
Trustworthy Silicon:
An MPSoC for a Secure Operating System

Sebastian Haas Christopher Dunkel Friedrich Pauls Mattis Hasler Yogesh Verma

{name}.{surname}@barkhauseninstitut.org
Barkhausen Institut, Dresden, Germany

Abstract—The rapid evolution of the Internet of Things (IoT)
has deeply integrated digital systems into our daily decision-
making processes, making their reliability crucial. A failure in
these systems not only disrupts functionality but can also pose
significant risks to human safety. While software updates have
become a standard measure for addressing vulnerabilities, the
increasing prevalence of hardware vulnerabilities in processors
is an emerging concern. These vulnerabilities can compromise
security features and application isolation mechanisms provided
by the operating system, undermining the overall trustworthiness
of these systems.

In this work, we introduce Masur23, the first silicon imple-
mentation of a trustworthy multi-processor chip platform that
incorporates a dedicated and independent hardware component
known as the Trusted Communication Unit (TCU) to enforce
access control mechanisms. While communication is managed
by the operating system, the TCU ensures the security of the
system by enforcing the isolation of untrusted hardware and
software components directly in hardware. Our measurements
demonstrate that implementing a TCU-based multi-processor
is not only feasible but also introduces minimal overhead in
terms of latency, area, and power consumption compared to other
components on the chip.

Index Terms—Trustworthy Chip Platform, Tiled Architecture,
Microkernel-based Operating System

I. INTRODUCTION

In recent years, the number of hardware vulnerabilities
in processors has steadily increased. Vulnerabilities such as
Meltdown [1] and Spectre [2] have demonstrated that affected
hardware often fails to maintain the isolation guarantees it
promises. This failure to uphold critical security assertions
at the hardware level cascades through the entire application
stack, starting with the operating system (OS), which relies on
these assertions to create isolated environments for applications,
abstracting them from the underlying hardware. However,
the effectiveness of the isolation provided by the OS is
fundamentally dependent on the integrity of the hardware
assertions it relies upon. When these hardware assertions are
compromised, the security guarantees provided by the OS and
all subsequent layers are likewise invalidated.

As processors, even those considered "simple", grow increas-
ingly complex, it becomes nearly impossible to verify that a
processor is free of intentional or unintentional vulnerabilities
that could compromise the isolation guarantees of the entire
system. Intentional vulnerabilities such as hardware trojans

are particularly concerning as they can be subtle and often
indistinguishable from ordinary hardware bugs. This challenge
is exacerbated by the fact that processors are continually
becoming larger and more complex, making the detection
of such vulnerabilities nearly impossible.

By physically isolating processors on a chip—either by
placing them in distinct, separated areas or across multiple
chips—entire classes of hardware vulnerabilities can be effec-
tively neutralized. While complete isolation is not feasible due
to the necessity of some form of communication, connecting
processors via a packet-based network and securing only the
communication pathways significantly reduces the complexity
of ensuring system security.

This concept is further developed in [3], which introduces
a HW/OS co-designed platform that supports a mikrokernel-
based OS, called M3, where each process and OS service
is assigned to its own processor. Communication between
processes is facilitated through capabilities that allow access
to globally shared memory or enable message passing between
processes. These capabilities are managed by the OS kernel
and enforced by the Trusted Communication Unit (TCU),
with each processor having its own TCU as the sole gateway
to the Network-on-Chip (NoC). Within such a platform, the
trusted computing base (TCB) is the set of hard- and software
components every application must rely on to maintain a
specific security objective. In particular, the TCB for an
application includes only the processor it runs on as well
as key components like the TCUs and the NoC. Based on
the description of the TCB, an attack model can be defined,
against which the platform is protected. That is, the platform
prevents an attacker from compromising the whole system
by exploiting vulnerabilities in untrusted hard- or software
components. These untrusted components are not part of the
TCB and isolated by a TCU, which strictly controls their
communication capabilities.

