Bureaucracy in Systems

Measuring System Complexity by the Amount of Digital Paperwork

Michael Roitzsch
Barkhausen Institut
Dresden, Germany

Abstract

Managing complexity in a systems architecture is often re-
garded as a point on a spectrum between a monolithic system
and a microkernel-based system. On a monolith, all complex-
ity and functionality is collected in a few components or — in
the extreme case — in a single one. In a microkernel-based
system, components are small and have reduced purpose,
simplifying the individual components. However, we argue
that complexity was not reduced but merely moved from a
single component with inherent complexity to the complex
interactions between many small components. In order to
make a fair argument, we must not only consider the size
of components, but also the complexity manifested in the
interfaces between them. We therefore propose to learn from
bureaucratic process and apply the experienced bureaucracy
of component interactions as a novel complexity metric we
call Trans-Compartmental Bureaucracy (TCB). We show how
this metric leads to different characterizations of system ar-
chitectures compared to existing complexity metrics.

1 Introduction

Complexity in systems is growing to a point, where it has
become of paramount importance for system architectures
to successfully manage this complexity. Complexity is being
accrued in all layers of the systems stack: Hardware is increas-
ingly complex [1, 2] and must be managed by the operating
system. For these operating systems, complexity-induced ex-
ploitable bugs have become a standard concern [3]. Finally,
local and distributed application runtimes accrue complexity
due to demands for non-functional properties like scalability,
low tail-latencies, and fault tolerance [4].

To manage this complexity, two architectural design pat-
terns are considered as system archetypes: the monolith and
the microkernel-based system. Monoliths implement system
functionality in a few or one large component, the main ex-
ample being the Linux kernel. This single component accrues
alot of privilege, since every subsystem inside it has full con-
trol over the entire system. As this is considered a security
downside [5], the microkernel design has emerged. Compo-
nents in microkernel-based systems have a clear focus and are
individually much simpler. However, the level of interaction
between components is higher than in a monolithic system.

Which of these extremes fares better is not immediately
apparent. While individual components are expected to be
less complex in microkernel-based systems, there are more

of them. Therefore, one can argue that complexity has moved
from being embedded within one large component to the
interactions between many small components [6]. To fairly
compare both solutions, a complexity metric is needed that
covers both aspects: component-intrinsic and component-
interaction complexity. For complexity intrinsic to individual
components, systems research typically uses source lines of
code as a proxy metric. However, the situation is less clear for
interaction complexity.

In this work, we consider a novel, unifying complexity
metric covering both component-intrinsic and component-
interaction complexity. We propose a design for this metric
that is inspired by the experienced bureaucracy in adminis-
trative processes. A process implemented by a monolithic
administrative entity is experienced by overcomplicated pa-
perwork with lots of mysterious and unexpected effects. A
process implemented by a multitude of small administrative
entities is experienced by seemingly pointless back-and-forth
between these entities, often resulting in very little experi-
enced progress. We believe this is a good starting point that
a metric design for digital systems should be based upon.

In the following, we compare monolithic and microkernel-
based systems in greater detail (Section 2). We then map these
system archetypes to bureaucratic processes (Section 3), de-
riving our proposed complexity metric, which we call Trans-
Compartmental Bureaucracy (TCB).! By holistically applying
this metric to the entire systems stack of hardware, operating
system, and application runtime, we discuss how TCB allows
anuanced comparison of system designs (Section 4).

2 Of Monoliths and Microkernels

Monolithic and microkernel-based designs are two extreme
cases on a spectrum of possible system design points. How-
ever, it is educational to consider them as the two archetypes
of system design as actual systems like Linux or the L4 mi-
crokernel family clearly gravitate towards their respective
extreme case. Figure 1 illustrates the main difference of these
system designs in dealing with complexity.

In a monolithic system, all functionality is aggregated
in one large, centralized component. This component con-
sequently provides all this functionality to clients directly
through its public interface. While offering a single point of
service, the interface consequently becomes rich and diverse.
As features get added, more internal complexity is expressed

Yes, TCB is already taken. Yes, this is a bad idea. You’re reading a WACI paper.

monolith microkernel

component size
component count

intrinsic complexity

interaction complexity

Figure 1. Properties of monolithic and microkernel systems

by this interface, leading to baroque constructions like the
ill-famed ioctl().

In a microkernel-based system, functionality is split across
multiple interacting components. For example, reading from
a file is one system call in a monolith, but can involve file
system, buffer cache, memory pager, block device layer, and
device driver components. These components may recur-
sively invoke each other, or ask the client to iteratively invoke
a combination of components in the right order. While each of
the involved interfaces is focused and thus simpler compared
to a monolithic system, it takes a multitude of them to get
meaningful work done.

One can make the claim that going from a monolith to a
microkernel, complexity just moves from a single complex
component to the complex interactions between many com-
ponents. Which situation is better is not immediately obvious.
Consequently, literature has reported contradicting results
on this question [5, 6].

