
Core-Local Reasoning and Predictable
Cross-Core Communication with M³

Nils Asmussen∗, Sebastian Haas∗, Adam Lackorzyński†, Michael Roitzsch∗
∗Barkhausen Institut, Dresden, Germany and †TU Dresden, Germany

{nils.asmussen,sebastian.haas,michael.roitzsch}@barkhauseninstitut.org, adam.lackorzynski@tu-dresden.de

Abstract—Modern cyber-physical systems often require security,
heterogeneity, and real-time operation from their hardware
platform and operating system. However, highly predictable real-
time operating systems such as FreeRTOS do not employ strong
component isolation required for platform security. Microkernels
implement such isolation using virtual memory and code running
in the privileged CPU mode, complicating real-time analysis.

In this work, we start with a different architectural approach:
M3 is an existing hardware/software co-design for heterogeneous
systems that features strong isolation between cores. However, the
real-time properties of this platform have not been investigated.
We first survey M3’s current state for real-time applicability
and study both the communication latencies in comparison to
other systems and M3’s different approach to task priorities.
Furthermore we improve M3’s real-time applicability by adding a
network-on-chip traffic regulation and enabling the enforcement of
resource limits. With these additions, M3 enables local reasoning
about application execution. We perform the evaluation with an
FPGA-based hardware prototype and in simulation based on gem5.

Index Terms—real-time, system architecture, operating systems,
message passing

I. INTRODUCTION

Cyber-physical systems (CPSes) and Internet-of-Things (IoT)
appliances often are real-time systems deployed in embedded
devices that are connected to a cloud-based backend. These type
of systems are already deployed in industrial production and are
expected to become ubiquitous in use cases like personal robotics,
health care, electrical grids, water supply, and transportation.

With such diverse use cases and operating environments, these
devices need a platform which simultaneously addresses security
concerns, hardware-level heterogeneity, and real-time require-
ments. Heterogeneity is introduced because the large-scale de-
ployments and the energy-constrained nature of battery-powered
devices demand energy-efficient operation. General-purpose
processors can flexibly run arbitrary code, but they are often not
the most energy-efficient solution to a problem. For specific work-
loads known ahead of time, it is beneficial to include a processor
with specialized instruction-set extensions, or even a dedicated
programmable or fixed-function accelerator like a graphics
processor or a neural-network engine. Managing these diverse
compute resources with a common set of systemwide abstractions
is challenging [36], [18], [38], [31]. Many existing operating sys-
tems only treat CPU cores as first-class resources and accelerators
as peripherals, leading to limitations like file-system access only
being available for code on a CPU, but not for code on a GPU.

Since CPSes interact with their physical environment to fulfill
control tasks, some workloads must adhere to timing require-
ments. To prove conformance, the software components serving
such workloads as well as the underlying hardware must be
predictable to facilitate a rigorous worst-case timing analysis. But
this may not be needed for all running applications. Connecting
the device to the cloud backend may be less timing-critical,
leading to another dimension of system heterogeneity: platforms
can combine a processor optimized for predictable execution like
an Arm Cortex-R with a processor optimized for average-case
performance like an Arm Cortex-A. The Cortex-R would also run
a predictable software stack based on a real-time operating system
like FreeRTOS, while the Cortex-A can run best-effort work
on Linux. This separation allows to analyse the real-time part
independently; a property we call local reasoning. Such platforms
are gaining industry traction for systems in modern cars [2], [3].

Security is the third necessary property. Since CPSes can be
deployed in critical infrastructure or other areas with potential
harm to humans, they have to pay special attention to attacks
by malicious actors. Security best practices teach us that attack
prevention requires reducing the attack surface and constructing
layered defenses. However, the reality is that FreeRTOS and
other real-time operating systems offer no isolation1 between
activities, because MMU-based virtual address spaces and
inter-process communication routed through privileged kernel
code complicate timing analysis. This problem is worsened when
messages leave the current core and are destined for another
processor or accelerator. Such messages require signaling based
on inter-processor interrupts (IPIs), where the delivery path has
to traverse a kernel on both the sender and the receiver, before
reaching the target application.

We thus observe a fundamental tension between systems
with strong isolation between components, potentially running
separated on heterogeneous cores, and the predictability and
low latency of inter-component communication. Isolation
requires the use of hardware features like MMUs and IPIs
and a kernel running in the processor’s privileged mode.
However, these steps add jitter and complicate worst-case timing
analysis. Microkernels improve inter-component messaging
by implementing a low-complexity jitter-reduced kernel path,
but still experience hardware-level jitter [21]. The obvious
alternative of communication based on shared memory avoids

1We use the term ‘isolation’ in the security sense, whereas ‘local reasoning’
describes modularity of timing analysis. These concepts are orthogonal, with
Linux and FreeRTOS being examples of having one without the other.

Michael Roitzsch
Copyright 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

the kernel on the critical path, but complicates analysis by
inviting interference from all applications on all processors
accessing the same memory. Technologies like MemGuard [44]
try to mitigate this problem, but interference on a globally
shared resource remains difficult for real-time system design.

In this paper, we want to explore a different system
architecture and its suitability for real-time CPSes. M3 [9] is an
existing hardware/software co-design for heterogeneous systems.
It is based on a tiled architecture, with strong isolation between
tiles, enforced by a hardware component called Data Transfer
Unit (DTU). This construction provides the basis for secure
system construction, while offering an interesting alternative
to traditional MMU- and kernel-based isolation. The follow-up
work M3x [8] has demonstrated efficient use of accelerators,
underlining the support for heterogeneous systems. M3v [7]
added context-switching, an important puzzle piece for task
scheduling, but the real-time properties of M3 have not yet
been explored. Since previous work already demonstrated the
applicability of M3 for secure and heterogeneous systems, we
now evaluate communication latency and jitter and perform
architectural changes to improve predictability. This paper is
structured as follows and makes the following contributions:
1) After the background on our definition of system-level

security and the M3 architecture in Section II, we survey
and discuss the current state of M3 for its suitability
to run real-time workloads in Section III. We identify
local reasoning as a key M3 benefit: timing influences of
applications can be analysed with tile-local knowledge.

2) We enhance M3 in Section IV by a traffic regulation for
the on-chip network to enable analysability of cross-tile
communication. The traffic regulation is enforced by the
DTU, but configured based on M3’s capability system,
extended by capability derivation. Furthermore, we improve
M3’s energy efficiency by adding a kernel-less and therefore
jitter-reduced core sleep feature.

3) In Section V, we first study M3’s current state on the FPGA-
based hardware platform by evaluating the communication
behavior in comparison to other systems and evaluating
M3’s approach to task priorities.

4) Finally, we evaluate the effectiveness of our additions to
enable local reasoning and to support a jitter-reduced core
sleep on our gem5 prototype.

II. BACKGROUND

Before introducing the M3 architecture, we explain the notion
of system-level security as we use it within this paper.

A. Security and the Trusted Computing Base

The term security in the context of this paper should be
understood as an effort to increase resiliency by a systematic
reduction of the system’s attack surface. This approach is different
from other lines of research, which approach security concerns as
special scheduler obligations, e.g. scheduling intrusion detection
software [17], information flow prevention [28], or covert channel
mitigation [39]. These notions are largely orthogonal to attack sur-
face reduction, but within this paper, we exclusively use the latter.

Core

TileMux

ServApp
M³ Kernel

Core Core

TileMux

Application

Memory

DTU

AcceleratorCore

TileMux

Service

DTU

Logic

DTU DTU

DTU DTU

Fig. 1: System architecture of M3: one DTU per tile isolates
tiles from each other and selectively allows communication as
configured by the M3 kernel. TileMux multiplexes its tile among
the applications on this tile.

Reduction of the attack surface is achieved by strict
application of the principle of least privilege. Each component
in the system should run with the minimal set of permissions
necessary to fulfill its duties. In such a system, compromising
a component by exploiting a vulnerability in its design or
implementation results in granting the attacker the smallest
possible amount of additional privileges.

The counter-example are monolithic systems like Linux,
where large amounts of complex functionality are packaged into
a single privileged kernel component. Therefore, one exploitable
vulnerability there can directly lead to full system compromise.
In contrast, microkernel-based designs encourage the separation
of system functionality into strongly isolated components, thus
presenting layered defenses against attacks. We explain in the
following subsection how M3 extends this isolation approach
from software to the hardware architecture.

Even in a microkernel-based system with isolated components,
some parts of the system are relied upon by every application.
This Trusted Computing Base (TCB) always contains those
pieces of the system implementing inter-component isolation
and communication.

B. The M3 Hardware/Software Platform

M3 [9] proposes a new system architecture based on a
hardware/software co-design. On the hardware side, M3 builds
upon a tiled architecture [43], as shown in Figure 1. M3 extends
its tiles by adding a new hardware component called data transfer
unit (DTU) to them. Each tile contains a DTU and either a core,
an accelerator, or memory (e.g., a memory interface to off-chip
DRAM) and the tiles are connected via a network-on-chip (NoC).
In contrast to conventional architectures, M3 does not build
upon coherent shared memory, but uses the DTU for cross-tile
messaging and memory accesses. To perform message-passing or
memory accesses, a corresponding communication channel (thick
black lines in the figure) needs to be established. Communication
channels are represented as endpoints in the DTU (orange dots).
At runtime, each endpoint can be configured to different endpoint

types: A receive endpoint allows to receive messages, a send
endpoint allows to send messages to a specific receive endpoint,
and a memory endpoint allows to issue DMA requests to tile-
external memory. Message passing is performed between a pair of
send and receive endpoint, whereas each memory endpoint refers
to a memory region without an endpoint on the memory side.