Use cases for a security concept like the described HW/OS
platform become particularly relevant when multiple appli-
cations run on the same hardware and must operate without
interference. In this context, non-interference means that a
compromised application—whether through a hardware vul-
nerability or a malicious software source—cannot threaten the
execution or integrity of other applications. This is especially
important in edge cloud systems and their associated hardware,
such as home servers.

https://orcid.org/0000-0002-1869-0826
https://orcid.org/0009-0004-5649-780X
https://orcid.org/0000-0003-1508-0261
https://orcid.org/0001-7979-674X
https://orcid.org/0000-0002-3389-0690

For instance, many commercial solutions like "Fritz!Box" or
NAS servers offer an "app"-like system management interface.
The risk arises when an app downloaded from a non-certified
source introduces a malicious process into the system. In such
scenarios, it is crucial that the attacker cannot compromise
the entire system, particularly ensuring that mission-critical
processes, such as basic routing functionality, remain unharmed
and fully operational.

In this work, we present Masur23, the first silicon imple-
mentation of a multi-processor system-on-chip (MPSoC) that
supports the described HW/OS security concept from [3] and
utilizes the TCU from [4]. The TCU acts as the core security
component for enforcing data access control and inter-processor
communication. Building on this foundation, an operating sys-
tem like M3 can achieve robust application isolation. Masur23
demonstrates that a TCU-based multi-processor implementation
is not only feasible but also introduces manageable overhead.
Specifically, the TCU adds approximately 14% overhead in
terms of area to a RISC-V based processing unit. The TCU
achieves data transfer rates of around 400MB/s with a clock
frequency of 100MHz and a 200 cycle round-trip time for
message passing between processors.

This paper is organized as follows. Section II gives an
overview of related work. Next, Section III introduces our
trustworthy tiled architecture concept and explains the isolation-
by-default approach. Section IV describes the implemented chip
architecture and gives details on the physical design. Section V
provides an evaluation of the chip, including experimental
results, followed by a conclusion in Section VI.

II. RELATED WORK

Our proposed and implemented chip platform facilitates
communication and isolation of untrusted hard- and software
components within an MPSoC that contains mutliple tiles
includes processing elements connected by a NoC. Several
approaches in the literature also address isolation and access
control mechanisms in SoC architectures. In this section, we re-
view state-of-the-art architectures that incorporate: A) memory
protection units (MPUs) as hardware-only solutions, B) MPUs
configured by software or an OS, and C) NoC-centric isolation,
where data transfers are routed to bypass untrusted tiles.

A. MPUs as hardware-only solutions

The concept of a dedicated hardware component, which
checks all requests initiated by a tile, commonly referred to
as MPU, has been extensively explored in the literature. For
example, the work in [5] introduces MPUs, termed hardware
firewalls, in each NoC interface of a tiled MPSoC. These
firewalls check tile access requests to memory against a lookup
table that contains predefined access rights.

Similarly, the work in [6] proposes a hardware firewall,
called isolation unit, integrated into each NoC interface of
a tile. Unlike the approach in [5], this isolation unit is not
configured by a centralized authority. Instead, each application
running on a tile has base permissions, with the ability to
transfer some of these permissions to other tiles.

Other research enhances these MPUs by implementing a
framework that enforces access control policies not only for
memory but also for various shared peripherals [7]. Further
extensions include runtime monitoring of security issues arising
from untrusted computing elements [8] or hardware trojan-like
attacks [9]. Additionally, Fiorin et al. [10] propose an MPU,
called data protection unit (DPU), along with a dedicated
hardware component known as the network security manager,
which configures the DPUs’ access rights. Incorporating a DPU
results in a 17% area and 7.5% energy overhead, without
negatively impacting system performance.

B. MPUs configured from Software

In contrast to our proposed chip platform system, the
MPUs in the aforementioned approaches are not managed
by privileged software or an operating system like M3, limiting
their ability to dynamically reconfigure access rights during
runtime and to handle application loading and scheduling.
However, some solutions in the literature introduce a soft-
ware architecture to support these hardware components.
For example, NoC-MPU [11] is a memory protection unit
configured by trust agents—privileged software that establishes
and maintains communication between tiles. Similarly, the
SecBus architecture [12] secures access to external memory
by attaching an MPU to the external memory interface, rather
than next to each computing unit. SecBus also incorporates
hardware cryptography engines to enable rapid creation of
digital signatures, which are used during system boot to verify
that the OS kernel has not been tampered with by an adversary.

