An Architecture for Shrinking the TCB of TEEs on
Heterogeneous Systems

Nils Asmussen
Barkhausen Institut
Dresden, Germany
nils.asmussen@barkhauseninstitut.org

Abstract

Trusted Execution Environments (TEEs) enable secure code
execution on machines that are not fully controlled by the
user who runs the code. However, existing TEE solutions
do not provide unified support for systems with heteroge-
neous core architectures or accelerators. Furthermore, their
implementation is complex and requires the user to trust
(typically closed) firmware in addition to the TEE hardware.
We propose a heterogeneous TEE architecture with minimal
hardware support to reduce the trust in firmware, as well as
a minimal Root-of-Trust that enables features such as remote
attestation for such TEEs.

1 Introduction

Trusted Executions Environments (TEEs) are important to
execute code securely on machines that are owned or oper-
ated by an untrusted third party such as a cloud provider.
As systems become more heterogeneous, featuring multiple
core architectures and various accelerators, TEE properties
should be available for all processing units. Individual solu-
tions that already exist are highly complex, because they are
baked into already complex core micro-architectures. This
tight integration is also the reason why they are a bad fit for
heterogeneous architectures, where TEE guarantees should
span different types of cores, accelerators, or even I/O devices.
Additionally, existing TEE solutions require security-critical
firmware, which is typically closed and sometimes even hid-
den in processor microcode blobs. These black boxes cannot
be inspected or changed by the user, but are nonetheless part
of the Trusted Computing Base (TCB).

Relying on multiple isolated solutions for each type of
processing unit (e.g., general-purpose CPUs and GPUs) is
cumbersome and increases overall complexity. To enable
unified TEE support and minimize complexity, we have to
move enforcement of TEE security guarantees like isolation
and integrity protection out of the individual processing
units. This means a TEE cannot be implemented as a differ-
ent processor mode but there must be a separate hardware
component that protects all types of processors. We propose
a TEE architecture based on such out-of-core enforcement of
TEE protections, including a small set of hardware features
that help reduce trust in firmware.

Our TEE architecture includes a Root-of-Trust (RoT), which
in existing solutions is typically monolithic and complex. We

Carsten Weinhold
Barkhausen Institut
Dresden, Germany
carsten.weinhold@barkhauseninstitut.org

propose a low-complexity TEE-and-RoT co-design that en-
ables remote attestation, while benefiting from our new uni-
fied architecture to protect itself from the rest of the system,
including non-RoT parts of the TEE firmware.

2 Basic Platform Architecture

We use the M3 [1] hardware/software co-design platform
as the basis of our proposed TEE architecture, because it
already provides us with a heterogeneous system-on-chip
design. The hardware part of M3 is a tile-based architecture,
where each tile contains either a general-purpose processor
core, an accelerator, or a memory controller for external
DRAM. I/O devices are realized as tiles in this architecture,
too. Each tile is connected to a network-on-chip (NoC) via a
small hardware component called Trusted Communication
Unit (TCU). There is one dedicated TCU for each tile and no
other connection between a tile and the NoC exists in the
hardware. Access to resources in the system is provided via
TCU-to-TCU communication channels. The M3 kernel runs
on its own dedicated tile, from where it has the exclusive,
hardware-enforced right to reconfigure TCUs in order to
establish or tear down these communication channels. Any
type of processing unit on a tile is policed using this same
mechanism.

The tile-based M3 architecture is a suitable starting point
for building a heterogeneous TEE platform, where a TEE is
implemented as a tile [2]. Once a communication channel has
been configured in a TCU, the tile behind this TCU can use
it without further kernel support to exchange messages with
another tile or access a specific memory region on the DRAM
tile. The hardware-level isolation of tiles allows us to remove
cores located in other tiles from the TCB of such a TEE [3].
However, software running on a processor tile or a workload
on an accelerator-based TEE tile must still trust the M3 kernel
to configure this tile’s TCU correctly and not compromise it
later. Since M3 is a microkernel-based OS, this kernel is quite
small. Most of its complexity comes from functionality that
is similar to what firmware and hypervisors of TEE solutions
like Intel SGX, TDX, or AMD SEV have to do to set up and
isolate enclaves or confidential VMs. As an equivalent of
TEE firmware, we would like to remove this functionality
from the TCB of a TEE and instead rely on a smaller and less
complex hardware implementation that does not require a
core to execute firmware (or M3 kernel code).



EuroSys ’25 Posters, March 30-April 03, 2025, Rotterdam, Netherlands

TCB Reduction #1: Through the TCU, we reduce the over-
all size and complexity for heterogeneous TEEs by consoli-
dating the enforcement of TEE isolation in a single hardware
component for all types of processing units.

3 Hardware Mechanisms for
Heterogeneous TEEs

To further shrink the TCB of TEEs, we restrict privileged
software like the M3 kernel based on two new features in
the TCU: (1) the ability to perform a TCU lockdown and
(2) enforcement of exclusive memory regions.