3 Bureaucracy as a Complexity Metric

To compare the overall complexity of systems, we need a
measure covering both component-intrinsic and component-
interaction complexity. Such a metric does not appear to exist.
The often used source lines of code serves as a proxy for
component-intrinsic complexity only. We propose to con-
struct a new metric by taking inspiration from bureaucracy:
the more bureaucratic an administrative process feels, the
more complexity is indicated.

Translated to the monolith and microkernel archetypes:
A monolith exposes its internal complexity through one gi-
ant interface, with different functionality offered at different
levels of abstraction. This large interface is onerous and bur-
densome to navigate. Lots of hidden state can lead to unex-
pected outcomes. Mistakes in using the interface or in the
implementation behind the interface can have wide-reaching
consequences, as you always interact with the full power of
a centralized system. The administrative analogy is an Or-
wellian 1984-style single-body government.

A microkernel on the other hand grinds you down by bounc-
ing you from component to component. Interactions with
these components are each much simpler, but they end up
being mostly meaningless as individual components cannot
achieve much by themselves. The system seems constructed
to capture you in endless interactions and protocol busywork.

| client |

3

> W7

recursion

{JJUB\R'

monolith iteration

Figure 2. Complexity measured as interface boundary area

The administrative analogy is a Brazil-style? dysfunctional
Rube Goldberg construction of government.

To measure systemic bureaucracy in this way, we propose
to develop tools that analyze the penetration depth into a com-
ponent’sinternal state afforded by its interface. In other words,
how deep inside the component can I reach by using its inter-
face. We imagine such a tool to operate similar to existing taint
analysis tools, measuring the boundary area of reachable inter-
nal state. For a monolithic system, this will lead to a high com-
plexity measure as the single monolithic component exposes
alot of state through its interface (Figure 2, left). However, for
the interacting components of a microkernel, two effects will
play a role: First, the large number of individual interfaces
available to clients adds up (Figure 2, middle). Second, compo-
nents recursively invoking other components will have their
reachable state boundary stretch across components, thus in-
dicating a higher overall complexity (Figure 2, right). It is this
component-crossing measurement that led us to name this
proposed metric Trans-Compartmental Bureaucracy (TCB).

4 Discussion

How would we expect this novel metric to behave in prac-
tice? When purely looking at the operating system kernel,
we would expect a microkernel to indeed have a lower TCB
measure compared to a monolithic kernel, given its reduced
interface and smaller internal state. However, a user space
component that is large in overall code size, but small in terms
of exposed interface is an example, where traditional complex-
ity metrics such as source lines of code and TCB will differ. And
indeed, a large component that has no access to other down-
stream components and thus does not recursively expose
their interfaces can be considered as unbureaucratic and thus
unproblematic for overall system complexity, despite its size.

Therefore, we believe the idea of a bureaucracy-guided
complexity metric is valuable. With TCB, we have proposed
a sketch as to how such a metric could work. It can be applied
to analyze and compare component-based application run-
times or microkernel-based system designs. In the light of
Fiedler et al. [2], TCB can also measure the software/hardware
interface, opening up additional research avenues.

2The Terry Gilliam movie, not the actual country.

References

(1]
(2]

(3]

Andrew Baumann. Hardware is the new Software. 16th Workshop on Hot
Topics in Operating Systems (HotOS), Whistler, BC, Canada, May 2017
Ben Fiedler, Roman Meier, Jasmin Schult, Daniel Schwyn, and Timothy
Roscoe. Specifying the de-facto OS of a production SoC. 1st Workshop
on Kernel Isolation, Safety and Verification (KISV), Koblenz, Germany,
October 2023

Nicolas Palix, Gaél Thomas, Suman Saha, Christophe Calvés, Julia Lawall,
and Gilles Muller. Faults in linux: ten years later. 16th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Newport Beach, CA, USA, March 2011

(4]

(5]

(6]

Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. What bugs
cause production cloud incidents? 17th Workshop on Hot Topics in
Operating Systems (HotOS), Bertinoro, Italy, May 2019

Simon Biggs, Damon Lee, and Gernot Heiser. The jury is in: monolithic
OS design is flawed: microkernel-based designs improve security. 9th
Asia-Pacific Workshop on Systems (APSys), Jeju Island, Republic of
Korea, August 2028

Hugo Lefeuvre, Vlad-Andrei Badoiu, Yi Chien, Felipe Huici, Nathan
Dautenhahn, and Pierre Olivier. Assessing the impact of interface
vulnerabilities in compartmentalized software. Network and Distributed
System Security Symposium (NDSS), San Diego, CA, USA, March 2023

	Abstract
	1 Introduction
	2 Of Monoliths and Microkernels
	3 Bureaucracy as a Complexity Metric
	4 Discussion
	References

