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Abstract—Message passing (MP) hardware usually uses a
fixed-size message buffer, which removes the need for resource
consuming connection state. However, buffers may overflow and
stall further incoming messages, jamming the communication
fabric, and possibly impeding communication on the whole
platform. The prevention of communication channel interfer-
ence is especially important for the isolation of applications in
a distributed operating system environment. By jamming the
inevitably shared communication fabric one application may
be able to obstruct the progression of another application (cf.
denial-of-service attack), thus breaking isolation. In this work we
propose a reject-and-resend mechanism for embedded MP hard-
ware, increasing the robustness of the communication fabric by
preventing jamming. It drastically lowers communication inter-
ference, while keeping the low cost and low latency, connection-
less communication of common MP hardware solutions.

I. INTRODUCTION

Message passing (MP) has many application scenarios in
embedded systems. Increasing sizes of System-on-Chips make
it necessary to partition systems into blocks or tiles and
connect them with a generic communication fabric like a
network-on-chip (NoC). Distributing applications over mul-
tiple tiles in such a fabric is usually implemented using MP
as a communication primitive. MP is a widespread communi-
cation technique used on every computation scale from high-
performance computing down to cache coherence protocols in
CPUs [1]. MP can be implemented as a software library on top
of remote direct memory access (RDMA) hardware [2] or be
completely implemented in hardware [1]. The former version
is preferred in large-scale scenarios where compatibility with
existing hardware is essential and the software overhead does
not weigh in too much, because of the large ratio of application
calculation and communication. With shrinking application
granularity the software overhead becomes a performance-
degrading factor and full hardware implementations become
favored [3]. However, realizing MP fully in hardware usually
means not keeping connection states, because of its need
for dynamic allocation, which is generally not possible in
hardware. The main advantage of connection state is to have
a transfer control, that manages buffer occupancy to prevent
buffer overflows. Without transfer control, buffer overflows
caused by one application may jam the NoC, hindering
messages from an unrelated application, that happens to use
the same NoC connection. In a healthy system, a jam may
be short and cannot cause significant interference with other
applications. However, a malicious application could exploit a
message jam to deliberately deny usage of the NoC to other

applications (denial-of-service (DoS) attack). The isolation
of communication and as a result, especially in distributed
operating systems, have been regarded as important in [4]
and [5].

We propose the usage of a hardware reject-and-resend
mechanic to remove the possibility of inter-application inter-
ference without introducing a resource-heavy connection state
management.

II. MESSAGE PASSING

RDMA-based MP can be implemented solely using the
“send” method of the underlying hardware, which copies a
local memory area to a remote one. To implement MP, a buffer
and transfer management is needed that assures that messages
arrive in allocated buffers and no read-after-write hazards
occur (e.g. prevent overwriting of unread messages). The
controller holds a connection state for each peer it exchanges
messages with. A protocol of signaling messages between
peers keeps these states in sync to assure safe message transfer.

Hardware implementions of MP do not hold connection
states. Instead arriving messages are stored in a hardware
buffer, regardless of their origin. The size of the buffer is fixed,
usually a couple of slots, often only one. The CPU may be
interrupted upon message arrival, but message polling by the
CPU is also possible. When all message slots are occupied, no
more messages can be received, and start jamming the NoC.
Every time the CPU finishes reading a message it marks one
slot as ready, allowing the next message from the NoC entering
the buffer.

III. REJECT AND RESEND

To overcome the jamming of the NoC and the consequences
tied to it, we propose a mechanism that never stalls the NoC
upon a buffer overflow. Instead of holding the message in the
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Fig. 1. Message buffer state diagram for message sending. The proposed
extension introduces two new states (in blue) to implement the resending of
a message based on a notification from the receiver.
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NoC a message that cannot be stored into a buffer immediately
is dropped. In any case, the sender of the message is notified
about the arrival of the message with the information whether
it could be stored or not. It is then the obligation of the sender
to retry sending the message after some time. To implement
this behavior, the sending message buffer is extended by two
states, as shown in Fig. 1. When sending a message, the
buffer is not freed immediately but awaits notification from the
receiver. In case the receiver does not acknowledge the transfer
(nack), the sender will wait a short time before returning the
buffer to the “ready” state to be sent again.

IV. EVALUATION

The proposed MP implementation —completely in hard-
ware with a reject-and-resend extension— is compared in
performance against a baseline variant without the extension
as well as a software implementation based on an RDMA
hardware unit. All three MP implementations are simulated
in a system of 25 processors with nc = 5 being consumers
receiving messages and np = 20 being producers sending
messages randomly to all consumers. All processors are con-
nected by a circuit-switched orthogonal 5-by-5 mesh with
bi-directional links. The consumers process a message in a
constant time of D = 1/µ = 100 cycles which resembles a
realistic service call like it can be found in a distributed em-
bedded OS [2]. Producers send messages randomly, following
an exponential distribution with an average rate λ. The system
utilization then becomes the ratio of total message production
and consumption rates:

ρs =
npλ

ncµ

In Fig. 2 expected message latency is shown depending
on the system utilization. The maximum utilization ρmax a
system can handle is defined as the point where the message
delay approches infinity, which is dependent on the used MP
implementation. As expected the proposed extension does not
affect the message latency and stays in the middle between the
RDMA-based implementation and the theoretical maximum.
The theoretical maximum is simulated by removing all MP
implementation overhead, denoted as “null” in the figure.
However, when purposely overloading one consumer, the
proposed extension can limit the effects on the message latency
to the overloaded consumer, keeping the other consumers
unaffected. This is shown in another simulation with a fixed
ρs = 0.7. Only the utilization of one specific consumer ρc
is increased by adjusting the message rate of one producer
only for one consumer. As can be seen in Fig. 3, when the
ρc surpasses ρmax the message latencies increase in the whole
system when using a common hardware MP implementation.
The isolation of communication is achieved by using the
expensive RDMA-based MP or the proposed extension.

V. CONCLUSION

In embedded systems a hardware-based MP implementa-
tion may be favorable for resource and performance reasons.
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Fig. 2. Expected message latency depending on system utilization. Theo-
retical bound without message passing overhead (null) resembles a M/D/1-
queue. The software-based (RDMA), baseline (stall) and extended (resend)
implementations are compared.
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Fig. 3. Average message latency of an overloaded consumer (solid) and other
consumers (dashed). Only in the baseline (stall) implementation an effect on
all consumers can be observed.

However, common MP hardware implementations suffer from
a vulnerability for DoS attacks, exploited by jamming the
communication fabric with a message flood. We showed
that a simple reject-and-resend extension can remove this
vulnerability while preserving the resource and performance
benefits of a hardware-based implementation.
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