
Priv-PFL: A Privacy-Preserving and Efficient Personalized Federated Learning
Approach

Alireza Aghabagherloo∗†, Roozbeh Sarenche∗†, Maryam Zarezadeh‡§, Bart Preneel∗†, and Stefan Köpsell‡§
∗ COSIC, Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium

†{Alireza.aghabagherloo, roozbeh.sarenche, bart.preneel}@esat.kuleuven.be
‡ Barkhausen Institut, Dresden, Germany

§{maryam.zarezadeh, stefan.koepsell}@barkhauseninstitut.org

Abstract—Federated Learning (FL) allows clients to engage in
learning without revealing their raw data. However, traditional
FL focuses on developing a single global model for all clients,
limiting their ability to have personalized models tailored to
their specific needs. Personalized FL (PFL) enables clients
to obtain their customized models, either with or without
a central party. Current PFL research includes mechanisms
to detect poisoning attacks, in which a couple of malicious
nodes try to manipulate training convergence by submitting
misleading data. However, these detection approaches often
overlook privacy concerns, as they require clients to share
their models with all other clients.

This paper extends BALANCE, a personalized poisoning
detection mechanism based on client models and their expec-
tations. Our method enhances both security and privacy by
ensuring clients are not required to share their model data
with other clients. By leveraging server-assisted PFL and Fully
Homomorphic Encryption (FHE), we enable a central party to
identify unpoisoned clients from the perspective of individual
clients and train personalized models securely. Additionally, we
introduce an efficient personalized client selection algorithm
that prevents redundant checks and ensures the inheritance of
unpoisoned clients.

Index Terms—Personalized Federated Learning

1. Introduction

Federated Learning (FL) was developed to address learn-
ing systems’ data privacy and governance challenges. In-
stead of sharing raw data, each client shares its local model
with a central server. This ensures that the local datasets re-
main inaccessible to other parties. This enhances the privacy
of the system while reducing the need for extensive data
storage and centralized computational resources, resulting
in a more scalable learning system [1].

Despite the advantages of FL, training a single, globally
uniform model in traditional FL can create fairness issues,
where clients with less representative data are disadvantaged
by the global model. Due to the heterogeneous data distri-
butions among clients, the global model may significantly
underperform compared to models trained on local datasets,

(a) Standard FL (b) Decentralized PFL

(c) Server-assisted PFL

Figure 1: A sketch of different FL architectures [2].

particularly for clients whose data differs from the global
distribution. As a result, clients may be less motivated
to participate in FL, as they do not receive personalized
benefits [3].

Moreover, conventional FL approaches struggle with
unfair detection methods for certain attacks, including poi-
soning attacks [4]. In poisoning attacks, malicious clients
submit corrupted model updates to manipulate the global
model’s training process. To overcome poisoning attacks,
traditional FL approaches aggregate a global model using
client updates identified as not poisoned by the global
detection mechanism. While this approach may be effec-
tive in some scenarios, there are cases where each client
needs to detect its own set of unpoisoned models based on
their own dataset and expected robustness level. However,
conventional FL lacks the flexibility to accommodate such
individualized detection mechanisms.

As shown in Fig. 1, PFL [2], [5], [6], [7] addresses
the challenges of standard FL by enabling local clients to
customize the global model to fit their data better with or
without the assistance of a server. Instead of creating a
single global model, PFL allows each client to adapt the
global model through local fine-tuning or additional training,

improving its relevance, performance, and robustness for the
specific needs of each user. As part of ongoing research,
Fang et al. [2] introduced a personalized decentralized poi-
soning detection and training algorithm named BALANCE.
In BALANCE, each client uses its local model as a reference
to assess whether the received model is poisoned or benign.

While BALANCE, as a promising PFL approach, has
addressed the challenge of standard FL, it suffers from
heavy reliance on clients’ computing resources for client
selection and the calculation of personalized aggregated
models. Another notable concern is the assumption that
all clients are honest and do not intend to compromise
the privacy of other users. In BALANCE, models from all
clients are shared among each other, which creates privacy
risks, as certain attacks, such as model inversion attacks [8]
or membership inference attacks [9], can potentially extract
sensitive information from these models.