These approaches represent a hardware/software co-design
that integrates hardware-enforced access permissions with the
management capabilities of the underlying operating system.
However, M3 extends these solutions by, e. g., adding support
for message passing, ensuring that also communication between
heterogeneous computing tiles is protected, not just access to
memory. Additionally, the NoC architecture in M3 facilitates
the design of a tiled and scalable system. Once communication
channels and access rights are configured by the M3 OS,
applications do not necessarily need to interact with the OS
kernel, enabling scalability from the software side.

C. NoC-centric isolation

Another approach to isolating tiles within a NoC involves
adapting the routing of data traffic. Specifically, customized
routers ensure that sensitive data is routed exclusively through
trusted nodes, thereby preventing potentially untrusted tiles
from accessing confidential information [13], [14]. Wehbe
et al. [15] build on this idea by utilizing the reconfigurability
of FPGAs to enhance adaptive routing. During the MPSoC’s
boot process, computing elements on all tiles are authenticated
using digital signatures. If a tile’s signature is invalid, the NoC
region corresponding to that tile is partially reconfigured on
the FPGA to disconnect its links.

These NoC-centric isolation strategies could serve as an
extension to our proposed chip platform. In M3, TCUs already
enforce isolation between tiles. Implementing adaptive routing

TCU
Core
Kernel

TCU
Core

TCUTCU

C2C
Interface

TCU
Core
App

TCU

Peripheral
Interface

TCU

C2C
Interface

TCU

DRAM
Interface

App

R R R

R R R

DRAM

C2C

Core
OS-Service

C2C

JTAG
UART

Fig. 1: Block diagram of a generic platform architecture. Pro-
cessing cores and interfaces are connected with a network-on-
chip through trusted communication units (TCUs). Clustering
is possible using chip-to-chip (C2C) links.

could further enhance security by protecting the system against
a different type of attack model: man-in-the-middle attacks.
For instance, if an attacker is located on a specific tile, data
leakage by monitoring traffic through the attacker’s adjacent
router would be prevented, as sensitive data transfers would
be rerouted to avoid passing through the compromised router.

III. TRUSTWORTHY CHIP PLATFORM

In this paper, we propose a chip platform with a tiled
hardware architecture designed to securely integrate untrusted
heterogeneous compute units. This architecture allows individ-
ual applications and software components of a microkernel-
based operating system to be mapped onto separate tiles,
thereby establishing a trustworthy chip platform. In the fol-
lowing sections, we detail the general chip architecture, the
M3 operating system, and the specific chip implementation.
Both the M3 software and the primary components of the
hardware implementation are available as open source1.

A. General Architecture

Our proposed chip platform is based on a tiled hardware
architecture, where multiple logically separated tiles are in-
terconnected by a network-on-chip (NoC), as illustrated in
Fig. 1. These tiles encapsulate various components, which can
include general-purpose cores, hardware accelerators, or other
compute units. Additionally, chip-to-chip (C2C) links, DRAM
controllers, and other peripheral interfaces can be integrated to
facilitate access to external memory or enable communication
with external devices. A key element of this design is the TCU,
which connects each component to the NoC, thereby enabling
secure communication between all components.

By default, communication between tiles is disabled to ensure
an inherently isolated system. Only the OS kernel, running on
a dedicated tile, has the authority to configure TCUs by setting
communication capabilities. These capabilities are stored in
endpoint registers, meaning that they are managed by software
but enforced in hardware by the TCUs. The TCUs also abstract
the underlying communication fabric (e.g., NoC) by imple-
menting various communication protocols for the functional
units they host (e.g., processing cores). Supported protocols

1https://github.com/Barkhausen-Institut/M3

are: 1) RDMA-like read and write operations for accessing
memory blocks of a remote or potentially shared memory (e.g.,
external DRAM); 2) message-passing channels for high-level
communication between applications on different tiles, as well
as between applications and the kernel (e.g., system calls); and
3) a caching interface that allows cores with caches to directly
access external DRAM with physical memory protection.

Before any communication channel is established, the TCU
verifies whether the relevant capabilities are configured; if not,
access is denied. OS features such as virtual memory and
context-switching enhance the performance of the software
but also require support from the TCU. For example, software
running on the core initiates an RDMA request and provides a
virtual address to the TCU. The TCU must translate this virtual
address to a physical address to access the right location in
the DRAM. For that purpose, the TCU implements a small
translation lookaside buffer (TLB) to speed up the address
translation process [16].