On the software side, M3 runs its kernel (red) on a dedicated
kernel tile, and applications and OS services on the remaining
user tiles. Applications and OS services on user tiles are
represented as activities, comparable to processes. An activity
on a general-purpose tile executes code, whereas an activity on
an accelerator tile uses the accelerator’s logic. Activities can
use existing communication channels, but only the M3 kernel is
allowed to establish such channels. By default, no communication
channels exist and thus tiles are isolated from each other. Addi-
tionally, applications are placed on different tiles by default, but
as shown by M3v [7], tiles with general-purpose cores can also
be shared efficiently and securely among multiple applications.
For that reason, every core-based user tile runs a multiplexer
called TileMux (yellow), which is responsible for isolating and
scheduling the applications on its own tile, similar to a traditional
kernel. However, in contrast to a kernel, each TileMux instance
has no permissions beyond its own tile. Instead, only the M3

kernel can make system-wide decisions, hence its name.
The following describes M3’s previous contributions in terms

of security and heterogeneity.

1) Security: If the core or accelerator in a user tile wants to
access tile-external resources (e.g., DRAM), it can only perform
this access via the DTU in its tile. The M3 kernel can control
which resources each user tile can access by controlling its
DTU [9]. This enables the M3 platform to integrate potentially
untrusted third-party components such as accelerators or
modems into user tiles without risking that such components
harm others or leak sensitive data. Furthermore, as tiles do not
share any hardware structures (e.g., caches, TLBs, or branch
target buffers), these structures cannot be used for side-channel
attacks on applications within different tiles, nor on the kernel.
In summary, with the M3 platform, only the kernel tile, all
DTUs, and the NoC are part of the TCB. Integrated third-party
hardware components do not need to be trusted, which is a
key differentiator of M3 to contemporary MPSoC platforms.

2) Heterogeneity: M3x [8] has shown how the M3 platform
enables better accelerator integration by allowing them to directly
access OS services. As an example, consider that a user wants to
do edge detection on image files. The input image is stored in the
file system and the output image should be stored as raw pixel
data for later post processing. The actual image processing can
be done faster and more energy-efficient on specific hardware ac-
celerators (e.g., using FFT convolution [29]). However, accessing
files from accelerators or pipelining accelerators with software
is challenging [36], [18], [38], [31]. M3x showed how hardware
accelerators can run ‘autonomously’ by connecting them directly
with OS services or applications on general-purpose cores. This
autonomous execution of accelerators also revealed significant
speedups and reduced CPU utilization [8].

III. DISCUSSION OF M3’S SUITABILITY FOR REAL-TIME

This section surveys existing M3 features and discusses
how they can support real-time operation. Afterwards, we will
present our enhancements to improve M3’s real-time guarantees.

A. Computation

Typical use cases within IoT or CPSes have both real-time
tasks and best-effort tasks. An example is an IoT device that
listens to a sensor to handle a control loop, but also wants to send
the measured data to a cloud backend for further analysis. The
sensor and control part might have strict real-time requirements
and can also be safety-critical if humans could be harmed in case
of missed deadlines or faulty operation. However, the network
part is typically not time critical, but complex and therefore error
prone and difficult to analyse regarding timing requirements.

Currently, there are two options to choose from: a single
OS that supports both real-time and best-effort tasks or two
separate and specialized OSes. For example, a single Linux
kernel could run on all cores and real-time priorities could
be used to ensure that deadlines are met. However, a Linux
kernel that is shared among all cores requires that all cores
are cache coherent. This in turn increases system jitter, leads to
a more difficult timing analysis for the real-time tasks, reduces
the energy efficiency, and increases the hardware costs. The
shared kernel is also hampering the specialization of individual
cores for real-time requirements or best-effort requirements.

The other option, that runs a best-effort OS next to a
real-time OS (RTOS), enables the specialization of individual
cores. For example, a set of Arm Cortex-A cores could run
Linux for best-effort tasks and an Arm Cortex-R core could
run an RTOS. These sets of cores do not need to be cache
coherent, which avoids some problems of the shared-kernel
option. However, missing cache coherency complicates the
communication between the two OSes and applications cannot
build upon a shared set of abstractions. Thus, collaboration
between real-time tasks and best-effort tasks is challenging.

Due to its hardware/operating-system co-design, M3 allows to
combine the advantages of both options. On the hardware side,
different tiles in the tiled architecture are not cache coherent
and also do not share any hardware state (e.g., caches, branch-
target buffers, TLBs). For that reason, the timing behavior of the
computation on one tile is independent of the other tiles (ignoring
communication for now, which we address in Section III-B).
Furthermore, each tile has its own DTU which provides all tiles
with a uniform interface. This uniform interface provides the
foundation for common software abstractions and easy collabo-
ration with activities on other tiles. The M3 OS design leverages
this uniform interface to allow tiles to contain different types
of compute resources. For example, a best-effort tile could use
an out-of-order processor to optimize for performance, whereas
a real-time tile could employ a simple in-order processor that
simplifies the timing analysis and improves the energy-efficiency.

On the software and operating-system side, M3 runs a per-tile
multiplexer (TileMux) on every tile. TileMux can be compared
with a microkernel that is only responsible for the isolation
between the applications on its tile and their scheduling. In

contrast to a microkernel, TileMux is not concerned with
inter-process communication or access control. It also has no
permissions beyond its own tile and can thus be specialized
on a per-tile basis without affecting any other tile in the system.
For example, the TileMux scheduler can be optimized for
overall throughput on a best-effort tile and optimized for real
time on another tile. Besides the per-tile multiplexer, M3 runs
a kernel on a dedicated tile, separate from the application tiles
and only used explicitly by applications.

Based on the omni-present DTUs, activities on all tiles can
communicate in a uniform fashion and rely on a set of shared
abstractions. Namely, all tiles can leverage abstractions such
as message-based communication, DMA-like memory access,
file systems, pipes, and network stacks. The access to all of
these abstractions is controlled via capabilities as mechanism
(managed by the M3 kernel) and an XML-based configuration
file as policy (see Section IV-C). The configuration file describes
the permissions of all activities in the system, regardless of
whether they require best-effort or real-time scheduling.

In summary, we believe that M3’s system architecture enables
per-tile (local) reasoning, because it simplifies timing analysis
due to the absence of shared caches and OS interference, while
still delivering a shared-system experience.

B. Communication

Besides the ability to specialize tiles for either best-effort or
real-time activities, we deem it important that all activities can
communicate with each other. Referring again to the example
from the previous section, the sensor part of the system needs
to communicate with the network part in order to send the
measured data to the cloud backend. With M3, communication
between activities is performed via DTU and we will discuss
three different aspects of this communication mechanism:
communication latency, energy-efficient communication, and
buffer-space management.

1) Low-latency Communication: Communication in IoT
devices or CPSes is often time critical, requiring low latency
between different activities in the system. For example, emitting
a command to an actuator after receiving a sensor signal can be
time critical to avoid physical damage or even to prevent harm to
humans. On non-M3 systems, communication between tiles is typ-
ically performed based on shared memory to exchange data, and
interrupts for notifications. System calls are used to communicate
with other applications, allowing the operating system to suspend
applications, and thereby avoid polling to wait for communication
partners. However, as we will show in our evaluation, both
interrupts and kernel entries and exits are expensive.

M3 with its DTU-based communication was therefore designed
not to involve the kernel during communication. That is, although
the M3 kernel is required to setup communication channels,
neither the M3 kernel nor TileMux are involved in the actual
communication. Instead, even untrusted applications can interact
directly with the DTU to communicate over established channels.
Since every tile has its own dedicated DTU, it is always immedi-
ately available for the running application. We show in Section V
that avoiding the kernel (and interrupts) during communication

reduces the latency by about one order of magnitude. Furthermore,
DTU-based communication is asynchronous in the sense that
the sender can always deliver its message into the receive
buffer of the recipient and continue working, regardless of
whether the recipient is running or whether it is ready to handle
the message. These points in combination result in low and
predictable communication latencies on the sender side.

On the receiver side, M3 also avoids interrupts to further
reduce the latency. If the recipient is already running, the
DTU does not inject an interrupt. Only if a message targets
a recipient that is not running, the DTU informs TileMux via
interrupt to potentially switch to the recipient [7]. We observe
a general trade-off between low-latency communication and
latency guarantees. If interrupts are never used to notify the
recipient about a message, best-case latency is reduced, but
we rely on the recipient to check for the new message in time
(the recipient might still be busy with other work when the
message arrives). On the other hand, if interrupts are always
used, the best-case communication latency is higher, but we
have the chance to handle each message immediately.

2) DTU Interrupt Injection: The DTU injects an interrupt
in case the ID of the currently running activity is not equal to
the ID of the recipient activity. If a low-priority recipient shares
a core with a high-priority application, any message destined
for the low-priority activity can therefore cause a brief delay
for the high-priority activity while TileMux is handling this
interrupt. Such delays are not analysable, if the low-priority
code can communicate at an arbitrarily high rate. This is a
known problem for interrupt-based signaling [23].