1.1. Our contribution

To improve privacy and mitigate the reliance on clients’
computing resources in PFL, this work proposes an en-
hanced server-assisted private PFL (Priv-PFL), with our
contributions focused on:
• Proposing a secure and efficient FHE-based personal-

ized client selection algorithm:
We implement an FHE-based benign client selection al-
gorithm to enhance security and privacy in detecting poi-
soned clients compared to conventional PFL. To improve
efficiency, we extend the traditional client selection pro-
cess by introducing benign client mutual acceptance and
inheritance conditions, reducing redundant checks, and
enhancing server-side performance. The client inheritance
condition allows clients with higher thresholds to inherit
benign-detected clients from those with lower thresholds.
We experimentally show the efficiency of this approach.

• Highlighting a secure, personalized model aggregation
mechanism for each client:
We introduce a secure aggregation method using a semi-
honest server, with ongoing work on extending it to
an arbitrary server. This aggregates the benign detected
models in the client selection algorithm.

The paper is structured as follows: Section 2 reviews
BALANCE [2], a decentralized PFL framework. Section 3
explores applying FHE in a server-assisted setting and
introduces an optimized secure client selection algorithm.
Section 4 explains an ongoing work on secure personalized
model aggregation, and Section 5 concludes the paper and
discusses the remaining challenges.

2. BALANCE Personalized FL

This section overviews BALANCE [2], a decentral-
ized PFL framework where each client identifies benign
peers and trains a personalized model (see Fig. 1.b). BAL-
ANCE proves that, under standard assumptions, poisoning
attacks do not negatively affect the convergence rate of their
method. This process occurs in two main steps:

Client Selection: In training round t, client i ∈ V

receives the client model wt+ 1
2

j from other client j ∈ Ni.
To determine whether the received model is benign, client
i checks if the model of client j is sufficiently similar to
w

t+ 1
2

i . Specifically, client i considers the model of client j
benign if the following condition holds:

∥wt+ 1
2

i −w
t+ 1

2
j ∥ ≤ γi exp(−κλ(t))∥w

t+ 1
2

i ∥. (1)

where γi > 0 sets an acceptance threshold for client
i, κ > 0 determines the decay rate and the function λ(t)
is a monotonically increasing function of t. For simplicity,
we introduce the function decayed acceptance threshold, de-
noted by σi(t), which is defined as σi(t) = γi exp(−κλ(t)).
The benign detected clients by client i are denoted as Si

t .
Model Aggregation: After selecting the benign models,

client i updates its model by combining its intermediate
model with the aggregated models, weighted by α:

wt+1
i = αw

t+ 1
2

i + (1− α) · 1

|Si
t |

∑
j∈Si

t

w
t+ 1

2
j . (2)

3. Secure and Efficient Implementation of
Client Selection in BALANCE

In this section, we proposed a secure client selection
approach that extends the BALANCE client selection mech-
anism using FHE. Then, we introduce an optimized client
selection algorithm that eliminates redundant checks.

3.1. FHE-Based Implementation of BALANCE

BALANCE heavily relies on clients’ computing re-
sources and assumes that all clients are honest and do
not attempt to extract information from shared models. To
address this limitation, we propose an FHE-based server-
assisted approach to securely identify unpoisoned clients
from each client’s perspective without revealing the models.
The client selection process follows these steps:

• Data Encryption by Clients: Each client i and client
j encrypt their vector components.

• Homomorphic Computation: The server S processes
the encrypted data using FHE without decrypting the
data, primarily performing inequality in Ineq. 1 without
revealing any information to the server or clients.

By repeating this process across all clients, benign
clients can be identified without disclosing any client’s
model. Appendix A contains the description of FHE, and
FHE-based client selection is detailed in Appendix B.

3.2. Optimized Client Selection Algorithm

Although integrating FHE into a server-assisted imple-
mentation of BALANCE preserves privacy, FHE introduces
a significant computational burden on the server side. To

mitigate this issue and improve efficiency, we propose an
optimized client selection algorithm derived from the fol-
lowing theorems proven in Appendix C:

Theorem I: If client i detects client j as benign w.r.t.
the decayed acceptance threshold σi(t) and

σi(t).∥w
t+ 1

2
i ∥ ≤ σj(t).∥w

t+ 1
2

j ∥,

then client j will also detect client i as benign w.r.t. the
decayed acceptance threshold σj(t).

Theorem II: Let St
i denote the set of all benign clients

for client i, and let subSt
i be the set of clients j such that

j ∈ St
i and

σi(t)∥w
t+ 1

2
i ∥ ≤ 1

2
σj(t)∥w

t+ 1
2

j ∥.

In this case, all clients in subSt
i will inherit all clients in

St
i as benign. This client inheritance condition allows clients

with higher thresholds to inherit benign clients from those
with lower thresholds.

