Hiding from Hardware Trojan Detectors by
Avoiding Rare Events

Mattis Hasler
(mattis.hasler @barkhauseninstitut.org)
Barkhausen Institut, Dresden, Germany

Abstract—An important part of the defense against hard-
ware trojans in commercially available chips is the research
of detection techniques as well as the development of trojans
challenging detection algorithms. The possible attack scenarios
between register transfer level design and implemented silicon
are manyfold and cannot be regarded at once. In this work a
trojanic structure is presented that is inserted at design time
and assumes a defender that is based on rare event detection
as well as observability and controllability analysis (SCOAP).
The introduced trojan escapes analysis based on these priciples,
by avoiding rare events and abnormally large SCOAP values
to blend with the original hardware. The proposed infection
technique is generally able to alter the output of the attacked
module to a malicious output, activated by an activation vector,
independent of the module’s functionality. Applied to a simple
Advance Encryption Standard (AES) module the area overhead
introduced by the trojan is 0.15%.

I. INTRODUCTION

The development and detection of hardware trojans are both
extremely complex and diverse fields. There is no method
of finding every possible hardware trojan, as well as there
is no trojan that can dodge every detection mechanism [1].
Like with any other security-related topic, both attacks and
defenses are based on an attacker/defender model they are
working against. Already the application environment can
impose requirements and constraints which narrow down the
possible attacks/defenses. For example, a defense can rely on
a golden netlist to generate test patterns [2], [3], or a zero-
knowledge proofing system only has limited analytic access
to an encrypted netlist [4]. Generally, hardware trojans and
defenses against them have been spotted in every processing
step between RTL design and finished silicon [1], [5].

In this work, it is assumed that a trojan is part of the design
that does not get activated during normal operation and stays
dormant. Defense mechanisms working with this assumption
are based on the detection of rare events and the analysis
of the controllability and observability of signals. For these
mechanisms, netlists of the design have to be available. For the
detection of rare events, the netlist is simulated —preferably
with functionality-relevant input values— and the activity (i.e.
toggle count) of each signal is recorded. Signals with very low
toggling activity (the toggling becomes a rare event) are then
suspected to be part of a hardware trojan.

The SCOAP [6] analysis is a technique that statically
computes observability and controllability values for each
signal in a netlist. The controllability values describe how
difficult it is to control a signal with the design’s input signals.

Similarly, observability values describe how difficult it is for
a signal value to have an impact on the designs output. These
measures can be used to detect certain trojans. A SCOAP-
based detection exploits the fact that a trojan ideally is difficult
to activate and thus contains signals with abnormally high
controllability values. The mostly dormant state of trojans also
leads to high observability values as they describe the difficulty
that a signal has an impact on a global output signal. The rarely
toggling signals and the dormant state of trojans are the results
of the goal for the trojan to not be discovered through random
functional testing. A trojan should be only activated under very
specific circumstances, that have a low probability of occurring
coincidentally. The probability to activate the trojan by chance
is called activation probability.

The generic trojan, proposed in this paper, can augment an
arbitrary functional unit (FU) with malicious functionality. Af-
ter augmentation, the infected module will replace the normal
output with a malicious output whenever a certain activation
key is detected at the inputs. Value and length of the activation
key are freely choosable at design time. The added logic is
carefully designed to display a reasonable amount of toggling
on all signals, mimicking the activity and SCOAP profiles of
an uninfected module. It keeps the moderate toggling activity
even when not activated, thus combining a lack of rare events
with a low activation probability.

The trojan is independent of the infected module. However,
it is successfully applied to an open-source Advanced Encryp-
tion Standard (AES) implementation, leaking the encryption
key upon a specified input. The resulting design size, activity
and SCOAP profiles are compared to uninfected and trivial
trojan implementation.