In general, the performance of MPSoCs can be enhanced by
increasing the parallelism on system-level. In our architecture,
this can be achieved by scaling the system to include more
tiles and expanding the NoC with additional routers. Another
approach we adopt in our Masur23 chip implementation
involves scaling the system by connecting multiple chips
via C2C links. Although C2C links introduce additional
communication delays, this scaling strategy allows for the
creation of flexible chip clusters.

From the perspective of the M3 OS, tiles on different chips
are managed similarly. However, when scheduling applications
across tiles, the OS may take the increased latencies into
account. For instance, applications with higher communication
demands should be placed on tiles within the same chip, while
those with lower communication demands can be distributed
across tiles on different chips.

B. Operating System

In contrast to monolithic OS’es, where the kernel has full
access to the entire system, microkernel-based systems like
M3 [17] or L4 [18] decompose the kernel into multiple isolated
components (e. g., drivers, file systems, protocols). These OS
services run as unprivileged software within their own address
spaces. Consequently, compromising the entire system typically
requires an attacker to exploit a series of vulnerabilities across
multiple software components, rather than just one, thereby
inherently enhancing system security.

The security concept is further reinforced by combining
the already isolated software components of the microkernel-
based system with the tiled hardware architecture. In this
setup, isolation between OS services and applications is not
solely dependent on software mechanisms, such as processor
privilege modes; instead, it is enforced at the hardware level
by the TCUs. Our proposed chip platform leverages this tiled
hardware architecture, running the microkernel-based M3 OS,
to provide a robust security framework.

https://github.com/Barkhausen-Institut/M3

TCU

Peripheral
Interface

TCU

RISC-V
Core

R

R

TCU

RISC-V
Core

TCU

C2C
Interface

R

TCU

C2C
Interface

R
TCU
RISC-V
Core

TCU
C2C

Interface

TCU
C2C

Interface

TCU
RISC-V
Core

C2C
C2C

C2C

C2CJTAG UART GPIO

(a) (b)

(c)

(d)

Fig. 2: Masur23 design. (a) Top-level architecture. (b) Post-layout design. (c) Fabricated die. (d) Custom-made wirebond
BGA-package on FR-4 basis.

IV. MASUR23 CHIP IMPLEMENTATION

In this section, we introduce Masur23, our first silicon
implementation of the M3 platform. The subsequent subsections
provide a detailed overview of both the architectural and
physical implementation of the chip.

A. Architecture

For the Masur23 chip, we implemented a subset of the
platform depicted in Fig. 1 to prototype and test the core
functionalities of the M3 system. This implementation allows us
to perform communication using the aforementioned protocols.
Specifically, we can access memory locations via RDMA
requests, enable communication between software components
through message passing, and utilize physical memory protec-
tion to forward cache accesses to external memory.

Our design includes four routers connected in an orthogonal
mesh configuration, as shown in Fig. 2a. Each router connects to
a processing tile that contains a 64-bit RISC-V Rocket core [19]
and a fully featured TCU. The Rocket core is equipped with
32 kB of L1 and 256 kB of L2 cache. In this implementation,
since no DRAM is directly attached to the chip, the cores
access external memory via C2C links.

Additionally, each router connects to a C2C tile, enabling
the system to scale outward in all directions. The C2C links
utilize a full-duplex single-lane Xilinx Aurora 8b10b serial link
over two pairs of Low-Voltage Differential Signaling (LVDS)
lines, with one pair dedicated to sending and the other to
receiving data. Each C2C tile includes a TCU to provide a
uniform interface with the NoC router, although fully featured
TCUs are not necessary in this context. Instead, these TCUs
are configured to forward all packets directly to the C2C link
and the corresponding peering chip. A third type of tile, the
periphery tile, is also included in the design. This tile houses a
collection of control and debug interfaces, such as JTAG and
UART, to facilitate system management and troubleshooting.