We can offer two mitigations: One is the DTU’s credit system,
which allows recipients to choose how many credits their
senders have and when they are refilled (see Section III-B3).
But this mechanism requires global parameterization of message
flows to control the local rate of interrupts, weakening the
principle of local reasoning. The second mitigation option is
inspired by Scheler et al. [34]: provision more than one core
within the tile and handle low-priority TileMux interrupts on
a core separate from the high-priority application. Whenever
the high-priority application is running, the interrupt core will
only update message counters in TileMux, but not deschedule
or otherwise influence the high-priority execution. The interrupt
core can also run low-priority work in its user mode, if desired.
Messages intended for the high-priority application can still
deliver interrupts directly to the application core.

We considered a solution using a single core and masking
interrupt delivery. But we identified corner cases and therefore
leave this investigation to future work.

3) Buffer Space Management: Finally, we want to discuss
the question, how communication channels can be controlled
and restricted. In contrast to other approaches, applications
on M3 communicate directly via DTU without involving the
OS kernel (which would allow such control). Thus, without
further measures, applications can mount denial-of-service (DoS)
attacks on other applications by, for example, exhausting
buffer space on the receiving end. Other means for DoS
attacks like overwhelming the receiver’s processing capacity

or overwhelming the NoC bandwidth are discussed later.
Message passing via DTU is performed between multiple

senders, each owning a send endpoint, and a single recipient,
owning a receive endpoint. Each pair of send endpoint and
receive endpoint is called communication channel. The receive
endpoint refers to a receive buffer in memory, which is split
into multiple same-sized message slots. Thus, activities that
send to the same receive endpoint share its receive buffer. To
ensure that each activity gets a usable share of the receive
buffer, we use a credit system. The recipient hands out credits
to its senders, stored in each of the send endpoints. Sending a
message requires at least one credit in the send endpoint and the
DTU reduces the number of credits by one. In return, message
delivery into a free buffer slot is guaranteed. If no credits are
available, the DTU denies an attempt to send a message with an
error (without blocking). Having received a message allows the
recipient to reply on this message, similar to reply capabilities in
L4 [19], [20], [40] and EROS [35]. When receiving a reply on
a previously sent message, the number of credits at the sender is
increased again. This scheme enables the recipient to control how
much space each sender can occupy and to tell senders when
more messages can be sent. Since owning one credit guarantees
the successful delivery of one message, the credit system avoids
useless traffic over the NoC. To prevent starvation, the DTU
fetches messages in round-robin fashion from the receive buffer.

C. Services and the Kernel

All applications on M3 are sharing the same M3 kernel and
multiple applications may share an OS service. However, in con-
trast to traditional OSes where interrupts and exceptions can occur
at any time and lead to a mode switch from user mode to kernel
mode, both OS services and the kernel run on dedicated tiles and
are only called explicitly. For that reason, applications can control
when they are subject to interference from these components,
simplifying timing analysis. To streamline terminology, we use
server to refer to both the kernel and OS services in this section.

Using a server requires including this remote execution in
the application’s timing analysis. However, such a remote call
is equivalent to a non-preemptive critical section in traditional
systems, for which analysis methods are available. The pattern
applies recursively.

1) Client Priorities: An important feature for real-time sys-
tems is that servers can assign different priorities to their clients.
The server can then prioritize the requests from more important
clients to allow meeting their real-time requirements even in
the presence of other potentially malicious clients. However,
avoiding interference from low-priority to high-priority clients is
challenging even in modern real-time-capable microkernels such
as seL4-MCS [24] as shown by Mergendahl et al. [27]. Although
seL4-MCS uses priority-sorted IPC endpoints, attackers can still
cause unbounded delays for high-priority clients by triggering
long-running and non-preemptive work within the microkernel.
For example, attackers can trigger long insertion times into the
sorted IPC-endpoint queue or trigger long scheduler activities
when replenishing budgets. While these problems can probably be

fixed by adding more complexity to the microkernel, M3 sidesteps
these problems altogether with its different system design.

The budget attacks described by Mergendahl et al. [27] are
based on the shared scheduler by attacker and victim. This
shared state does not exist on M3, because each tile has its
dedicated TileMux instance, which only knows and schedules
the activities on its own tile. As tiles in M3’s hardware platform
are not cache coherent and no shared software is running across
multiple tiles, interference between activities can be avoided
by simply placing them on different tiles.

The remaining attacks are based on a shared IPC endpoint.
While multiple send endpoints can send to the same receive
endpoint in M3, message sending and receiving is done by
the DTU in hardware and thus in parallel to the execution of
software. Furthermore, servers are free to employ multiple receive
endpoints and assign clients to them based on their priority. In
contrast to existing approaches, this does neither need additional
complexity in the kernel nor in applications if multi-threading
is required to block on multiple IPC endpoints. Instead, per-
priority endpoints are naturally supported, because applications
communicate via DTU without involving the kernel and can either
check for new messages on a specific endpoint or wait until the
next message arrives (see Section IV-A). Our evaluation (see Sec-
tion V-B) confirms that the worst-case request latency for high-
priority clients is indeed bounded on M3, independent of requests
from low-priority clients. Note that the server can learn about
client priorities from the system configuration, which we describe
in Section IV-C, preventing clients from lying about their priority.

2) CPU-time Restrictions: Besides this infrastructure for
servers to assign different priorities to clients, we see one open
challenge to further improve the real-time usability M3 can
offer for applications. In case of the M3 kernel or a shared
OS services, the CPU time that these servers require to handle
requests from their clients needs to be shared among all these
applications. Although the DTU’s credit system prevents DoS
attacks and the DTU fetches messages in round-robin order to
prevent starvation, there are currently no upper bounds enforced
on the spent CPU time. For example, a malicious client could
send requests that take a long time to process on the server side,
preventing other clients from being serviced during that time.
One solution would be to let servers track the CPU time spent
for each client and limit the allowed time per request. The server
can then check for each request whether it can be handled within
the time limit and deny the request otherwise. If the request
can be handled within the limit, but the remaining time budget
of the client does not suffice, the server can delay the request.

However, this problem of client cross-talk occurs in any
system with shared resources. The established solution is to
consider during timing analysis the maximum time the shared
resource could be serving another client. Consequently, real-time
applications should only invoke services which can guarantee
bounded service time. Current M3 service implementations do
not always guarantee such a bound. Most prominently, also the
kernel does not. Contrary to other systems, real-time applications
on M3 can communicate without kernel involvement. Therefore,
applications can be constructed to use the kernel only during setup

and consequently can ignore the kernel for their timing analysis.

IV. ENHANCEMENTS TO M3’S REAL-TIME GUARANTEES

After the discussion on how M3’s current state can be used to
run real-time workloads, we now describe our concrete technical
improvements. We start with a contribution towards lower
communication latency, but without sacrificing energy efficiency.
The subsequent two subsections about network-on-chip and
resource limits describe our changes to enable or improve the
analysability and predictability of M3.

A. Fast and Energy-efficient Communication

Besides low-latency communication, energy efficiency is
important for IoT devices and CPSes. These goals can be
contradicting, though. For example, low latency can be achieved
by communicating via shared memory and polling, but only
at the expense of energy efficiency. Conversely, communicating
via blocking system calls enables the OS kernel to put the core
to sleep, but increases the overall communication latency.

To achieve both goals, we extended the DTU and M3. Our
approach is comparable to umonitor/umwait on x86-64, but
applied to the DTU. The idea is to put the core to sleep while
waiting for a message to arrive. To that end, the DTU offers
a sleep command that puts the core to sleep and wakes the core
up again as soon as a message arrived. A similar concept exists
on the MIPS 34K processor family, where computation can be
blocked in the load/store unit when accessing a special memory
mapped device used for IPC.

However, without further measures, the DTU could have
already received a message and may therefore sleep forever
in case no further message arrives. The DTU solves this race
condition by atomically checking whether new messages exist for
the current activity and only if this is not the case, putting the core
to sleep. Like umonitor/umwait, the sleep command can
be used by unprivileged and potentially untrusted applications.
To prevent indefinite sleeps in case no message is received,
the DTU also provides a simple timer that is programmed by
TileMux to fire at the end of the current activity’s time slice.

In summary, the DTU sleep command avoids kernel entry
and exit, because it is usable by unprivileged applications. With
this command, applications can wait for new messages in an
energy-efficient way without increasing the communication
latency. Adding this feature via the DTU avoids modifications
to the core. However, we did not yet investigate the general
trade-off between short wakeup times and deep sleep states.
The current implementation in our gem5-based prototype uses
clock gating to put the core to sleep.

B. Network on Chip

The NoC constitutes the only hardware resource globally
shared by all tiles whenever they communicate. As such, it is
a point for undesired cross-application disturbance, which must
be restricted to be analysable. Apart from the aforementioned
credit system, which is designed to manage buffer space, but
not NoC bandwidth, such restrictions were absent in M3 and
we added them in this work.

1) Methods for NoC Analysis: In order to make the minimal
changes necessary to enable real-time NoC analysis, we first
review existing analysis methods. A very coarse-grained NoC
delay bound can be obtained using the lumped link model [46].
Independent of actual topology, the NoC is modeled as an
exclusive bus. All direct and indirect contention is treated
the same and is over-approximated, so while this analysis is
lightweight, it leads to pessimistic bounds.

