

1.
6

3.
2

Function Execution

Linux Process
runC
Kata+FC
L4Re

Figure 7: Median latency for starting 16 functions of each SeBS benchmark in parallel. The left subfigure shows end-to-end latency
as recorded at the client. The right subfigure depicts the pure execution time in python. Benchmarks run with the tiny size are
marked with a corresponding suffix. The whiskers denote the 5th and 95th percentile. The whiskers for Kata+FC in the left subplot
extend to values between 3000 and 4000 ms but have been cropped to improve readability of the plot.

instances of system services such as storage or network
stacks. Each instance could be tuned to its specific container
workload, offering bespoke interfaces and abstractions. We
did not explore such optimizations in MettEagle, but its overall
architecture can be adapted to support such container-specific
service instances.

In terms of interfaces, MettEagle currently does not support
the execution of compartments loaded from OCI-compliant im-
ages. With an effort to enhance L4Re’s POSIX Compatibility
Layer, there are no fundamental limitations that prevent sup-
porting OCI images on L4Re. However, this requires a lot of
implementation and standardization effort, as OCI containers
rely on many Linux-specific features like certain sysfs files.

Lastly, we believe that the findings of this paper could also
be transferred to other microkernel platforms. For instance
implementing containers on seL4 would work similarly on
a conceptual level and grant additional security benefits as
the seL4 kernel is formally verified [35]. The researchers
developing seL4 also showed that their system is able to pro-
vide protection against a variety of timing-based side-channel
attacks [28], which is of particular concern when running con-
tainers of mutually distrusting clients on the same hardware.

8 Related Work

The emergence of microservices motivated research for
optimizing lightweight virtualization with respect to perfor-
mance and security. For container-based systems, Cntr [51]
introduced a mechanism for dynamically adding rarely
used tools to production container images, reducing their
size and deployment time. On the security side, dedicated
interest groups work on hardening containers on Linux [40].
Additionally, chestnut [14] allows for automatically generating
seccomp-bpf filters from application binaries, only granting

access to system calls the application needs. Many such Linux-
related container-hardening techniques become superfluous
with MettEagle because a capability-based approach like
L4Re promotes adherence to the principle of least authority.

Nakata et al. proposed to mitigate attacks exploiting the
weaker security guarantees of containers by transplanting
Linux containers across different OS types, thus thwarting
attacks that only work when running on specific kernels [45].
The same reasoning applies to running containers on L4Re.

BlackBox [29] implements secure container execution
on an untrusted operating system. Containers are shielded
against the operating system using virtualization and system
call sanitization. Although BlackBox achieves a small TCB
for confidentiality, the otherwise large, untrusted operating
system needs to be relied on to guarantee availability. The
same applies to MettEagle, albeit with a much smaller TCB
contributing to availability.

In pursuit of increasing the security of lightweight virtual-
ization, lightweight VMs gained traction. Shen et al. used a
library OS as a guest operating system running in lightweight
VMs, increasing their performance by saving mode and con-
text switches in the guest [49]. Their approach also reduced
the interface between the guest OS and the hypervisor, shrink-
ing the attack surface of the latter. For frameworks like Kata,
Li et al. proposed runD [39], a set of optimizations for re-
ducing the performance impact of container isolation mecha-
nisms like cgroups when an application is already isolated in
a lightweight VM. Manco et al. demonstrated the use of uniker-
nels together with carefully designed VM infrastructure, yield-
ing startup times and application performance even better than
that of containers on Linux [42]. We believe that MettEagle
also offers a high degree of isolation, like VMs do. The attack
surface between containers and the microkernel is far smaller
than under a monolith, like Linux. But in contrast to unikernel-
based VMs, containers in MettEagle have native access to

operating system features like multithreading for performance
and address-space-based compartmentalization for security.

Lastly, Koller and Williams argue that FaaS applications
are less dependent on the Linux environment than traditional
applications [36]. As an example, Szekely et al. required little
effort to port FaaS applications to their new σOS API [50]. We
argue in a similar way that porting real-world FaaS code to
MettEagle will be manageable and not hinder adoption.