3.2.1. Optimized Client Selection Algorithm and Exper-
imental Results. Given a set of K clients, Algorithm 1
efficiently determines which clients are benign to each
other. In this Algorithm clients are sorted by the norms
σi(t).∥w

t+ 1
2

i ∥, with the smallest being processed first. Run-
ning the algorithm, which utilizes Theorems I and II, pre-
vents redundant checks. This algorithm reduces the com-
plexity of BALANCE client selection from O(K(K − 1))
— where K is the number of clients, and each client must
operate the Ineq. 1 for all other clients (K−1) — to a lower
value between O(K − 1) and O(K(K − 1)/2). The degree
of complexity reduction depends on the decayed acceptance
threshold of the clients and their norms.

In a simplified experimental setup, we considered 30
clients with decayed acceptance thresholds uniformly sam-
pled from the range [0.1, 0.5]. The weight norms for each
client were randomly assigned to simulate an FL setup, with
the models trained on the CIFAR-10 dataset [10], partitioned
in a non-IID fashion, as outlined in [11]. The results showed
a reduction in the number of times Ineq. 1 needed to be
operated, reducing the required comparisons from 870 to
298 on average. This reduction in comparisons is crucial, as
evaluating Ineq. 1 in Algorithm 1 involves FHE, as detailed
in Section 3.1.

4. Ongoing Work on Secure Implementation of
Model Aggregation in BALANCE

We assume clients have a Tamper-Resistant Device
(TRD) [12] that securely stores a private key. Each client has
a public and a private key (inaccessible even for clients and
stored in the TRD), while the server has its own public and
private key. The process begins with each client encrypting
its model using its public key, and then encrypting it with the
server’s public key. Upon receiving the encrypted models,
the server decrypts them using its private key and applies
FHE (Section 3) to identify benign clients for each client.

Algorithm 1 Efficient Client Selection

Input: {wt+ 1
2

1 ,w
t+ 1

2
2 , . . . ,w

t+ 1
2

K },{σ1(t), σ2(t), . . . , σK(t)}
Output: Accepted client sets {St

i} for each client i.
1 1. Sort clients by weight norms: Sort clients 1, 2, . . . ,K

in ascending order of σi(t) · ∥w
t+ 1

2
i ∥.

2 2. Initialize benign client lists: Set each St
i ← ∅.

3 for Client i = 1 to K do
4 3.1. Benign client detection for Client i:

for each Client j /∈ St
i do

5 if the weights of j satisfy Inequality 1 then
6 Add Client j to St

i

7 3.2. Mutual acceptance based on Theorem I:
for each Client j ∈ St

i and i < j ≤ K do
8 Add Client i to St

j

9 3.3. Benign client inheritance based on Theorem II:
for each Client j ∈ St

i do
10 if σj(t) · ∥w

t+ 1
2

j ∥ ≥ 2 · σi(t) · ∥w
t+ 1

2
i ∥ then

11 Add all clients in St
i to St

j

12 return {St
i}, the list of accepted clients.

Then the server computes and returns the aggregated
weights using FHE without revealing model details. Clients
then decrypt aggregated weights (Eq. 2) with the TRD-
stored key. This ensures privacy but assumes the server is
semi-honest and would not extract TRD keys—an assump-
tion that, while common, is not entirely realistic [12].

Our ongoing research aims to develop a secure ag-
gregation protocol with an untrusted server, where clients
encrypt model updates with their public keys for homo-
morphic aggregation using RNS-CKKS encryption [13] and
collaborative decryption. We also aim to mitigate the client-
server collusion risk by leveraging Threshold FHE [14].

5. Conclusion and Future Work

In this paper, we proposed an enhanced server-assisted
Priv-PFL framework to address privacy concerns and client
computational resource limitations. Our contributions in-
clude a secure and efficient FHE-based client selection
algorithm and a personalized model training mechanism for
each client, improving security and performance.

Since one of the goals of PFL is to facilitate collab-
oration among nearby clients, the main remaining chal-
lenge is integrating the proposed PFL algorithm with a
hierarchical cluster-based approach. This should facilitate
model convergence, efficient poisoned client detection, and
collaboration between cluster heads. Additionally, in our
algorithm, clients share σi(t).∥w

t+ 1
2

i ∥ without encryption,
enabling client sorting by weight norms without additional
computational cost. While this approach does not pose the
privacy risks associated with sharing model weights, the
initial step of our client selection algorithm—sorting clients
by weight norms—should be integrated with subsequent

steps in future work on hierarchical cluster-based Priv-
PFL to eliminate the need for unencrypted norm weight
sharing. Another interesting topic for future work is the
implementation of a server-assisted Priv-PFL that not only
withstands the poisoning attack but also mitigates the ad-
versarial examples generated in FL [15], [16].