The M3 NoC can preempt message transfers at the granularity
of 512-byte chunks and delivers them using deadlock-free
wormhole routing [30], for which tighter analysis methods
are available. Rahmati et al. [33] have shown for such NoCs,
that even best-effort networks without any traffic regulation
have non-infinite delay bounds. Intuitively, since the network
is deadlock-free, every message will arrive eventually. However,
considerably lower bounds can be obtained when traffic
regulation is in place at the sender side. The typical regulation
primitive [33], [12], [25] is a token-bucket traffic shaper at the
point(s) where NoC clients insert traffic into the network.

M3 has the structural advantage that all NoC clients are always
connected to the NoC via a DTU. Thus, the DTU is the natural
place to add such regulation for ingress traffic. Each token-bucket
shaper is parameterized by a size limit and a fill rate. A message
can be emitted into the NoC, when an amount of tokens equiva-
lent to the size of the message in bytes is available in the bucket.
Since a timer facility (needed to refill tokens) is already available
within the DTUs to implement other functionality, the token
bucket regulation does not add a lot of complexity to the DTUs.

For a concrete application scenario, the bucket parameters
have to be configured such that the NoC delay bounds obtained
using existing analysis methods result in an overall schedulable
system. Finding the right parameters and performing the analysis
is a problem orthogonal to the M3 architectural details discussed
here. We therefore refer to other works like the analysis by
Boyer et al. of the Kalray MPPA2 NoC [12].

Finally, we note that using the NoC link capacity, an upper
bound for message delay can be converted to a lower bound for
NoC bandwidth allocated to a client. Thus, the simple addition
of token-bucket regulation to the DTUs leads to tighter delay
bounds as well as guaranteed bandwidth.

2) Implementation of Token-Bucket Regulation: As outlined
earlier, the credit system is enforced by the DTU on a
per-endpoint basis, because the receive buffer exists per receive
endpoint and serves as the shared resource for all send endpoints
that refer to it. However, the NoC as a global resource is shared
by all endpoints, allowing a more coarse-grained regulation.
Existing analysis methods restrict entire tiles, but we decided
to regulate traffic on a per-activity basis. Regulating individual
activities can be useful when the schedule of multiple activities
on different tiles is known.

To support per-activity NoC regulation, we equip the DTU with
multiple token-bucket registers and refer to one of these registers
via specific bits in the register holding the currently running ac-
tivity (CUR_ACT). The token-bucket registers are only accessible
by the M3 kernel, whereas CUR_ACT is set by TileMux when
switching between activities on its tile. This design allows differ-

ent parameters for different activities, but TileMux is only trusted
regarding activity selection. TileMux itself runs with a special
activity ID and is thus itself affected by the NoC regulation.

Each token-bucket register consists of a rate, an amount,
and a limit. amount represents the number of bytes that can
immediately be sent without being delayed. A NoC message is
delayed if amount is smaller than the number of bytes being
sent. Otherwise, amount is reduced by that number of bytes.
And finally, amount is refilled according to the configured
rate until limit is reached. We evaluate the effectiveness
of this approach in Section V.

3) Memory Bandwidth: In M3, the NoC is also the only
means by which tiles can access off-tile storage like main
memory (DRAM). All memory accesses are based on memory
endpoints, which are either used explicitly or implicitly.
Applications can use memory endpoints explicitly to issue
DMA requests to the memory the endpoint provides access to.
Applications use memory endpoints implicitly when accessing
memory via load and store instructions. These implicit accesses
are part of the physical-memory protection (PMP) feature that
the DTU already provides [7]. PMP defines the accessible
physical memory for a tile with a set of memory endpoints.
This allows the software to, for example, provide each tile
access to a separate part of the physical memory. Last-level
cache misses are routed through the DTU and are only passed
through to the NoC if they are permitted according to PMP.

In summary, both DMA requests and ordinary memory
accesses involve the DTU, which automatically divides these
transfers into chunks. Each chunk is subject to the bandwidth
restriction given by the current activity’s token-bucket register
before being emitted to the NoC.

C. Resource Limits

Another important aspect in IoT devices and CPSes is the man-
agement and restriction of resources. The available resources of
the platform such as memory or CPU time have to be distributed
to applications and services, depending on their requirements. In
particular, the system needs to be able to enforce limits on the
use of resources to prevent an application from mounting a DoS
attack on another application by allocating all available resources.
The existing M3 prototype uses capabilities to exchange access
permissions, but had no facility to distribute initial capabilities
and no way to enforce limits (e.g., all applications could allocate
an arbitrary amount of physical memory). This section describes
our extensions to integrate these resource limits with M3’s
existing capability system and its delegation mechanisms.

We use a layered approach to control the access to resources.
The first layer is a policy layer that manages and distributes
resources to services and applications. As a second layer,
these resources are translated into capabilities, so there can
be a fine-grained exchange of resources between services and
applications. The third layer is responsible for enforcing the
restrictions that have been set for individual applications. For
performance reasons, this enforcement is performed locally at
the component responsible for the resource.

1) Configuration Files and Resource Managers: In more
detail, the first layer uses XML-based configuration files to
describe the distribution of resources and resource managers that
read this configuration file and manage the resources accordingly.
The overall idea is to use one configuration file per use case
of the system (each boot expects exactly one configuration file),
which describes the services and applications that should be
started including their accessible resources and limits.

There is always at least one resource manager, but nesting
of resource managers to create subsystems is supported. Each
resource manager receives the subset of the configuration file
it’s responsible for and starts the therein requested services and
applications. Each child additionally receives a communication
channel to its resource manager. Children use this channel to
request access to resources, which the resource manager checks
against the configuration file. In case access can be granted,
it creates a capability for the resource and passes it to the child.

2) Capabilities: These capabilities are handled by the second
layer. That is, capabilities are managed in software by the
M3 kernel, which offers system calls to create, exchange, and
revoke capabilities. After receiving an initial capability from
the resource manager, applications can pass on the capability
to other applications, provided that communication channels
to the applications exist.

We extended the capability system to support derivation of
capabilities. Derivation creates a new capability with a specified
subset of a quota or permissions of an existing one. For example,
the tile capability holds multiple quotas for tile-local resources
such as CPU time and NoC bandwidth. Starting an activity on
a tile requires a tile capability and uses the attached quotas for
this activity. For that reason, if activity A has a tile capability
with 1s CPU time and 4 GB/s NoC bandwidth, activity A can
derive from this tile capability and thereby move 0.5s of CPU
time and 3 GB/s of NoC bandwidth to a new tile capability.
Afterwards, a new activity B can be started with this derived
tile capability, which will be constrained to these resource
limits. The tile capability of activity A has been reduced by
the derive to 0.5s CPU time and 1 GB/s NoC bandwidth.

3) Enforcement of Restrictions: The third layer is responsible
for enforcing restrictions on resource accesses. These restrictions
are based on quotas and are enforced locally by the component
that embodies the resource. Local enforcement is important to
achieve good performance, because it avoids the involvement of
other components during access time. For that reason, resource
limits are enforced by different components, depending on the
resource. For example, TileMux is responsible for enforcing
limits on CPU time, whereas the DTU enforces limits on the
NoC bandwidth via the token-bucket registers. Despite the
local enforcement by different components, all these limits are
specified in the configuration files and passed to applications in
the form of capabilities, which enables a fine-granular exchange
and refinement of these limits.

V. EVALUATION

Our evaluation2 attempts to answer the question of whether
M3 is suitable for real-time scenarios. We start with a comparison
of different communication primitives to demonstrate the
advantages of M3’s hardware-supported communication
mechanism. Afterwards we study the effectiveness of per-priority
endpoints on M3. Furthermore, we analyse the ability of local
reasoning with the current M3, followed by an evaluation of how
this is improved by our NoC-regulation addition. Finally, we
measure the latency of the DTU’s sleep feature. Note that we do
not repeat application-level benchmarks performed with previous
M3 prototypes [9], [8], [7] (showing that M3’s performance is
competitive to Linux) as our additions do not change the results.

A. Communication

Our goal is to keep the advantages of M3 in terms of
heterogeneity and security and extend it to be also suitable for
real-time scenarios. For that reason, applications are typically
placed on different cores for either security benefits (preventing
side-channel attacks) or efficiency benefits (two cores that
have been specialized for different workloads). Suitability
for real-time scenarios additionally requires communication
primitives with low latency and in particular low jitter.
Therefore, we first study these properties for M3’s cross-core
communication mechanisms in comparison to other such
mechanisms. Note that we do not consider polling-based
communication mechanisms due to their low energy efficiency.

Since M3 is a hardware/software co-design, it needs specific
hardware and currently only runs in simulation and on an
FPGA-based platform. As the tiles of the FPGA platform are
not cache coherent, no operating system other than M3 currently
runs on multiple tiles on this platform. Thus, a comparison with
other communication primitives on hardware is difficult. We
therefore start with M3 on the FPGA platform and move to
other hardware platforms by using gem5 as an intermediate step.
Note also that we compare entire hardware/software platforms
and not only OSes and thus run each OS in its natural way
on the corresponding hardware platform.