9 Conclusion

MettEagle has demonstrated the feasibility of implementing
containers on the L4Re microkernel. Due to the fundamental
security benefits of microkernels, our container design awards
a more robust security posture compared to containers on
Linux. While Linux needs to implement additional restriction
mechanisms for providing container-grade isolation to pro-
cesses, such mechanisms are either not needed or conceptually
much simpler on a capability-based microkernel, since it
fully isolates processes by default. We have demonstrated
this security advantage with a study of past CVEs, many of
which are mitigated on L4Re because the attacked restriction
mechanisms are not present.

Further, we have shown that the simplicity of microkernel-
based systems can even result in improved performance.
Although some performance deficiencies remain, these are
mostly caused by implementation issues rather than being in-
herent to the microkernel-based design. While we applied only
limited optimizations for server-grade workloads to L4Re, we
still achieve raw container startup times outperforming Linux
containers. With these results, we believe a microkernel-based
cloud infrastructure is worth developing further, as the security
benefits are apparent and performance is competitive.

Acknowledgments

We would like to thank our shepherd, Yuvraj Patel, and the
anonymous reviewers of SOSP’24 and OSDI’25 for their
helpful suggestions. This research was funded by the German
Research Council DFG through grants 502457159 (FOSSIL)
and 501887536 (ParPerOS). The project was furthermore
partially supported by the German federal ministry of research,
technology, and space (BMFTR) within the MANNHEIM
CeCaS project.

References

[1] Seccomp BPF (SECure COMPuting with
filters) — the linux kernel documentation.
https://www.kernel.org/doc/html/v4.18/
userspace-api/seccomp_filter.html, August
2018. [Online; last accessed on November 28, 2024].

[2] New seccomp mode aims to improve performance.
https://lore.kernel.org/linux-security-mod
ule/c22a6c3cefc2412cad00ae14c1371711@huawe
i.com/t/, 2020. [Online; last accessed on November
28, 2024].

[3] CVSS v3.1 specification document. https://www.fi
rst.org/cvss/v3.1/specification-document,
August 2021. [Online; last accessed on November 28,
2024].

[4] NVD — CVE-2022-0492. https://nvd.nist.gov
/vuln/detail/CVE-2022-0492, 2022. [Online; last
accessed on November 28, 2024].

[5] NVD — CVE-2022-30594. https://nvd.nist.gov
/vuln/detail/CVE-2022-30594, 2022. [Online; last
accessed on November 28, 2024].

[6] Cloud Hypervisor: A virtual machine monitor for
modern cloud workloads. https://github.com/clo
ud-hypervisor/cloud-hypervisor, 2024. [Online;
last accessed on November 28, 2024].

[7] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka,
and Diana-Maria Popa. Firecracker: Lightweight
virtualization for serverless applications. In 17th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2020, Santa Clara, CA,
USA, February 25-27, 2020, pages 419–434. USENIX
Association, 2020. URL https://www.usenix.org
/conference/nsdi20/presentation/agache.

[8] Mohamed Alzayat, Jonathan Mace, Peter Druschel,
and Deepak Garg. Groundhog: Efficient request
isolation in FaaS. In Proceedings of the Eighteenth
European Conference on Computer Systems, EuroSys
2023, Rome, Italy, May 8-12, 2023, pages 398–415.
ACM, 2023. doi: 10.1145/3552326.3567503. URL
https://doi.org/10.1145/3552326.3567503.

[9] Anjali, Tyler Caraza-Harter, and Michael M. Swift.
Blending containers and virtual machines: a study of
firecracker and gVisor. In Proceedings of the 16th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’20, page 101–113.
Association for Computing Machinery, 2020. ISBN
9781450375542. doi: 10.1145/3381052.3381315. URL
https://doi.org/10.1145/3381052.3381315.

[10] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul.
Resource containers: A new facility for resource
management in server systems. In Proceedings
of the Third USENIX Symposium on Operating
Systems Design and Implementation (OSDI), New
Orleans, Louisiana, USA, February 22-25, 1999,

https://www.kernel.org/doc/html/v4.18/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.18/userspace-api/seccomp_filter.html
https://lore.kernel.org/linux-security-module/c22a6c3cefc2412cad00ae14c1371711@huawei.com/t/
https://lore.kernel.org/linux-security-module/c22a6c3cefc2412cad00ae14c1371711@huawei.com/t/
https://lore.kernel.org/linux-security-module/c22a6c3cefc2412cad00ae14c1371711@huawei.com/t/
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://nvd.nist.gov/vuln/detail/CVE-2022-0492
https://nvd.nist.gov/vuln/detail/CVE-2022-0492
https://nvd.nist.gov/vuln/detail/CVE-2022-30594
https://nvd.nist.gov/vuln/detail/CVE-2022-30594
https://github.com/cloud-hypervisor/cloud-hypervisor
https://github.com/cloud-hypervisor/cloud-hypervisor
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3552326.3567503
https://doi.org/10.1145/3381052.3381315

pages 45–58. USENIX Association, 1999. URL
https://dl.acm.org/citation.cfm?id=296810.

