Bounded Resource Reclamation

Viktor Reusch

Barkhausen Institut
Dresden, SN, Germany

1 Introduction

During their lifetime, processes frequently allocate and re-
lease resources provided by the operating system. Obviously,
the performance of resource allocations within the OS is crit-
ical to the overall performance of applications. This includes
tail latency as well as the worst case execution time of alloca-
tion procedures. Consequently, existing work often focuses
on improving allocation performance.

In contrast, few works address the resource reclamation
performance of operating systems. However, there are promi-
nent use cases that benefit from a swift and predictable recla-
mation of OS resources. First, bounded resource reclamation
is of great use in resource-constrained multi-user systems as
required by software-defined radio solutions like Open-RAN.
These approaches implement tasks like signal processing in
software rather than in ASICs. However, as the hardware
deployed in the field cannot be arbitrarily large for reasons
like power constraints, applications need to share resources
such as memory. Therefore, in order to provide a smooth user
experience, these scenarios profit from bounded resource
reclamation as it avoids long application boot times due to
cleanup of terminated processes.

Second, bounded resource reclamation is also important in
cloud settings like function-as-a-service environments. Cloud
functions typically have fixed main memory allocations and
hard time limits. As the cloud provider aims at maximizing
system utilization (i.e., the time during that customer appli-
cations perform actual work), resource reclamation phases
of terminated functions should be as short as possible.

2 Study of Reclamation Latency

For the scenarios described in the introduction, reclamation
latency is primarily relevant in the event of process termi-
nation. We thus analyze the reclamation latency observed
during process termination on several OS platforms, includ-
ing Linux, L4Re, and M3 [1]. We evaluated L4Re as it supports
real-time applications but also has emerging support for func-
tion as a service [3]. M3 is a hardware-software co-design that
focuses on security-critical use cases, such as telecommunica-
tion infrastructure [2]. The results for M3 were obtained using
the gemb5 system simulator. Due to the comparatively slow
speed of simulation, we limited our M3 scenario to thousands
of kernel structures.

Figure 1 shows that the amount of kernel structures (e.g.,
semaphores or memory mappings) that a process allocates
strongly influences the time required to terminate said process.
As expected, on complex kernels like Linux, the termination

Till Miemietz
Barkhausen Institut
Dresden, SN, Germany

time of a process significantly increases with the number of
kernel structures it allocated. But also the microkernel ap-
proaches of L4Re and M3 need a considerable amount of time
to clean up terminated tasks. Thus, the CPU is still occupied
and kernel memory is still claimed during process termination,
rendering those resosources inaccessible to other processes.
We argue that the termination latency on all these systems
can be unexpected and hard to account for. Thus, we present
a solution to speed up reclamation and ensure bounded ter-
mination of processes in the following.

3 Towards Bounded Resource Reclamation

The results of the previous section motivate the design of
a system that puts a bound on the time required to reclaim
resources. To make a concrete example, the operating system
should be able to guarantee that a given process terminates in
a time of, e.g., one second. This implies that all resources allo-
cated to such a process have to be fully reclaimed one second
after termination was initiated. This reclamation can be subdi-
vided into individual steps, like freeing a single page of process
memory or closing and removing a single file descriptor. As
such, the combined execution time of these individual steps
must not exceed the supposed one second limit. To enforce a
bound on reclamation time, our design introduces accounting
for the individual steps of reclamation. The approach is as
follows: The operating system assigns a reclamation quota of
one second to each process on startup. Whenever the process
allocates a resource through the kernel, the expected reclama-
tion time of this resource is subtracted from the quota. Thus,
the operating system can enforce the total reclamation time
to stay under one second.

However, reclamation time of, e.g., page table entries, heap
memory, and semaphores can quickly add up as shown in
the previous section. Thus, we propose to additionally group
resource allocations — especially kernel memory — belonging
to the same process to speed up reclamation on termination.
Grouped resources can be swiftly reclaimed because they are
close together and do not require the kernel to trace for all the
individual pieces of memory allocated to the terminating pro-
cess. With this, we intend to minimize runtime of the — now
bounded — reclamation procedure with little loss in flexibility
and low overhead.