Acknowledgment

This work was supported by the Flemish Government
through the Cybersecurity Research Program with grant
number: VOEWICS02 and in part by the Research Council
KU Leuven projects IF/C1 From Website Fingerprinting
to App Fingerprinting: Inferring private user activity from
encrypted network traffic, and the AIDE project funded by
the Belgian SPF BOSA under the programme “Financing
of projects for the development of artificial intelligence in
Belgium” with reference number 06.40.32.33.00.10.”. This
work also has been partly funded by the German Federal
Ministry of Education and Research (project SEMECO-
Q1, grant no. 03ZU1210AA). Additionally, the authors of
Barkhausen Institut are also financed based on the budget
passed by the Saxonian State Parliament in Germany.

References

[1] M. Asad, A. Moustafa, and T. Ito, “Federated learning versus clas-
sical machine learning: A convergence comparison,” arXiv preprint
arXiv:2107.10976, 2021.

[2] M. Fang, Z. Zhang, Hairi, P. Khanduri, J. Liu, S. Lu, Y. Liu,
and N. Gong, “Byzantine-robust decentralized federated learning,” in
Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, 2024, pp. 2874–2888.

[3] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in International conference on machine learning. PMLR, 2019, pp.
4615–4625.

[4] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning
attacks to Byzantine-Robust federated learning,” Proceedings of the
29th USENIX Security Symposium, pp. 1605–1622, 2020.

[5] T. Li, S. Hu, A. Beirami, and V. Smith, “Fair and robust federated
learning through personalization,” Proceedings of the 38th Interna-
tional Conference on Machine Learning (ICML 2021), 2021.

[6] D. Hashemi, L. He, and M. Jaggi, “Cobo: Collaborative learning via
bilevel optimization,” arXiv preprint arXiv:2409.05539, 2024.

[7] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized fed-
erated learning,” IEEE transactions on neural networks and learning
systems, vol. 34, no. 12, pp. 9587–9603, 2022.

[8] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[9] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[10] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[11] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[12] A. Aghabagherloo, M. Delavar, J. Mohajeri, M. Salmasizadeh, and
B. Preneel, “An efficient and physically secure privacy-preserving
authentication scheme for vehicular ad-hoc networks (vanets),” Ieee
Access, vol. 10, pp. 93 831–93 844, 2022.

[13] E. Lee, J.-W. Lee, Y.-S. Kim, and J.-S. No, “Optimization of homo-
morphic comparison algorithm on rns-ckks scheme,” IEEE Access,
vol. 10, pp. 26 163–26 176, 2022.

[14] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M.
Rasmussen, and A. Sahai, “Threshold cryptosystems from thresh-
old fully homomorphic encryption,” in Advances in Cryptology–
CRYPTO 2018: 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part I
38. Springer, 2018, pp. 565–596.

[15] A. Aghabagherloo, R. Gálvez, D. Preuveneers, and B. Preneel, “On
the brittleness of robust features: An exploratory analysis of model
robustness and illusionary robust features,” in 2023 IEEE Security
and Privacy Workshops (SPW). IEEE, 2023, pp. 38–44.

[16] J. Zhu, J. Yao, T. Liu, Q. Yao, J. Xu, and B. Han, “Combating
exacerbated heterogeneity for robust models in federated learning,”
arXiv preprint arXiv:2303.00250, 2023.

[17] C. Gentry, A fully homomorphic encryption scheme. Stanford
university, 2009.

Appendix

Appendix A: FHE Description

Homomorphic Encryption (HE) is a cryptographic sys-
tem that enables certain algebraic computations to be per-
formed directly on encrypted data. Fully Homomorphic
Encryption (FHE) extends this capability by supporting all
types of algebraic operations on encrypted data [17]. This
section describes key operations in the FHE-based RNS-
CKKS scheme [13].

Public Parameters

The scheme relies on several public parameters: q is the
ciphertext modulus, which determines precision and security
levels, Rq

2 is the ring of polynomials with coefficients mod-
ulo q, a is a uniformly random polynomial sampled from
Rq

2, and b is computed as b = −a · s + e mod q, where s
is the secret key and e is an error polynomial.