II. RELATED WORK

As stated in [1] there is no universal trojan detection
procedure. There are as many techniques to insert a trojan
into hardware as there are countermeasures. The vast majority
of trojans and their detectors are based on rare events [1]-[4],
[7]-[11]. In 2009 Chakraborty et.al. presented MERO [3], a
trojan detection based on statistical test pattern generation and
the use of golden netlists. Likewise, the TARMAC framework
[2] also depends on a golden netlist and rare nodes. Focused
on untrusted third-party IP, [7] does detection without a golden
netlist and [4] in a zero-knowledge environment, but still based
on rare events. In more recent times rare events analysis is
combined with SCOAP ([6]) analysis to improve results and/or

https://orcid.org/0001-7979-674X

trigger
Jact.

mux — out

—
FU

1

in MU

T

Fig. 1. Model of hardware trojan. The output of the malicious unit (MU) or
the real functional unit (FU) is selected by the multiplexer (mux) depending
on the trigger function.

complexity of detectors. Both analyses are being combined
using a genetic algorithm in the TRIAGE work [8] and
reinforcement learning techniques in [9]. A more analytical
approach is presented in [10]. The combinatorial analysis is
targeted solely at AES trojans. Similarly, in [12] a detection
framework is presented, which analytically tries to extract
rarely triggering nets. In [13], [14] RTL features are examined
to reveal suspicious hardware blocks. Apart from the RTL-
level detection, there is a whole field of fabrication step trojans
and their detection [5].

Traditionally ([1], [15]), and also in recent work ([11]),
hardware trojans focused on the lowering of trigger probability
by using rare events. In [15] a balance between the trigger
probability and rareness of signals is found to minimize the
detectability. The trojan presented in [16] tries to dodge several
detection techniques, for example by actually avoiding rare
events but using a combination of counters and shift registers
to lower the trigger probability with not-so-rare events. In this
work, this idea is extended to a point where every wire is
seemingly toggling randomly without compromising on the
activation probability.

III. TRIVIAL HARDWARE TROJAN

The goal of the regarded hardware trojan class is to modify
the output of a functional unit (FU) for a specific input
vector. A conceptional block diagram of the resulting module
is displayed in Fig. 1. Although most trojans are not imple-
mented using these distinguished blocks, they usually can be
decomposed to fit this representation. The original FU is left
unmodified. Instead, its output is given to a multiplexer (mux)
together with the output of the malicious unit (MU). The task
of the MU is to produce the output that should be propagated
to the module’s output in case the trojan gets activated. The
selection between FU’s original output and the MU’s malicious
output is controlled by the trigger block. It uses the activation
signal (act.) to control the mux, which selects the correct
output. The module’s input is forwarded to each of the three
blocks: trigger, FU and MU.

The described trojan structure can be used to implement a
trivial augmentation of an AES module to leak the encryption
key on the main output whenever a specific input vector is
discovered. In this trivial implementation, the MU constantly
outputs the encryption key:

assign mu_out = ENC_KEY;

sely sel;

QTD :

b &DTD%

Fig. 2. Schematic of the parity multiplexer. Signal ¢ can toggle a signal
between p and ¢ when XOR’d. The two toggle stages are activated by selg

and sel;. If the parity of sel is odd, p is toggled once to ¢, with an even
parity twice to p.

The trigger contains a simple comparator that compares the
module’s input with the activation key:

assign act = inp == ACT_KEY;
And finally, the mux is a simple multiplexer selecting

between the original and the malicious output.

assign out = act ? fu_out mu_out;

Although this would work as expected and also has a good
activation probability of p = 1/2!2% assuming an input/output
size of 128-bit of the AES module, it would be very easily
detectable by rare-event-based detectors. The main reason is
the activation signal between the trigger and the mux block.
Under the assumption of random input, the toggling rates in
the AND gate cascade, that implements a comparator, decrease
from layer to layer. At the tip of the cascade, the activation
signal is not toggling at all, giving a trojan detector a strong
hint.

IV. AVOIDING RARE TOGGLING

In the trivial trojan implementation, the rarely toggling
activation signal poses a problem, because it can easily be
detected in netlist simulation.