For TCU lockdown, the idea is that the kernel first does
the initial setup of all required communication channels and
memory regions for the tile that shall be used as a TEE. At
the hardware level, these two types of resources are repre-
sented as endpoints, which, in simple terms, are hardware
registers in the TCU that hold tile and memory addresses,
respectively. To activate lockdown mode, the kernel sets a
new LOCKDOWN bit in a control register of the TEE’s TCU,
which then freezes its endpoint configuration such that the
kernel can no longer make any modifications to endpoints.
In practice, programs running in a TEE may not be able to
function, unless some of the endpoints can be changed dur-
ing the lockdown. Therefore the TCU does allow the kernel
to write changes to endpoint registers in a TEE’s TCU. How-
ever, the program running in the TEE must first agree to
and activate the changed endpoint configuration by setting
an acknowledgement bit in the TCU that the kernel cannot
write to itself. To reclaim resources, the kernel can reset a
TCU that operates in lockdown mode. This reset operation
will also reset the processing unit of the tile, thereby termi-
nating the TEE. Our design and prototype implementation in
a hardware simulator includes the described features, as well
as an additional per-tile generation counter that is increased
on a tile reset to invalidate all communication channels to
other tiles.

Exclusive memory regions prevent the kernel from ac-
cessing memory that has been assigned to a TEE tile. The
TCU that sits in front of the DRAM controller enforces this
memory-protection property. It stores a list of exclusive mem-
ory regions and which tile is allowed to access each of them.
On every memory request, the TCU checks whether the re-
quest hits an exclusive region. If so, the tile address (and a
generation counter) of the requesting tile must match the
owner tile that is registered in the TCU for this region. Other-
wise, access is denied. The kernel is allowed to configure new
regions, but the TCU checks in hardware that the new re-
gion does not overlap any existing region. We use the same
idea as RISC-V PMP, where all regions are power-of-two
sized and size aligned. This constraint allows for a small
and efficient hardware implementation. Similarly to TCU
lockdown for endpoints, the kernel is not able to change the
configuration of exclusive memory regions. However, it can

Nils Asmussen and Carsten Weinhold

reset region registers, if the owner tile has already been reset
before (tracked through generation counters, too).

TCB Reduction #2: The TCU lockdown functionality and
enforcement of exclusive memory regions removes the M3
kernel from the default TCB of all TEEs, but only while a
TEE is running (addressed by TCB Reduction #3 below).

During initial setup, the kernel still has to be trusted. How-
ever, this "trusted for setup" approach can be turned into a
"trust but verify" approach through remote attestation: If we
include a measurement of both the program running in the
TEE and the TCU endpoint configuration in the attestation
report for a TEE, a relying party no longer has to trust the
M3 kernel, because it can verify that the TEE including its
TCU has been configured correctly.

4 Minimal-TCB Root-of-Trust Architecture

Our TEE architecture includes a dedicated RoT tile, which iso-
lates itself from the kernel using the same TCU lockdown and
memory protection features as described above. At power-
up, this RoT tile bootstraps all other tiles, including the ker-
nel tile. A boot ROM in the RoT tile contains a minimal-
complexity boot loader, which initiates a multi-stage startup
process of the RoT firmware. Following the DICE [4] ap-
proach, it loads, measures, and executes later RoT firmware
stages, while deriving an attestation key that will remain
in local memory of the RoT tile. The third stage loads and
measures the code of the M3 kernel (and M3 base services),
which is included in attestation reports. Before handing con-
trol of all other tiles over to the kernel, the RoT tile locks its
own TCU, thereby isolating itself from the kernel.

TCB Reduction #3: For attesting TEE state to a remote
third party, the RoT firmware (responsible for attestation)
and the M3 kernel (responsible for setup of user TEEs) serve
different protection goals. The RoT firmware together with
the TCU hardware implementation need to be trusted for
TEE confidentiality and integrity, while the kernel remains
in the TCB only for availability of TEEs.

References

[1] Nils Asmussen, Marcus Volp, Benedikt Nothen, Hermann Hértig, and
Gerhard Fettweis. M3: A hardware/operating-system co-design to
tame heterogeneous manycores. In 21st International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 189-203. ACM, March 2016.

Carsten Weinhold, Nils Asmussen, Diana Gohringer, and Michael
Roitzsch. Towards modular trusted execution environments. In 6th
Workshop on System Software for Trusted Execution (SysTEX), Rome,
Italy, May 2023. ACM.

[3] Nils Asmussen, Till Miemietz, Sebastian Haas, and Michael Roitzsch.
Distrusting cores by separating computation from isolation. Journal of
Systems Architecture (JSA), 159, February 2025.

Trusted Computing Group. Dice layering architecture, version 1.0,
revision 0.19. https://trustedcomputinggroup.org/wp-content/uploads/
DICE-Layering-Architecture-r19_pub.pdf.

[2

—

[4

flan)


https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf

	Abstract
	1 Introduction
	2 Basic Platform Architecture
	3 Hardware Mechanisms for Heterogeneous TEEs
	4 Minimal-TCB Root-of-Trust Architecture
	References