B. Physical Implementation

The Masur23 chip was engineered using a comprehensive
suite of EDA tools: Cadence Genus for synthesis, Innovus for

Module Count Area per Instance [mm2] Total area

Total area SRAM area SRAM % [mm2]

Processing tile 4 1.149 0.850 73.97 4.596
Rocket 4 0.874 0.681 77.91 3.496
TCU 4 0.141 0.11 78.01 0.564
NOC-IF 4 0.133 0.059 44.36 0.532

C2C tile 4 0.176 0.077 43.75 0.704
C2C Aurora 4 0.036 0.018 50.0 0.144
TCU 4 0.005 0 0 0.02
NOC-IF 4 0.134 0.059 44.02 0.536

Periphery tile 1 0.135 0.059 43.70 0.135
TCU 1 0.005 0 0 0.005
NOC-IF 1 0.130 0.059 45.38 0.130

NoC Router 4 0.014 0 0 0.056

TABLE I: Masur23 area utilization summary.

place-and-route, Tempus for static timing analysis, and Calibre
for physical verification. The chip fabrication was carried out at
GlobalFoundries’ Dresden facility, utilizing the 22 nm FD-SOI
technology.

The chip has a total die area of 9.9mm2, with dimensions
of 3.15× 3.15 mm2. Fig. 2b illustrates the post-route design,
highlighting the four tiles, each surrounded by their respective
SRAM cells. NoC and C2C links are positioned between the
RISC-V tiles, ensuring efficient communication across the chip.

The area utilization breakdown of the Masur23 chip
is detailed in Tab. I. Despite their compact design, the
RISC-V Rocket cores occupy 63.7% of the total area, while
SRAM cells account for 68.6%, with the majority allocated
to the Rocket core’s cache—specifically, 32 kB + 256 kB per
instance. Notably, the TCUs, critical for the system’s security
features, contribute only 10.7% to the total area. Two variants
of tiles are employed. The first variant are processing tiles
featuring a full-featured TCU connected with a Rocket core.
These TCUs require SRAM resources for I/O FIFOs, the TLB,
and endpoint registers. The second variant includes interface
tiles with a smaller TCU. These tiles connect to an external
interface like C2C links and peripherals. I/O FIFOs, TLB, and
endpoint registers can be omitted, leaving only the logic to
connect the NoC interface. In this configuration, the total TCU
area is reduced by 96.1% to 0.005mm2.

Fig. 3: PCB hosting two chips in BGA sockets. Chips are
connected by C2C links. PCB provides voltage control and
measurement, test points, USB-C connector and JTAG pin
headers.

V. EVALUATION

After the physical implementation, the Masur23 chips were
packaged and mounted on our printed circuit board (PCB). This
section provides an overview of our setup and presents the
measurement results obtained from the implemented system.

A. Evaluation Setup

Fig. 2d illustrates the custom-made package designed using
the Allegro Package Designer Plus tool. The package features
an eight-layer FR-4 substrate with a glued-on frame, specifically
designed to accommodate a polymer fill. This polymer fill
enhances thermal conductivity, electrical insulation, mechanical
stability, and environmental resistance. The chip is wire-bonded
to the package.

The chips are mounted in ball grid array (BGA) sockets on a
PCB, as shown in Fig. 3. This PCB is designed to accommodate
two Masur23 chips and to interconnect them via their C2C links.
The PCB also provides USB, JTAG, and UART connectivity,
facilitating communication between the chips and a host PC.
As depicted in Fig. 4, a host PC is required for the initial bring-
up process of the chips, while a remote PC can optionally be
used for remote access via gRPC. Additionally, the PCB has
adjustable power sources for the chip’s various power rails,
allowing independent tuning of the chip’s I/O ring, the on-
chip all-digital phase-locked loops (ADPLL), and the main
processing core. The board also provides a 100MHz reference
clock for the chips.

B. Experimental Results

In the lab, we conducted transfer workload tests to vali-
date the Masur23 chip’s suitability for running a distributed,
microkernel-based operating system like M3. These tests inher-
ently included the isolation mechanisms provided by the TCU,
as these cannot be disabled. The key metrics for evaluating the
chip’s performance in running a distributed operating system,
or distributed applications in general, are communication
bandwidth and latency. Communication bandwidth refers to
the amount of data that can be transmitted between processors
per unit of time, which may be expressed in natural time units
such as seconds or normalized to the base clock frequency

Masur23
#1

C2C

GPIO
Cortex-M4

UART

LAN

USB

Masur23
#2

gRPC Server

Host PC

gRPC Client

Remote PC

JTAG

GPIO

Power
Control &
Monitor

I²C

Fig. 4: Evaluation setup overview.