[11] Simon Biggs, Damon Lee, and Gernot Heiser.
The jury is in: Monolithic OS design is flawed:
Microkernel-based designs improve security. In
Proceedings of the 9th Asia-Pacific Workshop on
Systems, APSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery. ISBN
9781450360067. doi: 10.1145/3265723.3265733. URL
https://doi.org/10.1145/3265723.3265733.

[12] BSI. BSI-Schrift 7164: Liste der zugelasse-
nen IT-Sicherheitsprodukte und -systeme.
https://www.bsi.bund.de/SharedDocs/Zul
assung/DE/Produkte/L4Re_Secure_Separation_
Kernel_VS_BSI-VSA-10624.html, . [Online; last
accessed on November 28, 2024; in German].

[13] BSI. BSI-DSZ-CC-1177-2025. h t t p s :
//www.bsi.bund.de/SharedDocs/Zertifika
te_CC/CC/Betriebssysteme/1177.html, . [Online;
last accessed on April 16, 2025].

[14] Claudio Canella, Mario Werner, Daniel Gruss, and
Michael Schwarz. Automating seccomp filter gen-
eration for linux applications. In CCSW@CCS

’21: Proceedings of the 2021 on Cloud Comput-
ing Security Workshop, Virtual Event, Republic of
Korea, 15 November 2021, pages 139–151. ACM,
2021. doi: 10.1145/3474123.3486762. URL
https://doi.org/10.1145/3474123.3486762.

[15] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu
Shu. Scalable persistent memory file system with
kernel-userspace collaboration. In Marcos K. Aguilera
and Gala Yadgar, editors, 19th USENIX Conference on
File and Storage Technologies, FAST 2021, February
23-25, 2021, pages 81–95. USENIX Association, 2021.
URL https://www.usenix.org/conference/fast
21/presentation/chen-youmin.

[16] Marcin Copik, Grzegorz Kwasniewski, Maciej
Besta, Michal Podstawski, and Torsten Hoefler.
SeBS: A serverless benchmark suite for function-
as-a-service computing. In Proceedings of the
22nd International Middleware Conference, Mid-
dleware ’21, page 64–78, New York, NY, USA,
2021. Association for Computing Machinery. ISBN
9781450385343. doi: 10.1145/3464298.3476133. URL
https://doi.org/10.1145/3464298.3476133.

[17] Al Danial. cloc. https://github.com/AlDanial/cl
oc, 2024. [Online; last accessed on November 29, 2024].

[18] Jack B. Dennis and Earl C. Van Horn. Programming
semantics for multiprogrammed computations. Commun.
ACM, 9(3):143–155, 1966. doi: 10.1145/365230.365252.
URL https://doi.org/10.1145/365230.365252.

[19] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen.
Catalyzer: Sub-millisecond startup for serverless
computing with initialization-less booting. In AS-
PLOS ’20: Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzer-
land, March 16-20, 2020, pages 467–481. ACM,
2020. doi: 10.1145/3373376.3378512. URL
https://doi.org/10.1145/3373376.3378512.

[20] Paul Emmerich, Maximilian Pudelko, Simon Bauer,
Stefan Huber, Thomas Zwickl, and Georg Carle.
User space network drivers. In 2019 ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems, ANCS 2019, Cambridge,
United Kingdom, September 24-25, 2019, pages 1–12.
IEEE, 2019. doi: 10.1109/ANCS.2019.8901894. URL
https://doi.org/10.1109/ANCS.2019.8901894.

[21] Jon Dugan et al. iPerf. https://iperf.fr/, 2024.
[Online; last accessed on December 9, 2024].

[22] Wes Felter, Alexandre Ferreira, Ram Rajamony,
and Juan Rubio. An updated performance com-
parison of virtual machines and linux containers.
In 2015 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ISPASS
2015, Philadelphia, PA, USA, March 29-31, 2015,
pages 171–172. IEEE Computer Society, 2015. doi:
10.1109/ISPASS.2015.7095802. URL https:
//doi.org/10.1109/ISPASS.2015.7095802.

