
AnNVMPerformance Study
TowardsWhole System Persistence on Server Platforms

Till Miemietz
Barkhausen Institut
Dresden, Germany

Viktor Reusch
TU Dresden

Dresden, Germany

Michael Roitzsch
Hermann Härtig
Barkhausen Institut
Dresden, Germany

Abstract
Whole system persistence (WSP) is a concept for retaining
the computational state of a system even in case of a power
failure. In the context of server systems, WSP could render it
possible to quickly power on and offmachines that only need
to be used occasionally, thus saving energy. This paper takes
on this idea and discussesmultiple approaches for implement-
ingWSP on such machines. Our evaluation shows that after
starting a system, an NVM-based version ofWSP can achieve
tail latency improvements of up to 93% compared to booting a
system and loading data from an SSD. At the same time, WSP
is able to provide suspend and resume times in the order of
tens of milliseconds.

CCS Concepts: • Software and its engineering→Mem-
orymanagement; •Hardware→Non-volatile memory.
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1 Introduction
Whole system persistence (WSP) [21] is a concept that allows
to cut the power supply of a computer without having the sys-
tem lose any computational state.WithWSP, the systemhard-
warehasenoughcapacitance reserves towrite all volatile state
back to persistentmediawhen thepower goes away. Thus, the
traditional procedure of shutting down and booting a system
can be shortened to faster suspend and resume operations,
ideally enabling users to switch computers on and off just as a
lightbulb. In suchaworld, a lossofpowerwouldhavenoharm-
ful effects on a system since it would be equal to a “shutdown”
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operation triggered by pulling the power plug of a server. Fur-
thermore,WSPnot only shields computational state from sud-
denchanges in thepowersupply,butalsopreservesephemeral
state that is normally discarded during a reboot.
Due to these properties, WSP could enable interesting

power saving options for applications that serve requests
infrequently but still need to maintain low response times.
For instance, in a data center, this could be a database server
that is specialized for answering queries to seldom accessed
records. On the one hand, such systems should maintain in-
memory caches to achieve a short response time. On the other
hand, powering off such systems during idle phases to save
energy is of both economic and environmental benefit. How-
ever, in a traditional system, a boot cycle of a physicalmachine
takes rather long and loses any memory contents. With re-
spect to the requirement of short response times this creates
a dilemma that an approach likeWSPmight solve.

ImplementingWSPrequires only simplehardware and soft-
ware modifications. As already pointed out by Narayanan et
al. [21], the hardware changesmostly consist of a power event
notification mechanism and a suitable provisioning of power
reserves, possibly in the form of additional capacitors in the
system. Additionally, the software modifications needed to
implementWSP are modest, since much of the standard pro-
cedures for suspending and resuming a system can be reused.
Today, there exist three candidate technologies for im-

plementingWSP: Using a conventional system design with
volatile DRAM and fast SSDs, storing data on remote nodes
using the compute express link (CXL) [4], and deploying non-
volatile main memory (NVM). In general, the decision be-
tween a conventional system and a CXL- or NVM-enabled
one is mostly a tradeoff between runtime performance and
suspend/resume latency as well as implementation simplicity.
To this extent, we take a look into the time it takes to sus-

pend and resume a system that runs on NVM only and com-
pare these numbers to a system deploying DRAM and SSDs.
First, this should answer the question of whether implement-
ing WSP using a traditional system architecture is a viable
choice. This is particularly important in the light of Intel hav-
ing discontinued Optane NVM.

Second, since NVM has worse performance than DRAM in
most cases [26], wewill enrich themeasurements of plain sus-
pend and resume times with an analysis of the runtime costs
that are entangled with relying on NVM as main memory.
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These measurements are intended to investigate whether the
performance benefit of resuming a system with warm caches
bymeansofWSP is significant compared to rebooting a server.

Lastly, we investigate whether the design of the operating
system can positively influence the ability to implementWSP.
We find that compartmentalized systems, such as microker-
nels, provide better safety for systems running on NVM and
additionally alleviateWSP-specific issues such as a restart of
repeatedly failing system components.

In conclusion, the papermakes the following contributions:
• A prototype software implementation of WSP on L4Re,
a state-of-the-art microkernel

• A detailed evaluation of the tradeoff between runtime
performance and suspend / resume latencywhen using
NVMcompared to a systemdeployingDRAMand SSDs

• Adiscussion of OS design guidelines for supporting the
implementation ofWSP

2 Background
Startingwithanoverviewof techniques for suspendingandre-
suming an operating system, this section discusses the idea of
WSP and candidate technologies for implementing it in detail.