Key Generation

• Public Key (pk). The public key, used for encryption,
is generated as:

pk = (b, a) ∈ Rq
2.

Here, b is computed as b = −a · s+ e mod q, where
s is the secret key and e is an error polynomial.

• Secret Key (sk). The secret key, used for decryption, is
a polynomial s ∈ R, sampled from a predefined secret
key distribution.

Encryption

The encryption process transforms plaintext data (real or
complex numbers) into ciphertexts using the public key pk.

• Encoding: Let z ∈ CN/2 be the plaintext data. The
plaintext is first encoded into a polynomial m ∈ R
using a scaling factor ∆:

m = Ecd(z; ∆) = ⌊∆ · τ−1(z)⌉,

where τ is a field isomorphism that maps polynomials
to vectors of complex numbers.

• Encryption: The encoded polynomial m is then en-
crypted as:

Enc(z; pk) = ct = (v · pk + (m+ e0, e1)) mod qj .

Here:
– v is a random polynomial sampled from the encryp-

tion key distribution.
– e0, e1 are error polynomials sampled from the error

distribution.
– qj is the ciphertext modulus at level j.

Decryption

The decryption process converts ciphertexts back into
plaintext data using the secret key sk.

• Decryption: Given ciphertext ct = (ct0, ct1), the de-
crypted polynomial m̃ is computed as:

m̃ = ⟨ct0, sk⟩ mod q0.

Here, the operation ⟨·, ·⟩ denotes the inner product.
• Decoding: The decrypted polynomial m̃ is then de-

coded back into the plaintext vector z:

z = Dcd(m̃; ∆) = ∆−1 · τ(m̃).

Homomorphic Operations

• Addition (Add). The homomorphic addition of two
ciphertexts ct1 and ct2 is performed component-wise:

Add(ct1, ct2) = (c10 + c20, c11 + c21) mod qj .

• Multiplication (Mult). The homomorphic multiplica-
tion of two ciphertexts ct1 and ct2 involves:

1) Computing the tensor product:

d0 = c10 · c20 mod qj ,

d1 = c10 · c21 + c11 · c20 mod qj ,

d2 = c11 · c21 mod qj .

2) Relinearizing the result using the evaluation key evk:

ctmult = Relin(d0, d1, d2; evk).

• Scalar Multiplication. Given a ciphertext ct = (c0, c1)
and a scalar α ∈ R, the operation is:

α · ct = (α · c0, α · c1) mod qj .

Comparison Operation

The comparison operation compares two encrypted num-
bers a and b without decrypting them. It is defined as:

comp(a, b) =


1 if a > b,
1
2 if a = b,

0 if a < b.

The comparison function is implemented using the sign
function sgn(x), approximated via a minimax composite
polynomial:

sgn(x) ≈ pk ◦ pk−1 ◦ · · · ◦ p1(x),

where pi are polynomials of degree di, and ◦ denotes
function composition.

The approximation satisfies:

max
x∈D
|pk ◦ pk−1 ◦ · · · ◦ p1(x)− sgn(x)| ≤ 2−α,

where α is the precision parameter.

Appendix B: FHE-Based Implementation of
BALANCE

Specifically, assume the server wants to verify whether
client i accepts client j as benign based on the condition in
Ineq. 1:

n∑
k=1

((
w

t+1/2
i,k

)2

− 2w
t+1/2
i,k w

t+1/2
j,k +

(
w

t+1/2
j,k

)2
)

≤ γ · exp(−κ · λ(t)) ·
n∑

k=1

(
w

t+1/2
i,k

)2

The verification process involves the following steps:
Data Encryption by Clients. Each client i and client

j encrypts their vector components using a public key pk,
generated by a trusted party, ensuring that only the trusted
party can decrypt the results.
• Client i encrypts its vector wt

i :

ψ(w
t+1/2
i,k) = Encrypt(pk, w

t+1/2
i,k), k = 1, 2, . . . , n

Client j encrypts wt+1/2
i,k as well, and then encrypted

vectors are sent to server S.
Homomorphic Computation. Server S processes the

encrypted data using FHE without decrypting it.
1. Compute the encrypted squares for both vectors:

ψ(wt
i,k)

2 = Evaluate(Mult, pk, ψ(wt
i,k), ψ(w

t
i,k))

ψ(wt
j,k)

2 = Evaluate(Mult, pk, ψ(wt
j,k), ψ(w

t
j,k))