[23] OpenInfra Foundation. Kata containers.
https://katacontainers.io/, 2024. [Online; last
accessed on November 28, 2024].

[24] The Linux Foundation. Containerd: An
open and reliable container runtime. h t t p s :
//github.com/containerd/containerd, 2024.
[Online; last accessed on November 29, 2024].

[25] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser.
Time protection: The missing OS abstraction. In George
Candea, Robbert van Renesse, and Christof Fetzer, ed-
itors, Proceedings of the Fourteenth EuroSys Conference
2019, Dresden, Germany, March 25-28, 2019, pages 1:1–
1:17. ACM, 2019. doi: 10.1145/3302424.3303976. URL
https://doi.org/10.1145/3302424.3303976.

[26] Elektrobit Automotive GmbH. EB corbos Hy-
pervisor Certified for ASIL B - ISO 26262.
https://www.elektrobit.com/newsroom/el

https://dl.acm.org/citation.cfm?id=296810
https://doi.org/10.1145/3265723.3265733
https://www.bsi.bund.de/SharedDocs/Zulassung/DE/Produkte/L4Re_Secure_Separation_Kernel_VS_BSI-VSA-10624.html
https://www.bsi.bund.de/SharedDocs/Zulassung/DE/Produkte/L4Re_Secure_Separation_Kernel_VS_BSI-VSA-10624.html
https://www.bsi.bund.de/SharedDocs/Zulassung/DE/Produkte/L4Re_Secure_Separation_Kernel_VS_BSI-VSA-10624.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Betriebssysteme/1177.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Betriebssysteme/1177.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Betriebssysteme/1177.html
https://doi.org/10.1145/3474123.3486762
https://www.usenix.org/conference/fast21/presentation/chen-youmin
https://www.usenix.org/conference/fast21/presentation/chen-youmin
https://doi.org/10.1145/3464298.3476133
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1109/ANCS.2019.8901894
https://iperf.fr/
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://katacontainers.io/
https://github.com/containerd/containerd
https://github.com/containerd/containerd
https://doi.org/10.1145/3302424.3303976
https://www.elektrobit.com/newsroom/elektrobit-continues-acceleration-toward-safe-and-secure-software-defined-mobility/

ektrobit-continues-acceleration-toward-s
afe-and-secure-software-defined-mobility/.
[Online; last accessed on April 16, 2025].

[27] Hermann Härtig, Michael Hohmuth, Jochen Liedtke,
Sebastian Schönberg, and Jean Wolter. The performance
of µkernel-based systems. In Proceedings of the Six-
teenth ACM Symposium on Operating System Principles,
SOSP 1997, St. Malo, France, October 5-8, 1997, pages
66–77. ACM, 1997. doi: 10.1145/268998.266660. URL
https://doi.org/10.1145/268998.266660.

[28] Gernot Heiser, Gerwin Klein, and Toby Murray.
Can we prove time protection? In Proceedings
of the Workshop on Hot Topics in Operating Sys-
tems, HotOS ’19, page 23–29, New York, NY, USA,
2019. Association for Computing Machinery. ISBN
9781450367271. doi: 10.1145/3317550.3321431. URL
https://doi.org/10.1145/3317550.3321431.

[29] Alexander Van’t Hof and Jason Nieh. BlackBox: A
container security monitor for protecting containers on
untrusted operating systems. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022,
pages 683–700. USENIX Association, 2022. URL
https://www.usenix.org/conference/osdi22/p
resentation/vant-hof.

[30] Michael Hohmuth, Michael Peter, Hermann Härtig,
and Jonathan S. Shapiro. Reducing tcb size by
using untrusted components: small kernels versus
virtual-machine monitors. In Proceedings of the
11th Workshop on ACM SIGOPS European Work-
shop, EW 11, page 22–es, New York, NY, USA,
2004. Association for Computing Machinery. ISBN
9781450378079. doi: 10.1145/1133572.1133615. URL
https://doi.org/10.1145/1133572.1133615.

[31] Hermann Härtig, Jork Löser, Frank Mehnert, Lars
Reuther, Martin Pohlack, and Alexander Warg. An i/o
architecture for microkernel-based operating systems.
September 2003. URL https://os.inf.tu-dresd
en.de/papers_ps/tr-ioarch-2003.pdf.