On all platforms, we measure the round-trip latency of the
corresponding cross-core mechanism available on the platform.
Both the message that is sent from sender to receiver and the reply
that is sent from receiver to sender already exists in memory. Both
messages contain 1 byte of payload. Note that we studied larger
message sizes as well, but found that the performance of all com-
munication primitives scales linearly. Therefore, we only show
results for 1-byte messages to focus on latency. We perform 1000
runs without warmup and show the average latency and standard
deviation in Figure 2 after removing outliers to study the typical
runtime performance. We determine outliers as in box plots:
results that fall below Q1−1.5IQR or above Q3+1.5IQR. Ad-
ditionally, we study the communication jitter with Table I, which
includes outliers and shows the average, minimum, and maximum
latency and the standard deviation. To abstract over different clock
frequencies on different platforms, we show latency in cycles.

2The artifact is available on Zenodo: 10.5281/zenodo.10798062.

 0
.5

26

 0
.3

16

 1
6.

18
9

 1
5.

13
2

 6
.9

23

 0
.4

02

 2
.5

82

 1
0.

21
5

0

5

10

15

20

FPGA

S−R
IS

CV

S−R
IS

CV

S−x
86

S−x
86

S−x
86

H−A
rm

H−x
86

Platform

La
te

nc
y

(K
 c

yc
le

s)

M3 Linux NOVA L4Re

Fig. 2: Round-trip latency for cross-core messaging on different
hardware platforms and OSes (excluding outliers).

OS Platform avg P99 min max σ

M³ FPGA 537 675 484 3571 107
M³ S-RISCV 319 316 316 3460 99
Linux S-RISCV 16234 24824 11152 36578 3042
Linux S-x86 15317 22773 10529 35112 1335
NOVA S-x86 7058 7017 6919 130181 3899
M³ S-x86 405 416 377 3347 93
L4Re H-Arm 2605 2639 1622 22739 644
NOVA H-x86 10261 10442 9958 55724 1408

TABLE I: Round-trip latency for cross-core messaging on
different hardware platforms and OSes (including outliers).

1) M3 on FPGA Platform: The FPGA platform of M3 is imple-
mented on the Xilinx Virtex UltraScale+ FPGA (VCU118 board),
contains eight processing tiles with a single RISC-V core each
and two memory tiles with interfaces to external DDR4 DRAM.
All tiles are connected by a NoC using a 2x2 star-mesh topology.
The platform uses Rocket cores [6] and BOOM cores [45] as
the RISC-V cores. Rocket is a 64-bit RISC-V in-order core with
MMU and 16 kB L1 cache, each for instruction and data, as well
as a shared 512 kB L2 cache. BOOM is the out-of-order variant of
Rocket with the same cache configuration. The clock frequencies
of the Rocket and BOOM cores are set to 100 MHz and 80 MHz,
respectively, to fully meet timing requirements during FPGA syn-
thesis and place-and-route. The M3 kernel runs on a Rocket core,
whereas all benchmarks in this evaluation run on BOOM cores.

The benchmark runs the sender and receiver on two different
tiles with BOOM cores and both leverage the DTU to exchange
messages. As shown in Figure 2 (excluding outliers), the
average latency (526 cycles) and standard deviation (32 cycles)
are comparatively low. This stems from the fact that applications
on M3 can directly access a dedicated hardware component
to exchange messages without requiring hardware interrupts or
involving the operating system. Table I shows that the standard
deviation is slightly higher when including outliers (107 cycles)
and the maximum latency measured is 3571 cycles (in the first
communication due to cache misses).

2) Comparison with Linux on gem5: To put these results into
perspective, we now evaluate the cross-core communication per-
formance on other OSes. We start with Linux (version 5.11 with
side-channel mitigations disabled), because it is well optimized,
runs on RISC-V cores and is in widespread use even in the
real-time community. Since Linux cannot leverage multiple tiles
on the FPGA platform, we compare M3 and Linux on gem5 [10]

using RISC-V cores. We configure gem5 to use a CPU clock fre-
quency of 2 GHz, a memory frequency of 1 GHz, and the out-of-
order CPU model. M3 uses a single core per tile, each containing
32 KiB L1 instruction cache, 32 KiB L1 data cache and 512 KiB
L2 cache. Linux uses two cores with dedicated L1 caches in the
same size and a shared 1 MiB L2 cache. Note that we use 32 KiB
for the L1 caches instead of 16 KiB as on the FPGA, because it
is more typical in real hardware and benefits Linux. All cores can
access a shared DRAM using gem5’s DDR3 1600 8x8 model.

On Linux, we use a message queue to send 1-byte messages
back and forth between two processes (we also tried pipes,
but obtained worse performance). On M3, the messages are
exchanged via DTU, exactly as on the FPGA. As shown in
Figure 2 for the ‘S-RISCV’ platform (‘S’ for simulator), M3

achieves an average latency of 316 cycles, whereas Linux
achieves 16189 cycles on average. The large difference stems
not only from the complexity of Linux, but also from the two
required IPIs and kernel involvements. The results for M3 differ
from the results on the FPGA platform due to the different
core implementations, but are still within the same order of
magnitude. The results including outliers in Table I show that
Linux exhibits more jitter than M3 and has a high latency
during the first run (36578 cycles). Furthermore, even when
ignoring outliers as done in Figure 2, we experience a rather
large standard deviation (2920 cycles) for Linux on RISC-V.

3) Comparison with NOVA on gem5: Since Linux is not
specifically optimized for message passing, we now compare
M3 to NOVA [40], one of the fastest microkernels. This
comparison is done on x86-64, because NOVA does not run
on RISC-V. We therefore leverage the described gem5 platform
again with the same settings, but with the x86-64 instruction set
architecture (ISA). As a comparison, we also run Linux again on
gem5 with the x86-64 ISA. Figure 2 and Table I show that M3

exhibits comparable results for ‘S-x86’ as for ‘S-RISCV’. On
‘S-x86’, NOVA achieves a latency of 6920 cycles on average,
whereas Linux achieves 15132 cycles on average. Both NOVA
and Linux have a high latency for the first communication
of 130181 cycles and 35112 cycles, respectively. Therefore,
since NOVA is optimized for message-passing performance,
the latency is significantly lower than on Linux, but NOVA still
suffers from the same problems: IPIs and kernel involvement.

4) Comparison with Existing Hardware Platforms: After
the measurements with gem5 as an intermediate step, we now
perform the benchmark on real hardware. At first, we run the
benchmark on NOVA again using an Intel Core i3-8100 CPU
with 3.6 GHz, four physical cores without hyper-threading, and
frequency scaling disabled. The results are shown as ‘H-x86’
(‘H’ for hardware). As can be seen in Figure 2 and Table I, the
performance and jitter is comparable with NOVA on ‘S-x86’,
but with slightly worse performance on hardware, similar to
M3 on ‘FPGA’ versus ‘S-RISCV’/‘S-x86’.

Finally, we run the benchmark on a heterogeneous R-Car Gen 4
Arm-based SoC, which provides hardware for interrupt delivery
with payload, making it similar to the DTU’s message passing
feature. The SoC contains two different kind of Arm systems, an
Arm Cortex-A cluster and an Arm Cortex-R cluster, connected

 1
.0

05

 1
.0

05

 2
.0

06

 2
.0

06

 2
.0

06

 3
.0

08

 4
.0

12

 2
.0

06

 4
.0

12

 6
.0

19

 2
.0

06
 5

.0
15

 8
.0

25

 2
.0

06

 6
.0

19

 1
0.

03
2

 2
.0

06

0

2

4

6

8

10

1 2 3 4 5 6

Number of clients

M
ax

. r
eq

. t
im

e
(m

s)

No−prios

Low

High

Fig. 3: Worst-case request latency with and without usage of
priorities, depending on the number of clients.

through the SoC’s interconnect. The Cortex-A cores use a 64bit
MMU-based architecture, running at a clock speed of 1.8 GHz,
while the Cortex-R cores use a 32bit MPU-based architecture,
running at 1.0 GHz. We run L4Re [20] on this device because
L4Re can run on both architectures. For communication and no-
tification we use the SoC’s MFIS hardware allowing to send IRQ
notifications from one side to the other as well as transferring data
of up to 32 bytes. The communication latency for a round-trip,
originating from a Cortex-A core, and using IRQ-based wakeup
on both sides, is depicted in Figure 2 and Table I. Messages that
are larger than 32 bytes can be transferred via shared memory.

Note that we do not compare to FreeRTOS [1], because
it does not support cross-core communication out of the box.
Extensions exist [4], but are based on shared memory and
interrupts, similar to L4Re above. We therefore expect slightly
better results than with L4Re, because FreeRTOS requires no
kernel entry/exit, but at the expense of weaker isolation.

5) Summary: Since there is no hardware platform that
runs M3, NOVA, L4Re, and Linux, a direct comparison of
their communication mechanisms is difficult, although partially
possible in simulation. However, as the differences between
these systems is about one order of magnitude, we still
conclude that M3’s DTU-based communication mechanism
is faster and has lower jitter. These advantages are primarily
caused by the DTU as a dedicated hardware component that
allows to exchange messages between tiles without requiring
OS involvement. That raises the question of whether Linux
can be adapted to make use of the DTU for inter-process
communication. However, as this requires significant changes
to the Linux kernel, we leave this study for future work.