in cycles. Latency is measured as the time required to send
a message and receive an acknowledgment that the message
has successfully reached its destination, a critical factor in
operating systems. For scalability testing, communication was
also evaluated across chip boundaries to ensure that the chip
can operate as part of a seamless cluster setup, running a single
operating system across multiple chips linked by C2C connec-
tions. The measured communication speeds are summarized
in Tab. II. These measurements were performed end-to-end,
with timestamps recorded before and after invoking a TCU
driver function to send a message. The driver function returns
only when the acknowledgment is received. To contextualize the
measured values, we calculated the theoretical transfer speed
by considering the protocol overheads. The NoC transfers only
the header in the first cycle, followed by 128 bits per cycle.
At a clock frequency of100MHz, this results in a bandwidth
range of 800MB/s to 1592MB/s, depending on the message
length. Long messages were used for bandwidth measurements,
while short messages were used to measure latency. The C2C
links utilize single-line serial communication based on the
Aurora protocol, which employs 8b10b encoding at the lowest
layer. The protocols introduce overhead factors of 0.93 and
0.8, resulting in a combined total overhead factor of 0.47,
including the NoC overhead. With a baseline frequency of
800MHz, the theoretical bandwidth of a C2C link is 47MB/s.
Considering these theoretical communication speeds, a single
processor with a TCU and the M3 software stack achieves
approximately 26% utilization of the NoC bandwidth and over
95% utilization of the C2C links (cf. Tab. II). The relatively
low NoC utilization can be attributed to the M3 software stack,
which serializes transfers, and the requirement for each message
to be acknowledged, causing the sender to wait for a response
from the receiver before sending the next message.

As shown in Tab. II, the round-trip time for transporting
a message from one processor to another is 193 cycles for
on-chip transfers and 306 cycles for cross-chip transfers. This
transfer process includes the time for the software stack, TCU
command handling with rights management, the actual transfer
over the NoC, and the acknowledgment sent back to the original
sender. This entire pipeline is sufficient to implement safe and
secure remote system calls in a distributed operating system.

In this context, security refers to the OS’es requirement
to control all communication channels between processors,
while safety ensures that sent messages arrive at their intended
destination and that the order of requests and replies is

Bandwidth [MB/s] Latency [cycles]

Test measured theoretical

on-chip 395 1592 193
chip-to-chip 45 47 306

TABLE II: Communication speed @100MHz

Processing tiles 1 2 3 4 isolated

Scenario Power [mW]

Chip idle 39.0
Tile enabled 41.6 44.8 48.0 52.8 3.4 / tile
Tile working 43.0 49.5 55.1 59.6 2.1 / tile
Chip-to-Chip enabled 43.2 4.2 / link
Chip-to-Chip transfer 46.9 3.7 / link

TABLE III: Power Consumption

preserved. Simulations conducted in [4] indicated that the
round-trip time for a transfer without involving the software
stack is roughly 100 cycles. This implies that each of the three
components—the software stack, the TCU/NoC, and the C2C
links—add about 100 cycles of latency.

When comparing these experimental results with the require-
ments outlined for the M3 operating system in [16], which
states that system calls with a duration of around 500 cycles
are sufficient, it is evident that the presented hardware is more
than capable of supporting the smooth operation of M3.

Power consumption of the chip was measured across various
use cases to isolate the power consumed by a processor, on-
chip communication, and off-chip communication. As shown
in Tab. III, simply powering on the chip without starting any
processors consumes 39mW. Enabling a processing tile (by
opening the clock gate) increases the power consumption by
approximately 3.4mW per tile. Data transfer between tiles
consumes an additional 2.1mW per processor. Using the
C2C communication links draws more power than operating
a processing tile, primarily due to the LVDS drivers, which
operate at significantly higher voltage and frequency levels.
A single C2C link consumes 4.2mW when idle, with an
additional 0.3mW consumed during data transfer. The minimal
additional power consumption during data transfer can be
attributed to the fact that, once activated, the Aurora protocol
begins constant communication, i. e. it is sending messages back
and forth regardless of whether actual data must be transferred.