2.1 Suspending and Resuming Operating Systems
Hibernate. Hibernation [2], also called suspend-to-disk,

is a method for temporarily halting a system by retaining
the volatile system state on disk. On hibernation, the CPU
registers and memory contents are bundled into an image
and subsequently written to a non-volatile device. Upon next
boot, the operating system then tries to discover and load
such an image instead of carrying out a standard booting pro-
cedure. AnOS instance restored fromahibernation image can
transparently continue execution without restarting system
services or applications.

Suspend-to-RAM. During a suspend-to-RAM, CPUs and
other devices are shut downbut themainmemory is still being
powered. This allows to quickly suspend execution as only
the CPU state consisting of registers and caches needs to be
written to memory. The amount of moved data is small com-
pared to hibernation and only needs to reach main memory.
A suspend-to-RAM requires hardware and firmware support,
such as the S3 sleeping state of ACPI [2, p. 767]. On resume,
the firmware hands control back to the kernel, which is still
present in memory. However, when the power supply is cut,
all volatile state such as the DRAM content is lost, too.

2.2 Whole System Persistence
Whole System Persistence (WSP) [21] shields the computa-
tional state of a system against an unexpected loss of power
by constantlymonitoring its power supply, triggering awrite-
back of volatile state to persistent devices in case of a power
outage. Unlike other approaches [7, 16, 19, 25], WSP does not
add any runtime overhead to ensure the integrity of a system

in case of a power loss. After restarting, aWSP-enabled sys-
tem neither performs undo or redo operations on persistent
state since the system continues execution at the same spot as
it was in before the power was cut. This makes the adoption
ofWSP easy as application code does not need to be modified.
In order to implement WSP, the system hardware needs

to be able to quickly recognize a loss of input power. When
there is a power failure, the hardware sends an interrupt to the
CPU that in turn triggers the suspend routine of the operating
system. In order forWSP towork properly, the residual energy
window, i.e., the time span that the system can still operate
after losing power, needs to be sufficiently large to allow a
write-back of all volatile state.

On the software side, the modifications required forWSP
comprise a handler for the power-fail interrupt, that suspends
the system. Upon restoring power, a WSP-enabled system
uses dedicated code paths to recognize that it needs to restore
a previous system instance. Furthermore, device drivers have
to be extended in a way that they can resume the state of
peripheral hardware upon a resume operation [12, 14].

2.3 Non-Volatile Memory
Non-volatilememories (NVM) constitute a class ofmainmem-
ory devices that are capable of retaining their information
even in an unpowered state. Unlike traditional persistent
media, NVM exposes a memory interface and can thus be
directly accessed by the CPU. There are various technolo-
gies for implementing NVM, such as phase-change mem-
ory (PCM) [1] or spin-transfer torque magnetoresistive RAM
(STT-MRAM) [27]. While there are types of NVM that have
performance characteristics close to that of DRAM (e.g., STT-
MRAM), there is no technology that combines the perfor-
mance and capacity of DRAMwith the feature of persistence.
So far, the only type of NVM that can to be used in commodity
systems is Intel’s PCM-based Optane [1].

2.4 CXL
The compute express link (CXL) [4] is a collection of hard-
ware protocols built on top of PCI Express. CXL offers cache
coherence acrossmultiplemachines aswell as between aCPU
and peripheral devices. In contrast to current protocols, CXL
renders it possible to access device memory as if it was a part
of the local main memory.

By means of CXL, one could implement a kind of NVM by
moving critical data to remote machines. In this case, if one
machine loses power, the data is not lost even if it is stored in
volatile memory. However, in order to implement trueWSP,
this assumes that the machines are located in different fault
domains with respect to the power supply.

3 Design Considerations forWSP
For the rest of this paper, we assume that the implementa-
tion of WSP is accomplished without the help of external
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devices such as uninterruptible power supplies in order to
reduce the complexity and cost of possible solutions. Hence,
the feasibility of WSP in general boils down to two questions,
namely: (1) How fast can the system carry out a suspend and
resume operation? and (2) Does the use of a particular sys-
tem layout affect the runtime performance of applications?
The first question indirectly also covers the question of how
much residual energy needs to be kept in a system, and thus
determines whether a particular implementation ofWSP is
viable from a technical and economical point of view.