B. Communication Latency with Per-Priority Endpoints

As explained in Section III-C1, M3 sidesteps the challenges
experienced for communication by other microkernel-based
systems by using a per-tile scheduler (TileMux) and
communicating via DTU. To verify whether high-priority clients
can indeed be serviced in a bounded time, we run a server on
a dedicated tile and one or more clients on the remaining tiles.
The server uses two receive endpoints (for low and high-priority
clients) and requires a fixed amount of time (1ms) to handle
every request. In the first configuration, all clients get assigned
the same priority, which we use as a baseline. The second
configuration assigns the first client a high priority and the
remaining clients a low priority. We run this benchmark on the
FPGA with up to 6 clients, occupying all tiles.

 0.00

 0.00

 0.00

 0.00

 0.00

 0.42

 5.59

 0.13

 0.00

 0.04

 3.42

 0.03

 0.00

 0.00

 0.01

 0.01

compute

memory

msgs

transfers

compute memory msgs transfers
Foreground

B
ac

kg
ro

un
d

0

1

2

3

4

5

(a) Disturbance on FPGA prototype

 0.00

 0.00

 0.00

 0.00

 0.00

 3.43

 3.41

 0.00

 0.00

 2.68

 3.14

 0.00

 0.00

 0.00

 0.00

 0.00

compute

memory

msgs

transfers

compute memory msgs transfers
Foreground

B
ac

kg
ro

un
d

0

1

2

3

4

5

(b) Disturbance on gem5 simulator

Fig. 4: Disturbance of different foreground workloads on the FPGA by different background workloads on other tiles, shown as
relative slowdown, without any NoC regulation.

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

 0.01

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

compute

memory

msgs

transfers

compute memory msgs transfers
Foreground

B
ac

kg
ro

un
d

0

1

2

3

4

5

(a) Disturbance with a NoC limit of 8 MiB/s

 0.00

 0.00

 0.00

 0.00

 0.00

 0.01

 0.01

 0.01

 0.00

 0.06

 0.05

 0.01

 0.00

 0.32

 0.22

 0.01

 0.00

 3.42

 3.41

 0.00

compute

memory

msgs

transfers

2048 512 128 32 8
NoC−bandwidth limit (MiB/s)

B
ac

kg
ro

un
d

0

1

2

3

4

5

(b) Disturbance for memory accesses

Fig. 5: Disturbance of different foreground workloads on gem5 with NoC regulation. The left shows the slowdown for different
foreground workloads and a NoC-bandwidth limit of 8 MiB/s, whereas the right shows the slowdown for memory accesses and
different NoC limits.

The results are depicted in Figure 3, which shows the worst-
case request latency observed by the clients during 1000 runs
after 10 warmup runs. With just a single client the maximum
time is about 1ms. As expected, without priorites (“No-prios”)
every additional client increases the maximum request time by
1ms. When using priorites, the latency for low-priority clients
(“Low”) increases with the number of clients. In contrast, the
high-priority client (“High”) observes request times of at most
2ms independent of the number of other clients, because it needs
to wait for at most one already running client request. Thus, M3

does indeed provide an upper bound for high-priority clients.

C. Local Reasoning without NoC Regulation

Although the results for high-priority clients are encouraging,
we were wondering what other means low-priority clients have
to influence high-priority clients on other tiles. We start with the
FPGA platform, which does not support NoC regulation, to study
the current state of cross-tile influence with M3. Afterwards, we
evaluate the ability of the introduced NoC regulation to reduce
this influence based on the gem5 platform. We consider four
different workloads: 1) computation, 2) memory accesses, 3)
cross-tile message passing, and 4) DMA-based memory transfers.
The computation workload is not performing memory accesses
or other cross-tile interactions and should therefore have no
influence on other tiles. The memory-access workload repeatedly
copies data between two locations ensuring that the data does not
fit into the tile-local cache (causing NoC traffic). The cross-tile
message-passing workload exchanges messages with the max-
imum size supported by the DTU (2 KiB) with another activity
on another tile. And finally, the memory-transfer workload issues
read and write DMA requests to a 8 KiB large memory region
in DRAM and is therefore causing a lot of NoC traffic as well.

We run all combinations of these workloads to study their
influence on each other. That is, for each pair of workloads, we
measure the time for the ‘foreground workload’ while running
as many ‘background workloads’ on the remaining tiles as
possible. Additionally, we run the foreground workload without
background workloads to get a baseline. The results in Figure 4a
show the slowdown of the foreground workload when running
background workloads relative to the case when running the fore-
ground workload alone. We always show the maximum slowdown
experienced over 100 runs after 1 warmup run. As expected, the
computation workload causes no slowdown for other workloads.
Similarly, message passing has only a small effect on other
workloads. Memory accesses have a rather small effect on other
workloads as well, interestingly. However, memory transfers
have a large effect on other workloads that use the NoC such as
memory accesses, which are slowed down by a factor of 5.59.

To prepare for the study of our added NoC-regulation
mechanism, we also run the same benchmark on the gem5
prototype platform without any NoC regulation. As can be seen
in Figure 4b, the effects are similar, but not the same. Most
importantly, memory accesses have a much larger influence on
other tiles than on the FPGA platform. We suspect that the
cause is the low clock frequency of the soft-cores (80 MHz and
100 MHz) on the FPGA, which does not suffice to put significant
stress on the DRAM. This is in contrast to the gem5 cores, which
are clocked with 2 GHz. Additionally, we observe no interference
between message passing and other workloads. This is because
the NoC in gem5 is currently modeled as a crossbar, leading
to a dedicated path between each pair of tiles. However, this
only affects the message-passing workload since both transfers
and memory accesses compete for the shared DRAM.

mwait
umwait

DTU−sleep

0 200 400

Latency (cycles)

Suspend

Wakeup

Fig. 6: Latency of DTU sleep, umwait, and mwait.

D. Local Reasoning with NoC Regulation

After analysing the cross-tile influence with M3’s current
state, we now study the token-bucket regulation for the NoC that
we add with this paper (see Section IV-B2). We implemented
the NoC regulation in the gem5-based prototype with four token-
bucket registers. Therefore, each DTU allows up to four different
NoC regulations. To evaluate the effectiveness of the token-bucket
regulation, we run the same benchmark as in Section V-C again,
but enable the NoC regulation with different NoC-bandwidth
limitations for the background workloads (using a single token-
bucket register per tile and therefore per background workload).

As shown in Figure 5a, reducing the available NoC bandwidth
for the background workloads to 8 MiB/s suffices to limit the
slowdown of the foreground workload to at most 1 percent. To
evaluate the influence depending on the NoC-bandwidth limit,
we focus on the memory-accesses foreground workload, because
it experienced the most severe slowdown in Section V-C.
Figure 5b shows how the NoC bandwidth of the background
workloads can be tuned to achieve the desired trade-off between
less disturbance for the foreground workload and more available
NoC bandwidth for the background workloads.

In summary, the added NoC regulation allows M3 to limit the
usage of the remaining shared resources (e.g., NoC and DRAM).
This enables tile-local reasoning, because low and guaranteed
latency bounds for a given tile can be achieved even if other tiles
perform message passing, memory accesses, or memory transfers.

E. Application-Controlled Core Sleep

Finally, we evaluate the DTU’s sleep command, which allows
applications to put the core into a sleep mode while waiting
for incoming messages. This feature is important to avoid
OS involvement during communication and still be energy
efficient. We therefore evaluate its latency to suspend and
wakeup the core in comparison to umonitor/umwait on
x86-64 due to their similarities (see Section IV-A). Additionally,
we compare to the use of monitor/mwait via a syscall as
the best case for an OS-based sleep. We evaluate the DTU’s
sleep command on M3 and the other on Linux, both with the
x86-64 version of gem5 using the same configuration as before.
Since gem5 only supports monitor/mwait, we simulate
umonitor/umwait by also executing it within a syscall but
excluding the entry and exit costs of the syscall.

Figure 6 shows the average latencies of 100 runs after 20
warmup runs. As can be seen, the wakeup and suspend latency
of both the DTU sleep and umwait is negligible in contrast
to the syscall latency required for mwait. Note however that
gem5 does not simulate different sleep states, which typically
have different wakeup latencies depending on their depth.

VI. RELATED WORK

With the presented results, M3 explores the intersection of
real time, security, and heterogeneity. This paper focusses on
real time, so we present related work in this area from the
software and the hardware domain.

A. Real-Time System Software

System-level software deployed on commodity hardware
architectures ranges from low-level real-time executives over
microkernels up to complex solutions based on Linux. Executives
such as FreeRTOS [1] achieve high predictability by deliberately
not using CPU privilege separation between kernel and user
modes. Instead, applications run with close to bare-metal access
to the hardware. However, this comes at the price of losing inter-
component protection based on address spaces. On its tiles, M3

also enables bare-metal computation without kernel mode, but
does not need to sacrifice on security, because isolation is imple-
mented outside the tile without impacting the on-tile computation.