C. Usability for Real-World Workloads

The aforementioned use case of a home router or NAS
system might involve a chipset similar to the one used in a
Synology Beestation. This NAS system is equipped with an
RTD1619B chipset [20] that features four Arm Cortex-A55
cores clocked at 1.7GHz, along with an additional GPU, 1MB
of cache, and components such as video accelerators and on-
chip Ethernet controllers. The RTD1619B is designed using a
12 nm process and has a thermal design power (TDP) of 5W.
Although the performance of our presented chip, being the first
iteration of this platform to be manufactured in silicon, does
not yet match the performance of RTD1619B, it is possible

to extrapolate the potential performance based on results from
other silicon-proven designs. A previous chip implementation
described in [21], which used the same technology, the exact
same NoC, and a similar network interface unit (though
without security features), demonstrated similarly low power
consumption at a base frequency of 500MHz. Assuming that
the base frequency of our chip is scaled to 500MHz, a cluster
of four chips, each containing four RISC-V cores capable
of executing 500M instructions per second, could achieve
a combined total of approximately 8000M instructions per
second. In comparison, the RTD1619B, with its four cores
running at 1700M instructions per second each, achieves 6800M
instructions per second in total. This comparison indicates that
our platform would operate within the same order of magnitude
in terms of computational performance. Based on the power
consumption data from [21], it is reasonable to apply a power
scaling factor of 10 to extrapolate from 100MHz to 500MHz.
Therefore, the total power consumption of the envisioned chip
cluster in milliwatt is estimated to be:

idle 4x tile 2x C2C
(39 + 4(3.4 + 2.1) + 2(4.2))

scaling # of chips total
* 10 * 4 = 2776

Compared to the RTD1619B’s TDP of 5W, our envisioned
chip cluster would operate within a similar power consumption
range, indicating that our platform is competitive in terms of
both performance and energy efficiency.

VI. CONCLUSION AND OUTLOOK

We presented Masur23 as the first silicon implementation of
an MPSoC architecture that utilizes TCUs as core security com-
ponents to enforce OS-provided policies and isolate untrusted
software and hardware components. Notably, the TCU, which
provides security for the entire chip, occupies only 10.7% of
the total area. Transfer workload tests have demonstrated that
the platform is capable of running a distributed operating system
like M3. Furthermore, compared to a chip from a real-world
application—lacking the security features introduced by our
TCU—we have shown that Masur23 operates within a similar
range of performance and power consumption, highlighting its
competitiveness and efficiency.

As part of our future work, we plan to showcase real-world
attack scenarios such as man-in-the-middle and side-channel
attacks as well as the impact of malicious components like
hardware trojans. Furthermore, to validate the effectiveness of
the HW/OS isolation approach, we plan to extend the chip
platform to support security features such as trusted execution
environments and remote attestation.

VII. ACKNOWLEDGMENT

This research was partly funded by the German Federal
Ministry of Education and Research under grant number
16ME0527. This research is also financed on the basis of
the budget passed by the Saxon State Parliament in Germany.
Furthermore, we thank Racyics GmbH for providing EDA tools
and the flip-chip packaging solution as well as Contronix GmbH
for PCB design and fabrication.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading Kernel Memory
from User Space,” meltdownattack.com, 2018. [Online].
Available: https://meltdownattack.com/meltdown.pdf.

[2] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre Attacks: Exploiting Speculative Exe-
cution,” meltdownattack.com, 2018. [Online]. Available:
https://spectreattack.com/spectre.pdf.

[3] F. Pauls, S. Haas, S. Köpsell, M. Roitzsch, N. As-
mussen, and G. Fettweis, “On Trustworthy Scalable
Hardware/Software Platform Design,” in Smart Systems
Integration Conference and Exhibition (SSI), Apr. 2022.

[4] S. Haas and N. Asmussen, “A Trusted Communication
Unit for Secure Tiled Hardware Architectures,” in 2022
29th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2022, pp. 1–4.

[5] M. D. Grammatikakis, K. Papadimitriou, P. Petrakis,
A. n. Papagrigoriou, G. Kornaros, I. Christoforakis, and
M. Coppola, “Security Effectiveness and a Hardware
Firewall for MPSoCs,” in 2014 IEEE Intl Conf on High
Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security,
2014 IEEE 11th Intl Conf on Embedded Software and
Syst (HPCC,CSS,ICESS), 2014, pp. 1032–1039.