[32] Open Container Initiative. RunC. h t t p s :
//github.com/opencontainers/runc, 2024.
[Online; last accessed on November 28, 2024].

[33] Peter Van Der Kamp and Robert N. M. Watson. Jails:
confining the omnipotent root. In Proceedings of
the 2nd International SANE Conference, 2000. URL
https://people.freebsd.org/~bapt/pdfdocs/pa
pers/jail.pdf.

[34] Taesoo Kim and Nickolai Zeldovich. Practical and ef-
fective sandboxing for non-root users. In 2013 USENIX

Annual Technical Conference, San Jose, CA, USA, June
26-28, 2013, pages 139–144. USENIX Association,
2013. URL https://www.usenix.org/conference/
atc13/technical-sessions/presentation/kim.

[35] Gerwin Klein, Kevin Elphinstone, Gernot Heiser,
June Andronick, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: formal verification of an
OS kernel. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles,
SOSP ’09, page 207–220, New York, NY, USA,
2009. Association for Computing Machinery. ISBN
9781605587523. doi: 10.1145/1629575.1629596. URL
https://doi.org/10.1145/1629575.1629596.

[36] Ricardo Koller and Dan Williams. Will serverless end
the dominance of linux in the cloud? In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems,
HotOS ’17, page 169–173, New York, NY, USA,
2017. Association for Computing Machinery. ISBN
9781450350686. doi: 10.1145/3102980.3103008. URL
https://doi.org/10.1145/3102980.3103008.

[37] Adam Lackorzynski and Alexander Warg. Taming
subsystems: capabilities as universal resource ac-
cess control in L4. In Proceedings of the Second
Workshop on Isolation and Integration in Embedded
Systems, IIES ’09, page 25–30, New York, NY, USA,
2009. Association for Computing Machinery. ISBN
9781605584645. doi: 10.1145/1519130.1519135. URL
https://doi.org/10.1145/1519130.1519135.

[38] Yongkang Li, Yanying Lin, Yang Wang, Kejiang
Ye, and Cheng-Zhong Xu. Serverless comput-
ing: State-of-the-art, challenges and opportunities.
IEEE Trans. Serv. Comput., 16(2):1522–1539,
2023. doi: 10.1109/TSC.2022.3166553. URL
https://doi.org/10.1109/TSC.2022.3166553.

[39] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng
Bian, Yi Tao, Bin Zha, Qiang Wang, Weidong Han, and
Minyi Guo. RunD: A lightweight secure container run-
time for high-density deployment and high-concurrency
startup in serverless computing. In 2022 USENIX Annual
Technical Conference, USENIX ATC 2022, Carlsbad,
CA, USA, July 11-13, 2022, pages 53–68. USENIX
Association, 2022. URL https://www.usenix.org/c
onference/atc22/presentation/li-zijun-rund.

[40] Linux Container Hardening Project. Linux container
hardening. https://containerhardening.org/.
[Online; last accessed on November 28, 2024].

[41] Lukas Maar, Jonas Juffinger, Thomas Steinbauer, Daniel
Gruss, and Stefan Mangard. KernelSnitch: Side channel-

https://www.elektrobit.com/newsroom/elektrobit-continues-acceleration-toward-safe-and-secure-software-defined-mobility/
https://www.elektrobit.com/newsroom/elektrobit-continues-acceleration-toward-safe-and-secure-software-defined-mobility/
https://doi.org/10.1145/268998.266660
https://doi.org/10.1145/3317550.3321431
https://www.usenix.org/conference/osdi22/presentation/vant-hof
https://www.usenix.org/conference/osdi22/presentation/vant-hof
https://doi.org/10.1145/1133572.1133615
https://os.inf.tu-dresden.de/papers_ps/tr-ioarch-2003.pdf
https://os.inf.tu-dresden.de/papers_ps/tr-ioarch-2003.pdf
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://people.freebsd.org/~bapt/pdfdocs/papers/jail.pdf
https://people.freebsd.org/~bapt/pdfdocs/papers/jail.pdf
https://www.usenix.org/conference/atc13/technical-sessions/presentation/kim
https://www.usenix.org/conference/atc13/technical-sessions/presentation/kim
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3102980.3103008
https://doi.org/10.1145/1519130.1519135
https://doi.org/10.1109/TSC.2022.3166553
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://containerhardening.org/

attacks on kernel data structures. In 32nd Annual Network
and Distributed System Security Symposium, NDSS 2025,
San Diego, California, USA, February 24-28, 2025. The
Internet Society, 2025. URL https://www.ndss-sym
posium.org/ndss-paper/kernelsnitch-side-c
hannel-attacks-on-kernel-data-structures/.