4 Preliminary Results

We implemented a prototype for solving the problem of recla-
mation latency based on the M3 kernel. As M3 is a hard-
ware/operating system co-design with a tiled architecture,

EuroSys "25 Posters, March 30-April 3, 2025, Rotterdam, Netherlands

Linux L4Re

Viktor Reusch and Till Miemietz

M3

25 10

0 I 0

Latency (s)
Latency (s)

—

Latency (ms)

0 fa—

30 Million Mappings

30 Million Mappings

2000 Mappings 8000 Semaphores

of Created Kernel Resources

Resource Creation

I Process Termination

Figure 1. Latency of creating a large quantity of kernel structures and then terminating the allocating process forcefully on

different operating systems.

Baseline 8000 Semaphores 2000 Mappings
‘m W]
>
g — — —
g 10 1 1 1
=
3
0 T T T T T T T T T
Unmodified Modified Grouped Unmodified Modified Grouped Unmodified Modified Grouped
I Setup Process Startup Resource Creation I Process Termination

Figure 2. Latency of experiment setup, process startup, resource creation, and process termination of a single process under
M3. This figure compares the unmodified M3 kernel with the modified kernel that enables the grouping feature. The process
is terminated the usual way for “Unmodified” and “Modified”. For “Grouped”, the grouping feature is actually used to terminate

the task and quickly reclaim associated resources.

it has a greater variety of hardware resources than conven-
tional systems. For example, the M3 system supports direct,
hardware-based communication channels between individ-
ual compute tiles. Such channels need hardware resources
and, thus, need to be reclaimed once the communication part-
ners terminate. This makes M3 particularly interesting for
our prototype on resource reclamation. Moreover, there is
previous work that also discusses how to efficiently reclaim
memory in the M3 kernel [4]. Our prototype currently focuses
on semaphore kernel objects. It implements the proposed
grouping of resources to accelerate reclamation and allows
attributing resources to actors in the system, thus demonstrat-
ing the feasibility of our approach.

Figure 2 shows the impact of the proposed reclamation
optimizations on the termination time of M3 processes. The
second panel highlights the effectiveness of resource grouping
regarding a reduction of termination latency. The compari-
son of “Unmodified” and “Modified” shows that the grouping
feature incurs only minimal overhead to kernel operations.
As our reclamation optimizations are not yet implemented
for memory mappings, there is no improvement for processes
having many mappings as shown in the rightmost subfigure.
However, we conclude that our approach works in the right
direction to reduce reclamation latency of OS resources. We

thus believe that future work on our system will fully enable
bounded resource reclamation.

References

[1] Nils Asmussen, Marcus V6lp, Benedikt Nothen, Hermann Hértig, and
Gerhard P. Fettweis. 2016. M3: A hardware/operating-system co-design
to tame heterogeneous manycores. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2016, Atlanta, GA, USA,
April 2-6, 2016. Tom Conte and Yuanyuan Zhou, (Eds.) ACM, 189-203.
DoI: 10.1145/2872362.2872371.

[2] Sebastian Haas, Mattis Hasler, Friedrich Pauls, Stefan Kopsell, Nils As-
mussen, Michael Roitzsch, and Gerhard P. Fettweis. 2022. Trustworthy
computing for O-RAN: security in a latency-sensitive environment. In
IEEE Globecom 2022 Workshops, Rio de Janeiro, Brazil, December 4-8,
2022.1IEEE, 826-831. po1: 10.1109/GCWKSHPS56602.2022.10008543.

[3] Till Miemietz, Viktor Reusch, Matthias Hille, Max Kurze, Adam Lacko-
rzynski, Michael Roitzsch, and Hermann Hartig. 2024. A perfect fit? -
towards containers on microkernels. In Proceedings of the 10th Inter-
national Workshop on Container Technologies and Container Clouds,
WOC 2024, Hong Kong, Hong Kong, December 2-6, 2024. ACM, 1-6. DOI:
10.1145/3702637.3702957.

[4] Viktor Reusch, Nils Asmussen, and Michael Roitzsch. 2024. Robust and
immediate resource reclamation with M3. In Proceedings of the 2nd
Workshop on Kernel Isolation, Safety and Verification, KISV 2024, Austin,
TX, USA, November 3-6, 2024. ACM, 1-7. por: 10.1145/3698576.3698763.

https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1109/GCWKSHPS56602.2022.10008543
https://doi.org/10.1145/3702637.3702957
https://doi.org/10.1145/3698576.3698763

	1 Introduction
	2 Study of Reclamation Latency
	3 Towards Bounded Resource Reclamation
	4 Preliminary Results