[6] B. Tan, M. Biglari-Abhari, and Z. Salcic, “A System-
level Security Approach for Heterogeneous MPSoCs,”
in Conference on Design and Architectures for Signal
and Image Processing (DASIP), 2016, pp. 74–81.

[7] F. Restuccia, A. Meza, and R. Kastner, “Aker: A
Design and Verification Framework for Safe and Secure
SoC Access Control,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2021,
pp. 1–9.

[8] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security
Assurance for System-on-Chip Designs With Untrusted
IPs,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 7, pp. 1515–1528, 2017.

[9] H. Salem and N. Topham, “Trustworthy computing on
untrustworthy and Trojan-infected on-chip interconnects,”
in 2021 IEEE European Test Symposium (ETS), IEEE,
2021, pp. 1–2.

[10] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and
C. Silvano, “Secure Memory Accesses on Networks-on-
Chip,” IEEE Transactions on Computers, vol. 57, no. 9,
pp. 1216–1229, Sep. 2008, ISSN: 0018-9340.

[11] J. Porquet, A. Greiner, and C. Schwarz, “NoC-MPU:
A secure architecture for flexible co-hosting on shared
memory MPSoCs,” in Proceedings of the Design, Au-
tomation & Test in Europe Conference & Exhibition,
ser. DATE’11, Mar. 2011, pp. 1–4.

[12] J. Brunel, R. Pacalet, S. Ouaarab, and G. Duc, “SecBus,
a Software/Hardware Architecture for Securing External
Memories,” in 2014 2nd IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering,
2014, pp. 277–282.

[13] J. Sepulveda, R. Fernandes, C. Marcon, D. Florez, and
G. Sigl, “A Security-Aware Routing Implementation for
Dynamic Data Protection in Zone-Based MPSoC,” in
Proceedings of the 30th Symposium on Integrated Cir-
cuits and Systems Design: Chip on the Sands, ser. SBCCI
’17, Fortaleza, Ceará, Brazil: Association for Computing
Machinery, 2017, pp. 59–64.

[14] S. Charles and P. Mishra, “Lightweight and Trust-Aware
Routing in NoC-Based SoCs,” in 2020 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2020,
pp. 160–167.

[15] T. Wehbe and X. Wang, “Secure and Dependable NoC-
Connected Systems on an FPGA Chip,” IEEE Trans-
actions on Reliability, vol. 65, no. 4, pp. 1852–1863,
2016.

[16] N. Asmussen, S. Haas, C. Weinhold, T. Miemietz, and
M. Roitzsch, “Efficient and Scalable Core Multiplexing
with M3v,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Lan uages and Operating Systems, ser. ASPLOS’22,
Lausanne, Switzerland, 2022, pp. 452–466.

[17] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and
G. Fettweis, “M3: A Hardware/Operating-System Co-
Design to Tame Heterogeneous Manycores,” in 21st
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), ser. ASPLOS’16, 2016, pp. 189–203.

[18] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter, “The performance of µ-kernel-based systems,”
ACM SIGOPS Operating Systems Review, vol. 31, no. 5,
pp. 66–77, 1997.

[19] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D.
Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser,
A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, and J.
Koenig, “The Rocket Chip Generator,” EECS, University
of California at Berkeley, Tech. Rep. UCB/EECS-2016-
17, 2016.

[20] GadgetVersus.com. “RealTek RTD1619B.” (2024), [On-
line]. Available: https:/ /gadgetversus.com/processor/
realtek-rtd1619b-specs/ (visited on 08/27/2024).

[21] M. Hasler, S. Haas, R. Wittig, S. Scholze, A. Dixius,
S. Höppner, G. Fettweis, and C. Mayr, “A Random
Linear Network Coding Platform MPSoC Designed in
22nm FDSOI,” in 2022 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2022, pp. 217–222.

https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf
https://gadgetversus.com/processor/realtek-rtd1619b-specs/
https://gadgetversus.com/processor/realtek-rtd1619b-specs/

	Introduction
	Related Work
	MPUs as hardware-only solutions
	MPUs configured from Software
	NoC-centric isolation

	Trustworthy Chip Platform
	General Architecture
	Operating System

	Masur23 Chip Implementation
	Architecture
	Physical Implementation

	Evaluation
	Evaluation Setup
	Experimental Results
	Usability for Real-World Workloads

	Conclusion and Outlook
	Acknowledgment