2. Compute the encrypted cross-term:

ψ(2wt
i,kw

t
j,k) = Evaluate(2 ·Mult, pk, ψ(wt

i,k), ψ(w
t
j,k))

3. Compute the sum of all terms:

ψ(result) =

n∑
k=1

(
ψ(wt

i,k)
2 − ψ(2wt

i,kw
t
j,k) + ψ(wt

j,k)
2
)

4. Server S verifies whether the inequality holds:

ψ(result) ≤ γ · exp(−κ · λ(t)) ·
n∑

k=1

ψ(wt
i,k)

2

To conduct this comparison check, the server utilizes the
RNS-CKKS scheme [13], as described in Appendix A.

By repeating this process across all clients, benign clients
can be identified without disclosing any client’s model.

Appendix C: Proof of Theorem I and Theorem
II

Theorem I: If client i detects client j as benign w.r.t.
its acceptance threshold and

σi(t).∥w
t+ 1

2
i ∥ ≤ σj(t).∥w

t+ 1
2

j ∥,

then client j will also detect client i as benign w.r.t. the
acceptance threshold γj .

Proof:
Assume that client i detects client j as benign. This

means that

∥wt+ 1
2

i −w
t+ 1

2
j ∥ ≤ 2γ exp(−κλ(t))∥wt+ 1

2
i ∥.

Now, assuming σi(t).∥w
t+ 1

2
i ∥ ≤ σj(t).∥w

t+ 1
2

j ∥, we can
apply following inequality:

∥wt+ 1
2

i −w
t+ 1

2
j ∥ = ∥wt+ 1

2
j −w

t+ 1
2

i ∥

≤ γi exp(−κλ(t))∥w
t+ 1

2
i ∥

≤ γj exp(−κλ(t))∥w
t+ 1

2
j ∥.

Thus, client j will detect client i as benign, as the
difference between their weights satisfies the condition for
being benign.

□
Theorem II: Let St

i denote the set of all benign clients
for client i, and let subSt

i be the set of clients j such that
j ∈ St

i and

σi(t)∥w
t+ 1

2
i ∥ ≤ 1

2
σj(t)∥w

t+ 1
2

j ∥.

In this case, all clients in subSt
i will inherit all clients in

St
i as benign.

Proof:
Let n and j be clients such that n, j ∈ Sj

t . Assume the
following conditions:

σi(t).∥w
t+ 1

2
i ∥ ≤ 1

2
σj(t).∥w

t+ 1
2

j ∥ (1)

From the given inequalities for n and j:

∥wt+ 1
2

i −w
t+ 1

2
n ∥ ≤ γi · exp(−κ · λ(t))∥w

t+ 1
2

i ∥ (2)

∥wt+ 1
2

i −w
t+ 1

2
j ∥ ≤ γi · exp(−κ · λ(t))∥w

t+ 1
2

i ∥ (3)

Now, applying the triangle inequality to the difference
between w

t+ 1
2

n and w
t+ 1

2
j :

∥wt+ 1
2

n −wt+ 1
2

j ∥ ≤ ∥wt+ 1
2

n −wt+ 1
2

i ∥+∥wt+ 1
2

j −wt+ 1
2

i ∥ (4)

From equations (2), (3), and (4), we have:

∥wt+ 1
2

n −w
t+ 1

2
j ∥ ≤ γi · exp(−κ · λ(t))∥w

t+ 1
2

i ∥

+γi · exp(−κ · λ(t))∥w
t+ 1

2
i ∥

Simplifying the right-hand side:

∥wt+ 1
2

n −w
t+ 1

2
j ∥ ≤ 2γi · exp(−κ · λ(t))∥w

t+ 1
2

i ∥

Since σi(t).∥w
t+ 1

2
i ∥ ≤ 1

2σj(t).∥w
t+ 1

2
j ∥ (from equation

1), we have:

∥wt+ 1
2

n −w
t+ 1

2
j ∥ ≤ γj · exp(−κ · λ(t))∥w

t+ 1
2

j ∥

Thus, client j will accept client n as benign.
□

	Introduction
	Our contribution

	BALANCE Personalized FL
	Secure and Efficient Implementation of Client Selection in BALANCE
	FHE-Based Implementation of BALANCE
	Optimized Client Selection Algorithm
	Optimized Client Selection Algorithm and Experimental Results

	Ongoing Work on Secure Implementation of Model Aggregation in BALANCE
	Conclusion and Future Work
	References
	Appendix