To circumvent rare events, the proposed trojan uses parity-
valued logic for those signals that would produce rare events
on common-valued logic. In common-valued logic the level
of a wire usually maps directly the logic value of a signal,
e.g. “low” maps to logic-0, “high” to logic-1. In parity-valued
logic, the parity of a wire pair is mapped to logic values,
so that odd parity becomes logic-0, even parity logic-1. This
way the wires can toggle without changing the logic value
of the signal. Starting from the trivial trojan implementation,
the activation signal is replaced with parity-valued logic, to
suppress suspicious (not) toggling behavior. To achieve this,
the comparator in the trigger block and the multiplexer are
replaced with parity-valued variants, namely “Parity Compara-
tor” and “Parity Multiplexer”.

A. Parity Multiplexer

The parity multiplexer selects between two signals based
on a parity-valued selection signal. A signal with the value
being either p or g can be toggled to the respective other by
XOR’ing a signal t = p ~ g to it. As displayed in Fig. 2
the parity multiplexer consists of two toggling stages that each
toggle the input value between p and g depending on the two
input wires of the sel signal. Even parity of sel causes two

out

Fig. 3. Comparator with 2-bit parity result. A bit-wise equality between the
inputs is created with an XNOR gate. All-one (ao) gates reduce 4-bit slices
of that equality to 2-bit parity values with even parity (logic-1) when all four
inputs are high. Parity-And (p) gates implement an AND gate for 2-bit parity
signals with logic-1 mapped to even parity.

toggles, which produces p to the output. With odd parity and
thus a single toggle, g emerges at the output.

B. Parity Comparator

The parity comparator’s output signal describes if the two
input signals are equal. In contrast to a common comparator,
the output signal is a 2-bit parity-valued signal. Further, all
signals including the output have a high probability of toggling
upon an input change, even if the output is not changed
logically. First, as seen in Fig. 3, a bit-wise equality signal
is created by XNOR’ing the inputs. This signal must then be
converted to parity-valued logic and reduced to a single value.
To convert the signal to parity-valued logic, slices of four wires
are fed into custom “all-one” gatess. The resulting vector of
parity-valued signals is then reduced to a single signal with
a cascade of parity AND (pAND) gates. The “all-one” gates
check if all input signals are one, to then produce a double
one (2'b11), which is a parity logic-1. The fact that it will
never use the double zero (2'b00), which also is a parity
logic-1, is exploited by the following pAND gates. Apart from
this unused input value, both “all-one” and “pAND” are very
similar, as can be seen in their Karnaugh diagrams in Fig. 4.
The functions of the two output wires are described by the
red and the blue coloring. Only when all four inputs are set,
both outputs are activated. All other cases are separated into
two sets of either output being active. The (almost) equal size
of these sets assures a frequent toggling of wires upon input
change. For the pAND gate, the cases with one input pair
being zero are undefined and can be ignored. The resulting
simplified hardware can be implemented with only four NAND
gates, compared to the “all-one” gate, which uses an additional
NOR gate.

V. EVALUATION

The presented trojan structure can be used to augment any
functional unit. For this paper, it is used on an open-source
Advanced Encryption Standard (AES) module [17]. The AES
module is synthesized in three variants: (1) unaltered, (2)
infected with the trivial trojan (Section III), and (3) infected
with the proposed trojan (Section IV). Synthesis is done with
Yosys open synthesis suite [18]. The netlists are then simulated
with Icarus Verilog Simulator [19] to confirm the correctness

— —
all-one 4 pAND 4
s \|/~ 4 ™\
1 (1)1 [A R]
IR (1 1)1
b 7 = b s)
[1]102]1] i (2] 1
a a = y
TSR] [SRR
Fig. 4. Karnaugh map of the all-one and the pAND gates. The output

functions are color coded. For most input values exactly one output function
is active, except when all inputs are one, in which case both functions activate.
The pAND gate is a simplified version taking some impossible input values
into account as don’t cares.