[42] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My VM is lighter
(and safer) than your container. In Proceedings of
the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, pages 218–233.
ACM, 2017. doi: 10.1145/3132747.3132763. URL
https://doi.org/10.1145/3132747.3132763.

[43] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture.
In USENIX winter, volume 46, pages 259–270, 1993.

[44] Samuel Mergendahl, Samuel Jero, Bryan C. Ward, Ju-
liana Furgala, Gabriel Parmer, and Richard Skowyra. The
thundering herd: Amplifying kernel interference to attack
response times. In 28th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2022,
Milano, Italy, May 4-6, 2022, pages 95–107. IEEE, 2022.
doi: 10.1109/RTAS54340.2022.00016. URL https:
//doi.org/10.1109/RTAS54340.2022.00016.

[45] Yuki Nakata, Shintaro Suzuki, and Katsuya Mat-
subara. Reducing attack surface with container
transplantation for lightweight sandboxing. In Pro-
ceedings of the 14th ACM SIGOPS Asia-Pacific
Workshop on Systems, APSys 2023, Seoul, Republic
of Korea, August 24-25, 2023, pages 58–64. ACM,
2023. doi: 10.1145/3609510.3609820. URL
https://doi.org/10.1145/3609510.3609820.

[46] NIST. National vulnerability database. https:
//nvd.nist.gov/vuln. [Online; last accessed on
November 28, 2024].

[47] Yuvraj Patel, Chenhao Ye, Akshat Sinha, Abigail
Matthews, Andrea C. Arpaci-Dusseau, and Michael M.
Swift. Using Trāt ·r to tame adversarial synchro-
nization. In Kevin R. B. Butler and Kurt Thomas,
editors, 31st USENIX Security Symposium, USENIX
Security 2022, Boston, MA, USA, August 10-12, 2022,
pages 3897–3916. USENIX Association, 2022. URL
https://www.usenix.org/conference/usenixse
curity22/presentation/patel.

[48] Prateek Sharma, Lucas Chaufournier, Prashant J. Shenoy,
and Y. C. Tay. Containers and virtual machines at
scale: A comparative study. In Proceedings of the 17th
International Middleware Conference, Trento, Italy,

December 12 - 16, 2016, page 1. ACM, 2016. URL
http://dl.acm.org/citation.cfm?id=2988337.

[49] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene
Bagdasaryan, Christina Delimitrou, Robbert van
Renesse, and Hakim Weatherspoon. X-Containers:
Breaking down barriers to improve performance and
isolation of cloud-native containers. In Proceedings
of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2019, Providence,
RI, USA, April 13-17, 2019, pages 121–135. ACM,
2019. doi: 10.1145/3297858.3304016. URL
https://doi.org/10.1145/3297858.3304016.

[50] Ariel Szekely, Adam Belay, Robert Morris, and M. Frans
Kaashoek. Unifying serverless and microservice
workloads with SigmaOS. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Prin-
ciples, SOSP ’24, page 385–402, New York, NY, USA,
2024. Association for Computing Machinery. ISBN
9798400712517. doi: 10.1145/3694715.3695947. URL
https://doi.org/10.1145/3694715.3695947.

[51] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca,
and Baris Kasikci. Cntr: Lightweight OS contain-
ers. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018,
pages 199–212. USENIX Association, 2018. URL
https://www.usenix.org/conference/atc18/pr
esentation/thalheim.

[52] Andrew Tucker and David Comay. Solaris zones: Operat-
ing system support for server consolidation. In Proceed-
ings of the 3rd Virtual Machine Research and Technology
Symposium, May 6-7, 2004, San Jose, CA, USA. USENIX,
2004. URL http://www.usenix.org/publication
s/library/proceedings/vm04/wips/tucker.pdf.

[53] David A. Wheeler. SLOCCount. h t t p s :
//dwheeler.com/sloccount/, 2024. [Online;
last accessed on November 29, 2024].