3.1 WSPUsing NVM
Whenrunning theentire systemonNVM, the implementation
of WSP is simple: As all data except that contained in CPU
caches is directly persisted, only the hardware extensions
described in section 2.2 (power monitoring and providing
enough residual energy) need to be applied. Inside the OS, the
suspend and resume operations can be implemented just as
when running on DRAM.

However, Optane, the only available implementation of
NVM for commodity systems, has a significantly worse per-
formance than DRAM, both in terms of latency and band-
width [22, 26]. Several studies showed that this negatively
impacts the performance of applications that run on NVM.
As Koutsoukos et al. pointed out, the performance of a system
running on Optane can even drop to the level of flash-based
SSDs since the CPU stalls on rather slow accesses to NVM, re-
ducing opportunities to carry out computations as it would be
possible when using an asynchronous interface for accessing
persistent media [20].

3.2 Working on RemoteMemory
With the rise of advanced interconnects like CXL, a possible
replacement of NVM could be the use of remote memory.
Since CXL offers a memory interface to access memory of
remote machines, the advantages with respect to the imple-
mentation simplicity of WSP would be the same as for NVM.
The main difference between implementingWSPwith CXL
and NVM is that the CXL variant can not be realized using
only a single machine.

Unfortunately, at the time of writing this paper, a publicly
available solution for CXL.mem devices does not exist yet.
Hence, we do not cover this way of implementing WSP in
the evaluation. However, preliminary studies on CXL fabrics
indicate that the performance of accessing a remote memory
target via CXLmight be close to or even slightly better than
that of Optane NVM [15].

3.3 WSP on Traditional Systems
When using a traditional system design, suspending a system
is not only about writing back CPU caches and registers, but
also encompasses the write-back of volatile main memory
contents to a persistent device.Writing back thewholeDRAM
content slows down the suspend procedure significantly. For

instance, even when considering the peak write throughput
of a modern SSD (e.g. 5 GiB/s for a Kioxia CM6-RI), storing an
entire DRAM image of 500GiBwould take a hundred seconds.
This is much more than the residual energy window found
in standard servers [3] as well as the energy window needed
for suspending to NVM [21].

In contrast, most applications only modify a fraction of the
RAMthat theyallocated. For instancewithYCSB[8], apopular
cloud service benchmark, most of the predefined workloads
are read-heavy. Thus, the amount of dirty data that needs to be
written back to secondary storage during a suspend operation
can be reduced. Moreover, a system could use compression al-
gorithms to shrink the RAM image, as done inOSes like Linux.

3.4 On the Value of Compartmentalization forWSP
In a compartmentalized system design, such as amicrokernel,
system components such as drivers are strongly separated
from each other, interacting using a client-server model. As
a part of this philosophy, the code running in privileged CPU
modes is minimized.

Compartmentalization is beneficial for systems running on
NVM. Unlike traditional systems that can recover frommem-
ory corruptions due to software bugs by rebooting, corrup-
tions of NVM can neither be detected nor fixed easily. Hence,
a strong separation of system components can increase the
safety of a system by confining stray writes and other appli-
cation bugs into rather small domains, instead of sharing a
huge memory space such as the kernel in monolithic systems.
Furthermore, a compartmentalized system design often

comeswithgoodmodularity, i.e., a clear separationof indepen-
dent subsystems of an OS. This modularity alleviates restart-
ing of parts of the system in case of an error [10] thus being
particularly valuable forWSP in order to get out of repeated
failures due to bugs in one subsystem.Additionally, as pointed
out by Tsalapatis et al., an aggressive write back of dirty RAM
contents is crucial for swiftly saving the state of a system to
persistent media when running on a traditional system archi-
tecture [25]. The use of several smaller and separated system
components facilitates the identificationofmemoryareas that
each component has to write back to save an image of itself.

4 Implementation
In order to evaluate the idea of using a compartmentalized sys-
tem forWSPonNVM,we chose to add the necessary software
mechanisms to L4Re [17], a microkernel-based operating sys-
tem.
As a first step to add support for WSP to L4Re, we con-

structed amechanism for discovering andmanaging different
types of main memory. Amongst other things, this involved
an extension of the parsing procedure of the ACPI tables, sub-
sequently passing the resulting layout information through
the multi-stage boot process of L4Re, as well as providing
different page frame allocators for each type of memory. As
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a result, an application can choose explicitly which type of
memory to allocate. Moreover, we added means for a system
administrator to transparently override the default memory
type that applications are served from. This enables a move-
ment of unmodified binaries from DRAM to NVM, one key
property for conductingWSP.