TABLE I
SYNTHESIZED MODULE SIZES

module GE* diff. to AES % growth
AES 343272 0 -

\w trivial 343640 368 0.107
\w proposed 343792.5 520.5 0.151

* Gate equivalent (GE): The area of one NAND gate.

of the AES implementation and the functionality of the trojan
augmentation. A full value change dump (VCD) from the
simulation is analyzed to extract wire activity values and
finally, the netlist is analyzed to extract observability and
controllability values.

In each simulation the correctness of the module’s output
is checked for 1000 random input values. To test the data
leakage by the trojan, another simulation is performed with
one input value set to the activation key and the appearance
of the secret key at the output is observed. The activity values
shown in Fig. 5 are taken from simulations without trojan
activation. The signal activity values of the proposed trojan
group themselves around 0.5, which represents a signal with
an equal distribution of high and low values. Especially it is to
be noticed, that no signal from the trojan has an activity below
or even close to 0.1 which is a common value for considering a
signal to be rare. In contrast, the trivial trojan implementation
does have a significant number of signals that do toggle very
seldomly, even some that do not toggle at all.

In Fig. 6 the SCOAP analysis of all three netlists is shown
as a histogram of the controllability and observability values.
All three histograms are very similar, neither of the trojans do
have a suspicious profile. Especially neither has any outliers
of extremely high values that would give a hint to a trojanic
structure.

The implementation cost of both the proposed and the trivial
trojan are 520.5 and 368 gate equivalents, which is 0.15%
and 0.11% of the AES module’s size, respectively (Tab. I).
At this scale, the increased size of the proposed trojan of
around 50% compared to the trivial one is a small price for
the increased stealthiness. The other part of the stealthiness,
namely the activation probability of the proposed design is

0o AEs
104 | [0 Trivial ||
Parity
£
2 102 N
100 D‘ |

T T T T T T
0 0.1 0.2 03 04 05 0.6 0.7

activity value
Fig. 5. Histogram of wire activity values (toggle probability). The proposed

parity trojan does not include any rare, or even close to rare (activity < 0.1)
signals. The trivial implementation has a large group of those signals.

|
T T T T TR
. 0o AEs
§ , [0 Trivial
1071 Parity ||
10° \ T
0 60 120 180 240 300 360

SCOAP value

Fig. 6. Comparison of SCOAP profiles, AES module, the trivial and the
parity HT implementation. Neither the proposed nor the trivial trojan show
abnormally large values.

unaltered compared to the trivial implementation. Both activate
at exactly one input value out of the 2128 possible input values,
setting the activation probability to 1/2128 =2.94 x 10739,

VI. CONCLUSION

A hardware trojan-hiding mechanism is presented that is
agnostic to both the original and the malicious functionality.
In contrast to most other hardware trojans the presented work
tries to avoid rare events. The trojan activation mechanism
uses parity-valued logic which maps the parity of wire pairs
to the logic values zero and one. Using parity-valued logic
the detection of the activation key and the selection of the
malicious result can be implemented avoiding rare events
without compromising on the activation probability. It is
shown that the trojan’s impact on area consumption, activity
profile and SCOAP values of an AES unit is negligible. The
area consumption is 520 gate equivalents or 0.15% of a tar-
geted AES module. The activation probability stays unaltered
compared to a trivial trojan implementation of 1/2128,

REFERENCES

[1] S. Bhasin and F. Regazzoni, “A survey on hardware trojan
detection techniques,” in 2015 IEEE International Symposium
on Circuits and Systems (ISCAS), IEEE, 2015, pp. 2021-2024.

[2] Y. Lyu and P. Mishra, “Scalable activation of rare triggers
in hardware trojans by repeated maximal clique sampling,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 40, no. 7, pp. 1287-1300, 2020.