[54] Dan Williams and Ricardo Koller. Unikernel monitors:
Extending minimalism outside of the box. In 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
16), Denver, CO, June 2016. USENIX Association. URL
https://www.usenix.org/conference/hotcloud
16/workshop-program/presentation/williams.

[55] Lars Wrenger, Florian Rommel, Alexander Halbuer,
Christian Dietrich, and Daniel Lohmann. LLFree:
Scalable and optionally-persistent page-frame allocation.
In Proceedings of the 2023 USENIX Annual Technical
Conference, USENIX ATC 2023, Boston, MA, USA, July
10-12, 2023, pages 897–914. USENIX Association,

https://www.ndss-symposium.org/ndss-paper/kernelsnitch-side-channel-attacks-on-kernel-data-structures/
https://www.ndss-symposium.org/ndss-paper/kernelsnitch-side-channel-attacks-on-kernel-data-structures/
https://www.ndss-symposium.org/ndss-paper/kernelsnitch-side-channel-attacks-on-kernel-data-structures/
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1109/RTAS54340.2022.00016
https://doi.org/10.1109/RTAS54340.2022.00016
https://doi.org/10.1145/3609510.3609820
https://nvd.nist.gov/vuln
https://nvd.nist.gov/vuln
https://www.usenix.org/conference/usenixsecurity22/presentation/patel
https://www.usenix.org/conference/usenixsecurity22/presentation/patel
http://dl.acm.org/citation.cfm?id=2988337
https://doi.org/10.1145/3297858.3304016
https://doi.org/10.1145/3694715.3695947
https://www.usenix.org/conference/atc18/presentation/thalheim
https://www.usenix.org/conference/atc18/presentation/thalheim
http://www.usenix.org/publications/library/proceedings/vm04/wips/tucker.pdf
http://www.usenix.org/publications/library/proceedings/vm04/wips/tucker.pdf
https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams

2023. URL https://www.usenix.org/conferenc
e/atc23/presentation/wrenger.

A Artifact Appendix

Abstract
The artifact contains every custom component that is needed
to recreate the measurements presented in the paper. It is a
bundle of source files of the individual projects created for this
paper. This includes the MettEagle software and benchmark
code. However, external, unmodified software (like Linux or
Firecracker) is not included.

Scope
The artifact strives to achieve artifact available. It only
contains source files and some documentation but no
all-in-one script for fitting all the individual projects together.
Thus, this artifact does not claim easy functional evaluation.
Unfortunately, due to the large number of moving parts and
long compilation times, setting up the benchmark environment
takes some time. If any question arise while using the provided
artifact, please contact the authors.

The artifact contains the code of the MettEagle FaaS
runtime including the surrounding L4Re. It is thus possible
to run MettEagle using this artifact. Furthermore, all the
benchmark scripts for exercising MettEagle are included.
Most importantly, a modified version of the SeBS benchmark
suite is included to run functions on MettEagle. All code used
to create comparative benchmarks on Linux is also included.

Contents
For a precise description of the provided artifacts, please refer
to the README.md inside of the artifact.

Hosting
The artifact is available via Zenodo: h t t p s :
//doi.org/10.5281/zenodo.15211297.

Requirements
The artifact is designed for the x86-64 architecture. It is tested
to run inside of Qemu and on the machine described in Sec-
tion 6.1. The network benchmarks can either run via emulated
NICs in Qemu or via connecting two physical machines.

https://www.usenix.org/conference/atc23/presentation/wrenger
https://www.usenix.org/conference/atc23/presentation/wrenger
https://doi.org/10.5281/zenodo.15211297
https://doi.org/10.5281/zenodo.15211297

	Introduction
	Background
	Containers on a Monolithic OS
	Lightweight Virtual Machines
	A Primer on the L4Re Microkernel OS
	Capabilities

	Containers on L4Re
	L4Re Compartment Architecture
	Life Cycle of a Compartment
	Isolating Compartments

	Implementing a Prototype Compartment Infrastructure
	The L4Re Compartment Environment
	Implementing Compartment Restrictions
	Lessons Learned

	Security Evaluation
	Trusted Computing Base Comparison
	Vulnerability Study
	seccomp-bpf
	namespaces
	cgroups

	Timing-Based Attacks

	Performance Evaluation
	System Setup
	Container Startup Latency
	I/O Performance
	Application Benchmark

	Discussion
	Related Work
	Conclusion
	Artifact Appendix