The next stepwas tomove all components of L4Re to NVM.
For the suspend and resume routines, we couldmostly rely on
an existing suspend-to-RAMmechanism of L4Re. However,
we had to extend the resume operation to use a trampoline
code page for switching to the actual kernel that resides in
NVM. This became necessary due the startup procedure of
an x86 CPU1 that does not allow to begin execution in NVM
when powering on the system.

Lastly, we replaced the standard malloc implementation
of L4Re with a customized version of jemalloc [5]. This
was aimed at improving the performance of L4Re compared
to commodity OSes like Linux.

5 Evaluation
During the evaluation, we aim at answering the following
questions:

• How fast can WSP be implemented theoretically on
modern machines using different approaches for per-
sisting volatile system state?

• What is the performance tradeoff between running an
application on DRAM vs. NVM?

• Does the compartmentalizeddesignproposed in this pa-
per incur conceptual performance disadvantages com-
pared to a standard OS?

Note that we only implemented WSP for L4Re running
entirely on NVM. For gaining insight into the hypothetical
performanceof aWSP implementationona traditional system
(DRAM + SSD), we instead used microbenchmarks running
on L4Re’s and Linux’ NVMe stack.

5.1 System Setup
Weconducted ourmeasurements on a dual-socket server plat-
form using two Intel Xeon Platinum 8358 CPUs with a clock
rateof 2.6 GHz.TheCPUfeatures1.25MiBofL2cache foreach
core as well as an shared L3 cache with a capacity of 48MiB
per socket. For all benchmarks, we disabled hyperthreading
(SMT) as well as temporary overclocking (TurboBoost) and
set the CPU’s pstate to the performance configuration.
Furthermore, the machine is equipped with 500 GB of

DRAM as well as one TB of Optane DIMMs (Gen. 2). As a
secondary storage, the benchmarks use a Kioxia CM6-RI SSD
with a size of 3.84 TB. The SSD is attached to the host system
usingNVMeVersion 1.4 over PCIe 4.0 x4. For all Linux-related
benchmarks presented in the following, we deployed kernel
version 6.1.27.

1Due to the type of available NVMwewere forced to use this architecture.

Note that the test systemwas not capable of sending power-
fail interrupts. Instead, we simulated a loss of power supply
by executing a dedicated system call. This system call then
triggered the L4Re kernel to execute its suspend routine.

Similarly,we report the resume latency as the time between
the OS being kicked off by L4Re’s bootloader and the OS con-
tinuing to execute a system image. In practice, the startup of
a server system takes a couple of minutes due to hardware
self-tests. However, this is not a conceptual limitation since
such checks could be omitted on a dedicatedWSP platform.

5.2 Suspend and Resume Performance
Figure 1 shows the latency for suspending an L4Re system
to either RAM or NVM as a function of the amount of dirty
cache2, using theWBNOINVD instruction forwriting back the
CPU caches. We chose to restrict the system to a single CPU
socket to avoid NUMA effects. For each measurement, we
recorded the latency when using a single core (no SMP) as
well as when using all cores of the socket (SMP).

In accordance with Narayanan et al. [21], the latency for a
suspend-to-RAM operation is independent of the amount of
modified cache. When enabling SMP, the latency for a cache
write back increases because of the IPIs used for notifying all
CPU cores of the suspend operation. Furthermore, while the
write-back of core-local L1 and L2 caches runs in parallel on
the application processors, the boot CPU (i.e., the core that
runs first when the system starts) has to wait for every core
to finish the write-back before flushing its own cache and
shutting down the system. This wait time is not present in
the non-SMP configuration.
However, in contrast to earlier predictions [21], the sus-

pend latency on NVM is higher than on DRAM, increasing
linearly with the amount of dirty cache. We believe that this
is because a cache flush to NVMwaits for the corresponding
store operations to complete instead of just forwarding them
to the memory controller.
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Figure 1. Time needed for suspending L4Re to memory as
a function of the amount of dirty cache.

Figures 2 and 3 show a detailed latency breakdown of the
suspend and resume operations of an idle L4Re instance that
2Since the procedure for a suspend or resume onmemory does not depend
on the OS architecture, we expect a standard OS like Linux to show similar
numbers.
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runs entirely on NVM (i.e., for one flavor of WSP). For the
suspend operation, the preparation of the kernel, the notifica-
tion of the application processors, and the write-back of the
application processors’ caches take less than a millisecond
when SMP is disabled (suspend_prep). When enabling SMP,
the cost of this phase is much higher, again being caused by
cross-core communication overhead and the time that the
boot CPU has to wait for the other cores to write back their
caches. The remainder of the suspend time is consumed by
the write-back of the boot CPU’s cache (suspend_wb). Finally,
the latency of marking the main memory contents as a valid
image and shutting down the CPU (suspend_finish) accounts
for roughly 150 µs in both SMP and non-SMP settings.