(3]

(4]

(5]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(7]

(18]
[19]

R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and
S. Bhunia, “Mero: A statistical approach for hardware tro-
jan detection,” in Cryptographic Hardware and Embedded
Systems-CHES 2009: 11th International Workshop Lausanne,
Switzerland, September 6-9, 2009 Proceedings, Springer,
2009, pp. 396-410.

D. Mouris, C. Gouert, and N. G. Tsoutsos, “Zk-sherlock:
Exposing hardware trojans in zero-knowledge,” in 2022 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI),
IEEE, 2022, pp. 170-175.

A. Jain, Z. Zhou, and U. Guin, “Survey of recent develop-
ments for hardware trojan detection,” in 2021 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 1EEE,
2021, pp. 1-5.

L. H. Goldstein and E. L. Thigpen, “Scoap: Sandia controlla-
bility/observability analysis program,” in Proceedings of the
17th Design Automation Conference, 1980, pp. 190-196.

M. Tehranipoor, H. Salmani, X. Zhang, M. Tehranipoor, H.
Salmani, and X. Zhang, “Hardware trojan detection: Untrusted
third-party ip cores,” Integrated Circuit Authentication: Hard-
ware Trojans and Counterfeit Detection, pp. 19-30, 2014.
M. Nourian, M. Fazeli, and D. Hély, “Hardware trojan detec-
tion using an advised genetic algorithm based logic testing,”
Journal of Electronic Testing, vol. 34, pp. 461-470, 2018.
Z. Pan and P. Mishra, “Automated test generation for hardware
trojan detection using reinforcement learning,” in Proceedings
of the 26th Asia and South Pacific Design Automation Con-
ference, 2021, pp. 408—413.

L. Kampel, P. Kitsos, and D. E. Simos, “Locating hardware
trojans using combinatorial testing for cryptographic circuits,”
IEEE Access, vol. 10, pp. 18 787-18 806, 2022.

N. Zhang, Z. Lv, Y. Zhang, H. Li, Y. Zhang, and W. Huang,
“Novel design of hardware trojan: A generic approach for
defeating testability based detection,” in 2020 IEEE 19th
International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), 1EEE, 2020,
pp. 162-173.

S. A. Islam, L. K. Sah, and S. Katkoori, “A framework for
hardware trojan vulnerability estimation and localization in rtl
designs,” Journal of Hardware and Systems Security, vol. 4,
pp- 246-262, 2020.

H. S. Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel,
and C. H. Kok, “Register-transfer-level features for machine-
learning-based hardware trojan detection,” IEICE TRANSAC-
TIONS on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 103, no. 2, pp. 502-509, 2020.

X. Chen, Q. Liu, S. Yao, et al., “Hardware trojan detection
in third-party digital intellectual property cores by multi-
level feature analysis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 7,
pp. 1370-1383, 2017.

J. Zhang and Q. Xu, “On hardware trojan design and im-
plementation at register-transfer level,” in 2013 IEEE inter-
national symposium on hardware-oriented security and trust
(HOST), IEEE, 2013, pp. 107-112.

Y. Zhang, M. Ge, X. Chen, J. Yao, and Z. Mao, “Blinding
ht: Hiding hardware trojan signals traced across multiple
sequential levels,” IET Circuits, Devices & Systems, vol. 16,
no. 1, pp. 105-115, 2022.

H. Hsing. “Opencores.org tiny_aes.” (2013), [Online]. Avail-
able: https://opencores.org/projects/tiny % S5C_aes (visited on
03/17/2023).

C. Wolf, Yosys open synthesis suite, 2016.

S. Williams and M. Baxter, “Icarus verilog: Open-source
verilog more than a year later,” Linux Journal, vol. 2002,
no. 99, p. 3, 2002.

https://opencores.org/projects/tiny%5C_aes

	Introduction
	Related Work
	Trivial Hardware Trojan
	Avoiding Rare Toggling
	Parity Multiplexer
	Parity Comparator

	Evaluation
	Conclusion