Microkernels proficiently use address-space isolation to struc-
ture the system software into isolated components. M3 can op-
tionally use address spaces within individual tiles, but the primary
isolation is provided by the DTUs. M3 shares many traits with
microkernel systems such as the philosophy of reducing the sys-
tem TCB. However, different microkernels offer added value for
real-time systems: seL4 offers formally verified implementation
correctness and spatial isolation [19], as well as a timing analysis
of all code paths through the kernel [11]. Fiasco.OC introduced
the separation of execution and scheduling contexts [41] to run
services on time budget provided by clients, a feature that M3

currently lacks. Fiasco.OC also features a system configuration
mechanism by Lua scripts, which influenced our design for M3

resource configuration. The hierarchical resource refinement was
inspired by the recursive system structure of the Genode OS [15].

Composite [32] and TOROS [13] are two microkernel ap-
proaches with a strong focus on predictability and security. Com-
posite features user-level scheduling for maximum flexibility re-
garding the scheduling policy. M3 allows to customize scheduling
per tile by deploying custom instances of TileMux. TOROS is in-
tended to offer only analysable primitives at its application devel-
opment interface. The existing M3 service implementations have
yet to be surveyed for analysability. Similar to the hardware-based
NoC regulation in M3, Chaos [16] proposes rate limiting for inter-
processor interrupts in software based on user-level proxy servers.

Linux can also be used as foundation for real-time systems,
especially with its deadline-based scheduler [22] that allows
for convenient application development [37]. Decoupling of
threads [21] can combine the convenience of Linux with the
predictability of an underlying microkernel.

B. Real-Time Hardware Solutions

The DTU acts like a message-passing accelerator, which is
directly accessible by applications from user mode. The Shrimp
multi-computer [5] similarly proposes message passing from
user mode, but uses address spaces instead of physical tiles
for isolation. Tilera is a tile-based manycore architecture with
processor extensions for tile-to-tile messaging [43]. DLibOS [26]

takes advantage of this feature by placing a network stack
and applications on separate tiles and using the low-latency
messaging extension to significantly improve network latency
and throughput. Instead of extending the hardware of the cores,
the DTU in M3 is core-independent, which is beneficial for
security (no trust in the core implementation) and heterogeneity
(accelerators can be equipped with a DTU as well).

For NoC delay predictability, we employ token-bucket reg-
ulation like other NoC implementations [12], [33] and works
on real-time Ethernet [25]. In comparison to the Kalray MPPA2
NoC [12], the M3’s hardware platform allows to isolate different
tiles from each other, allowing for example to integrate untrusted
cores or accelerators. That is, even if a core is broken, the
architecture can protect other cores from the broken core. The
NoC regulation in M3 also applies to memory requests, making
it similar in spirit to MemGuard [44]. However, while Mem-
Guard implements coarse-grained regulation based on observing
application’s memory bandwidth using performance counters and
descheduling them when their budget is depleted, limiting mem-
ory requests in hardware within the DTU allows for more fine-
grained accounting down to single-byte granularity. Modifying
the memory controller [42] is an alternative, but in M3, this would
add another layer of regulation after the traffic already traversed
the NoC. Instead, BRU [14] proposes to add new hardware
between cores and DRAM to implement memory bandwidth reg-
ulation and Arm system interconnects feature quality-of-service
regulation. These solutions are topologically most similar to M3’s
DTU-based approach, but lack the security isolation of the DTU.

VII. CONCLUSION

We have analysed the real-time properties of the M3

hardware/software co-design platform. Resulting from the lack
of hard-to-control globally shared resources, we have identified
local reasoning about execution behavior as a key benefit.
In order to enable analysis of the network-on-chip, we have
added token-bucket based traffic regulation to the data transfer
units (DTUs) of M3. Our FPGA and gem5-based evaluation
has shown that M3 has competitively low message latency
and jitter when communicating across cores within separate
tiles. The traffic regulation limits cross-application disturbance
from messages and memory accesses. With these results, we
claim that M3 is a suitable cyber-physical platform, combining
security, heterogeneity, and real-time operation.

VIII. ACKNOWLEDGEMENTS

This research is funded by the European Union’s Horizon
Europe research and innovation program under grant agreement
No. 101092598 (COREnext). We thank the anonymous reviewers
of RTAS’23, ECRTS’23, and RTAS’24.

REFERENCES

[1] Freertos. https://www.freertos.org. viewed October 24, 2022.
[2] R-car-s4: Automotive system-on-chip (SoC) for car server/communication

gateway. https://www.renesas.com/us/en/products/automotive-products/
automotive-system-chips-socs/r-car-s4-automotive-system-chip-soc-
car-servercommunication-gateway. viewed August 8, 2022.

[3] S32g2 processors for vehicle networking. https://www.nxp.com/products/
processors-and-microcontrollers/s32-automotive-platform/s32g-vehicle-
network-processors/s32g2-processors-for-vehicle-networking:S32G2.
viewed August 8, 2022.

[4] Simple multicore core to core communication using freertos message
buffers. https://www.freertos.org/2020/02/simple-multicore-core-to-core-
communication-using-freertos-message-buffers.html. viewed October 24,
2022.

[5] R. Alpert, C. Dubnicki, E.W. Felten, and K. Li. Design and
implementation of NX message passing using Shrimp virtual memory
mapped communication. In Proceedings of the 1996 International
Conference on Parallel Processing, volume 1 of ICPP’96, pages 111–119,
Aug 1996. doi:10.1109/ICPP.1996.537151.

[6] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David
Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, and John
Koenig. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[7] Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, and
Michael Roitzsch. Efficient and scalable core multiplexing with M³v.
In 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
452–466. ACM, February 2022. doi:10.1145/3503222.3507741.

[8] Nils Asmussen, Michael Roitzsch, and Hermann Härtig. M³x: Autonomous
accelerators via context-enabled fast-path communication. In USENIX
Annual Technical Conference (ATC), pages 617–632. USENIX, July 2019.

[9] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Ger-
hard Fettweis. M3: A hardware/operating-system co-design to tame hetero-
geneous manycores. In 21st International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages
189–203. ACM, March 2016. doi:10.1145/2872362.2872371.

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Computer Architecture News, 39(2):1–7, u 2011. URL: http://doi.acm.org/
10.1145/2024716.2024718, doi:10.1145/2024716.2024718.

[11] Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury,
and Gernot Heiser. Timing analysis of a protected operating system kernel.
In 32nd Real-Time Systems Symposium (RTSS), pages 339–348. IEEE,
November 2011.

[12] Marc Boyer, Benoı̂t Dupont de Dinechin, Amaury Graillat, and Lionel
Havet. Computing routes and delay bounds for the network-on-chip
of the kalray mppa2 processor. In European Congress on Embedded
Real Time Software and Systems (ERTS), January 2018. URL:
https://hal.archives-ouvertes.fr/hal-01707911.

[13] Björn Brandenburg. The case for an opinionated, theory-oriented real-time
operating system. In 1st International Workshop on Next-Generation
Operating Systems for Cyber-Physical Systems (NGOSCPS), April 2019.

[14] Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth
regulation unit for real-time multicore processors. In IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
364–375. IEEE, April 2020.

[15] Norman Feske. Introducing Genode. In Free and Open Source Software
Developers’ European Meeting. (FOSDEM), February 2012.

[16] Phani Kishore Gadepalli, Gregor Peach, Gabriel Parmer, Joseph Espy, and
Zach Day. Chaos: a system for criticality-aware, multi-core coordination.
In 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 77–89. IEEE, 2019.

[17] Monowar Hasan, Sibin Mohan, Rakesh B. Bobba, and Rodolfo
Pellizzoni. Exploring opportunistic execution for integrating security
into legacy hard real-time systems. In 2016 IEEE Real-Time
Systems Symposium (RTSS), pages 123–134. IEEE, November 2016.
doi:10.1109/RTSS.2016.021.

[18] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated,
Emmett Witchel, and Mark Silberstein. Gpunet: Networking abstractions
for GPU programs. In Jason Flinn and Hank Levy, editors, 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
’14, Broomfield, CO, USA, October 6-8, 2014, pages 201–216. USENIX
Association, 2014. URL: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/kim.

[19] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:

https://www.freertos.org
https://www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs/r-car-s4-automotive-system-chip-soc-car-servercommunication-gateway
https://www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs/r-car-s4-automotive-system-chip-soc-car-servercommunication-gateway
https://www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs/r-car-s4-automotive-system-chip-soc-car-servercommunication-gateway
https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32g-vehicle-network-processors/s32g2-processors-for-vehicle-networking:S32G2
https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32g-vehicle-network-processors/s32g2-processors-for-vehicle-networking:S32G2
https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32g-vehicle-network-processors/s32g2-processors-for-vehicle-networking:S32G2
https://www.freertos.org/2020/02/simple-multicore-core-to-core-communication-using-freertos-message-buffers.html
https://www.freertos.org/2020/02/simple-multicore-core-to-core-communication-using-freertos-message-buffers.html
https://doi.org/10.1109/ICPP.1996.537151
https://doi.org/10.1145/3503222.3507741
https://doi.org/10.1145/2872362.2872371
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://hal.archives-ouvertes.fr/hal-01707911
https://doi.org/10.1109/RTSS.2016.021
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim

Formal verification of an OS kernel. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP’09, pages
207–220, New York, NY, USA, 2009. ACM. URL: http://doi.acm.org/
10.1145/1629575.1629596, doi:10.1145/1629575.1629596.