As depicted in Figure 3, the resumeoperation ismuch faster
than a suspend, since no data has to be written back to NVM.
Here, the time it takes to start up L4Re’s second-level boot-
loader (resume_trampoline) as well as to resume the kernel
(resume_kernel) account for only a couple of microseconds.
Then, the startup of the boot CPU (resume_boot) takes around
250 µs. Finally, resume_finish denotes the delay until all ap-
plication processors become online again. We believe that
adding device drivers to the resume path will not slow down
the operation by orders of magnitude since typical operations
for initializing devices like NVMe-attached SSDs or RDMA
NICs only take a couple of milliseconds [23].

0 2 4 6 8 10

Time Since Power Fail Interrupt in ms

NVM (SMP)

NVM (no SMP)
suspend_prep
suspend_wb
suspend_finish

Figure 2. Latency breakdown for a suspend-to-NVM
operation on L4Re (minimal cache usage).
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resume_trampoline
resume_kernel
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Figure 3. Latency breakdown for a resume-from-NVM
operation on L4Re.

Latency for writing RAM images to an SSD. We used
Linux for evaluating the performance of a standard suspend-
to-disk procedure of an idle system. This operation took 48.5 s
(11.1 s to allocate the RAM image, 16.8 s to copy the image in

RAM, and 20.6 s towrite the image to the SSD), creating an im-
age of roughly 10GiB in size. A resume-from-disk took 70.1 s
overall (17.9 s to find the image on disk, 47 s to read the image,
and 5.2 s to continue execution). When suspending a system
with large applications that touch more memory, we expect
these numbers to grow significantly. Thus, we conclude that
using even a modern SSD as a persistent medium forWSP ap-
pears to be impractical since the suspend and resume latency
is increased by orders of magnitude compared to a system
running on NVM, exceeding the available residual energy.

5.3 Application Performance
Asanapplicationbenchmarkweused thebuilt-indb_bench
latency benchmark of LevelDB [6] to evaluate whetherWSP
provides performance benefits when resuming a system.We
also compared the performance of LevelDB running on a
compartmentalized system (here L4Re) to that observed on
a standard Linux platform.
Figure 4 shows the resulting histograms of the LevelDB

benchmark, with each run performing ten million accesses
on a database with one billion entries. The columns group the
single benchmark runs by the configuration of the OS (L4Re /
Linux) and the benchmark type (random read / sequential
read) used. The rows further distinguish the benchmarks by
thememory configurationused for each run.DRAMUncached
denotes benchmark runs on a newly started LevelDB instance
residing in DRAM. Hence, all records that the benchmark
reads for the first time have to be fetched from the SSD. In
contrast,NVMCached denotes benchmarks on an in-NVM in-
stance of LevelDBwith all database contents present in NVM.
Thus, no disk operations need to be done in this configuration.
Note that for L4Re,NVMCached means that all parts of the
system run in NVM (i.e., WSP configuration), whereas on
Linux, due to implementation constraints, this is only true for
the contents of LevelDB which are mapped using an fsdax
file system.DRAMCached runs under the same preconditions
as DRAM Uncached, with the exceptions that the database
has all of its contents present in memory. This setup is the
best-case configuration from a performance perspective.
In order to evaluate the benefit of deploying WSP for a

database scenario, the comparison between the DRAM Un-
cached column (equals a newly booted system) and the NVM
Cached column (represents a system resumed from NVM)
is of particular interest. When suspending and resuming a
system that runs entirely on NVM, all database contents and
caches are still present while a traditional systemwould have
to load them from secondary storage again.
For a sequential workload pattern on Linux, the average

latency of theNVMCached setting was 30% lower than that
ofDRAMUncached (0.18 µs vs. 0.26 µs). On L4ReNVMCached
waseven50%faster (0.22 µsvs. 0.41 µs), probablydue to lessop-
timized prefetching routines. During the random read bench-
mark the performance advantage ofNVMCached overDRAM
Uncached increased to 50% on Linux (8.35 µs vs. 14.96 µs) and



DIMES ’23, October 23, 2023, Koblenz, Germany Till Miemietz, Viktor Reusch, Michael Roitzsch, and Hermann Härtig

104

99.9th: 665.33 µs

L4Re DRAM Uncached Random
99.9th: 171.00 µs

Linux DRAM Uncached Random
99.9th: 29.44 µs

L4Re DRAM Uncached Sequential
99.9th: 3.02 µs

Linux DRAM Uncached Sequential

104

99.9th: 13.54 µs

L4Re NVM Cached Random
99.9th: 12.67 µs

Linux NVM Cached Random
99.9th: 1.31 µs

L4Re NVM Cached Sequential
99.9th: 1.18 µs

Linux NVM Cached Sequential

100 101 102 103 104

104

99.9th: 6.54 µs

L4Re DRAM Cached Random

100 101 102 103 104

99.9th: 5.07 µs

Linux DRAM Cached Random

100 101 102 103 104

99.9th: 0.77 µs

L4Re DRAM Cached Sequential

100 101 102 103 104

99.9th: 0.73 µs

Linux DRAM Cached Sequential

Latency in Microseconds per Operation (Logscale)

N
o.

 o
f O

pe
ra

tio
ns

 in
 B

uc
ke

t (
Lo

gs
ca

le
)

Figure 4. Latency histograms for various configurations of LevelDB. The dashed red lines correspond to the 99.9th percentile
specified in the upper righthand corner of each subplot.

95% on L4Re (9.09 µs vs. 133.83 µs), respectively. We assume
that the absolute performance gap between L4Re and Linux is
not a conceptual problem of microkernel-based systems but
rather causedby the fact that L4Re is currently geared towards
embedded systems andhence lacksmanyof the optimizations
that Linux has, e.g. on the NVMe I/O path.

When looking at the tail latency (99.9th percentile), the ben-
efit ofWSP for running occasionally used systems becomes
even more pronounced: On Linux the NVM Cached runs had
a 99.9th percentile that was 60% lower than that ofDRAMUn-
cached for sequential reads. For random reads, this advantage
increased to 93%.We attribute the larger latency gap between
NVM Cached and DRAMUncached for random reads mostly
to Optane’s internal organization that is better in hiding the
PCM latency when facing sequential access patterns.
On L4Re, the differences in tail latency between DRAM

Uncached and NVM Cached were even higher than on Linux.
While the 99.9th percentile was similar to Linux concerning
the cached runs fromNVM, the tail latency for theDRAMUn-
cached runs were 50 times higher than those of NVM Cached
for both sequential as well as random access patterns. Again,
weattribute this difference toanunoptimized implementation
L4Re’s block I/O path.

6 RelatedWork
The idea of WSP has first been described by Narayanan et
al. [21]. Capri [18] extended this idea, presenting an approach
that providesWSP to unmodified applications through a com-
bination of compiler support and architectural extensions.
Neverlast [14] demonstrated the feasibility of WSP for em-
bedded systems, also covering device states.
Beside using WSP for creating consistent and persistent

images of a system’s state, there exists a variety of approaches
such as checkpointing [13, 19, 25], transactional program-
ming [7, 16], or CPU extensions [11, 24]. Particularly recent
checkpointing approaches are fast in saving an application’s

state to disk. For instanceAurora [25] can create a snapshot of
a process with a memory footprint of 500MiB in 97ms. How-
ever, in contrast toWSP, these approaches introduce complex
programmingmodels, require themodification of application
code, and often cover only parts of a system. Moreover, the
use of these frameworks comes with additional runtime costs.
Non-volatile processors (NVPs) [9], which are mainly in-

tended for use in energy-harvesting devices, aim at creating
a persistent system by saving computational state in the CPU
itself. This requires the processor to use non-volatile building
blocks for constructing registers and caches. Unfortunately,
most NVP approaches suffer from wear effects and involve
extensive changes to the CPU.

7 Conclusion
In this paper, we discussed the feasibility and advantages of
implementingWSP on server platforms. To this end, we took
a look at different candidate technologies and proposed the
use of a compartmentalized OS architecture to support the
goal ofWSP. During the evaluation, we showed that memory-
based technologies like NVM are a key factor for enabling
WSP. Furthermore, we demonstrated that WSP can reduce
the tail latency of a database benchmark running on a seldom
used server by up to 93% on Linux and up to 98% on L4Re,
compared to booting such a system each time it is needed.
In future work, we plan to evaluate the practicability of CXL
forWSP as well as to further improve the performance of the
microkernel approach used in this paper.
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