[20] Adam Lackorzynski and Alexander Warg. Taming subsystems: Capabilities
as universal resource access control in L4. In Proceedings of the Second
Workshop on Isolation and Integration in Embedded Systems, IIES’09,
pages 25–30, New York, NY, USA, 2009. ACM. URL: http://doi.acm.org/
10.1145/1519130.1519135, doi:10.1145/1519130.1519135.

[21] Adam Lackorzynski, Carsten Weinhold, and Hermann Härtig. Predictable
low-latency interrupt response with general-purpose systems. In 13th
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), pages 19–24, June 2017.

[22] Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline
scheduling in the linux kernel. Software: Practice and Experience,
46(6):821–839, 2016.

[23] Luis E. Leyva-del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt management for real time kernels over conventional
PC hardware. In 12th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 14–23. IEEE, April 2006.
doi:10.1109/RTAS.2006.34.

[24] Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser.
Scheduling-context capabilities: A principled, light-weight operating-
system mechanism for managing time. In Proceedings of the Thirteenth
EuroSys Conference, pages 1–16, 2018.

[25] Jork Löser and Hermann Härtig. Low-latency hard real-time
communication over switched ethernet. In 16th Euromicro Conference
on Real-Time Systems (ECRTS), pages 13–22. IEEE, July 2004.
doi:10.1109/EMRTS.2004.1310992.

[26] Stephen Mallon, Vincent Gramoli, and Guillaume Jourjon. DLibOS:
Performance and protection with a network-on-chip. In Proceedings of the
23rd International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’18, pages 737–750, New York,
NY, USA, 2018. ACM. URL: http://doi.acm.org/10.1145/3173162.3173209,
doi:10.1145/3173162.3173209.

[27] Samuel Mergendahl, Samuel Jero, Bryan C Ward, Juliana Furgala, Gabriel
Parmer, and Richard Skowyra. The thundering herd: Amplifying kernel
interference to attack response times. In 28th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 95–107.
IEEE, June 2022.

[28] Sibin Mohan, Man Ki Yoon, Rodolfo Pellizzoni, and Rakesh Bobba.
Real-time systems security through scheduler constraints. In 26th
Euromicro Conference on Real-Time Systems (ECRTS), pages 129–140.
IEEE, July 2014. doi:10.1109/ECRTS.2014.28.

[29] Kenneth Moreland and Edward Angel. The FFT on a GPU. In Bill Mark and
Andreas Schilling, editors, Proceedings of the 2003 ACM SIGGRAPH/EU-
ROGRAPHICS Workshop on Graphics Hardware, San Diego, California,
USA, July 26-27, 2003, pages 112–119. Eurographics Association, 2003.
URL: http://diglib.eg.org/handle/10.2312/EGGH.EGGH03.112-119.

[30] Sadia Moriam and Gerhard P. Fettweis. Fault tolerant deadlock-free
adaptive routing algorithms for hexagonal networks-on-chip. In Euromicro
Conference on Digital System Design (DSD), pages 131–137. IEEE,
August 2016. doi:10.1109/DSD.2016.71.

[31] Vincent Nollet, Paul Coene, Diederik Verkest, Serge Vernalde, and
Rudy Lauwereins. Designing an operating system for a heterogeneous
reconfigurable so. In 17th International Parallel and Distributed
Processing Symposium (IPDPS 2003), 22-26 April 2003, Nice, France,
CD-ROM/Abstracts Proceedings, page 174. IEEE Computer Society, 2003.
doi:10.1109/IPDPS.2003.1213320.

[32] Gabriel Parmer and Richard West. Predictable interrupt management
and scheduling in the Composite component-based system. In Real-Time
Systems Symposium (RTSS), pages 232–243. IEEE, December 2008.

[33] Dara Rahmati, Srinivasan Murali, Luca Benini, Federico Angiolini,
Giovanni De Micheli, and Hamid Sarbazi-Azad. Computing accurate
performance bounds for best effort networks-on-chip. IEEE Transactions on
Computers, 62(3):452–467, March 2013. doi:10.1109/TC.2011.240.

[34] Fabian Scheler, Wanja Hofer, Benjamin Oechslein, Rudi Pfister, Wolfgang
Schröder-Preikschat, and Daniel Lohmann. Parallel, hardware-supported
interrupt handling in an event-triggered real-time operating system. In
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), pages 167–174. ACM, October 2009.

[35] Jonathan S Shapiro, Jonathan M Smith, and David J Farber. Eros: a fast
capability system. In Proceedings of the seventeenth ACM symposium
on Operating systems principles, pages 170–185, 1999.

[36] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. Gpufs:
integrating a file system with gpus. In Vivek Sarkar and Rastislav Bodı́k,
editors, Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013, pages
485–498. ACM, 2013. doi:10.1145/2451116.2451169.

[37] Till Smejkal, Jan Bierbaum, Manuel von Oltersdorff-Kalettka, and Michael
Roitzsch. CABAS: Real-time for the masses. In 15th Annual Workshop
on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), July 2022.

[38] Hayden Kwok-Hay So and Robert W. Brodersen. File system access
from reconfigurable FPGA hardware processes in BORPH. In FPL 2008,
International Conference on Field Programmable Logic and Applications,
Heidelberg, Germany, 8-10 September 2008, pages 567–570. IEEE, 2008.
doi:10.1109/FPL.2008.4630010.

[39] S.H. Son, R. Mukkamala, and R. David. Integrating security
and real-time requirements using covert channel capacity. IEEE
Transactions on Knowledge and Data Engineering, 12(6):865–879, 2000.
doi:10.1109/69.895799.

[40] Udo Steinberg and Bernhard Kauer. NOVA: a microhypervisor-based
secure virtualization architecture. In Christine Morin and Gilles Muller,
editors, European Conference on Computer Systems, Proceedings
of the 5th European conference on Computer systems, EuroSys
2010, Paris, France, April 13-16, 2010, pages 209–222. ACM, 2010.
doi:10.1145/1755913.1755935.

[41] Udo Steinberg, Jean Wolter, and Hermann Härtig. Fast component
interaction for real-time systems. In 17th Euromicro Conference on
Real-Time Systems (ECRTS), pages 89–97. IEEE, September 2005.

[42] Prathap Kumar Valsan and Heechul Yun. MEDUSA: a predictable
and high-performance DRAM controller for multicore based embedded
systems. In 3rd IEEE International Conference on Cyber-Physical Systems,
Networks, and Applications (CPSNA), pages 86–93. IEEE, August 2015.

[43] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Ed-
wards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III,
and Anant Agarwal. On-chip interconnection architecture of the tile proces-
sor. IEEE Micro, 27:15–31, 10 2007. URL: doi.ieeecomputersociety.org/
10.1109/MM.2007.89, doi:10.1109/MM.2007.89.

[44] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui
Sha. Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In 19th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
55–64. IEEE, April 2013. doi:10.1109/RTAS.2013.6531079.

[45] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.
Sonicboom: The 3rd generation berkeley out-of-order machine. May 2020.

[46] Shobana Balakrishnan Füsun Özgüner. A priority-driven flow control
mechanism for real-time traffic in multiprocessor networks. IEEE
Transactions on Parallel and Distributed Systems, 9(7):664–678, 1998.
doi:10.1109/71.707545.

http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1519130.1519135
http://doi.acm.org/10.1145/1519130.1519135
https://doi.org/10.1145/1519130.1519135
https://doi.org/10.1109/RTAS.2006.34
https://doi.org/10.1109/EMRTS.2004.1310992
http://doi.acm.org/10.1145/3173162.3173209
https://doi.org/10.1145/3173162.3173209
https://doi.org/10.1109/ECRTS.2014.28
http://diglib.eg.org/handle/10.2312/EGGH.EGGH03.112-119
https://doi.org/10.1109/DSD.2016.71
https://doi.org/10.1109/IPDPS.2003.1213320
https://doi.org/10.1109/TC.2011.240
https://doi.org/10.1145/2451116.2451169
https://doi.org/10.1109/FPL.2008.4630010
https://doi.org/10.1109/69.895799
https://doi.org/10.1145/1755913.1755935
doi.ieeecomputersociety.org/10.1109/MM.2007.89
doi.ieeecomputersociety.org/10.1109/MM.2007.89
https://doi.org/10.1109/MM.2007.89
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1109/71.707545

	Introduction
	Background
	Security and the Trusted Computing Base
	The M3 Hardware/Software Platform
	Security
	Heterogeneity

	Discussion of M3's Suitability for Real-time
	Computation
	Communication
	Low-latency Communication
	DTU Interrupt Injection
	Buffer Space Management

	Services and the Kernel
	Client Priorities
	CPU-time Restrictions

	Enhancements to M3's Real-time Guarantees
	Fast and Energy-efficient Communication
	Network on Chip
	Methods for NoC Analysis
	Implementation of Token-Bucket Regulation
	Memory Bandwidth

	Resource Limits
	Configuration Files and Resource Managers
	Capabilities
	Enforcement of Restrictions

	Evaluation
	Communication
	M3 on FPGA Platform
	Comparison with Linux on gem5
	Comparison with NOVA on gem5
	Comparison with Existing Hardware Platforms
	Summary

	Communication Latency with Per-Priority Endpoints
	Local Reasoning without NoC Regulation
	Local Reasoning with NoC Regulation
	Application-Controlled Core Sleep

	Related Work
	Real-Time System Software
	Real-Time Hardware Solutions

	Conclusion
	Acknowledgements
	References

