
Implicit Hardware Trojan: Principles and Enabling
Methods

Nilanjana Das, Mattis Hasler, Sebastian Haas
Barkhausen Institut, Dresden, Germany

{first name.last name}@barkhauseninstitut.org

Abstract—The research community of hardware security has
worked hard to develop effective defenses against a range of
hardware Trojans (HTs). However, HT design research has
consistently advanced faster than HT detection research. In this
paper, we describe the concept of implicit hardware Trojan (IHT)
design, its properties, enabling methods, and adversarial effects.
The IHT advances the field of HT design research. We propose
different kinds of multiple IHTs (MIHTs) and classify them in
terms of considered logic gates used to design the MIHTs. Results
from experiments demonstrate the IHT design’s effectiveness and
deceit.

Index terms – Implicit Hardware Trojan (IHT), Multiple IHT
(MIHT), HT detection, rare input pattern.

I. INTRODUCTION

System on chip (SoC) designers are compelled to embrace
third-party electronic design automation (EDA) tools and
intellectual property (IP) cores due to resource limitations and
time to market pressures. The hardware Trojans (HTs) being
implanted into the IC supply chain by malicious entities has
increased due to the third-party globalization of the semicon-
ductor industry [1]. The efficiency of an HT detection methods
solely depends on the available HT benchmarks. However,
the available Trust-Hub [2] benchmarks are detectable because
of their backdated trigger and payload mechanisms [3][4]. It
is important to search for a new variation of HT design so
that to reinforce the available HT detection methods. In this
paper we elaborately describe the implicit HT (IHT) which
is first introduced by [4]. An IHT is a malicious redundant
circuitry embedded in a core, which propagates the malicious
outcome for a rare trigger condition when the trigger signal
is activated. We examine a set of logic gates and explain
the implementation of IHT on those gates. We show that
the IHT cannot be detected with the existing HT detection
methods. Finally, we propose the concept of multiple IHTs, its
classifications, and demonstrate one of them experimentally.

II. IMPLICIT HARDWARE TROJAN (IHT)

An HT generates malicious outcome only when the trigger
condition is satisfied and the trigger signal is activated. For
IHT the trigger signal can be activated multiple times, but
the HT affected output propagates only when a particular
trigger condition (rare) is encountered. Following example
demonstrates the basic architecture of IHT.

Fig. 1a, A is the golden circuit (in green colour) and B and
a 2-to-1 multiplexer (in red colour) are the inserted HT circuit.
If the select line of the multiplexer S is active, the output of

the golden circuit becomes a malicious one propagated from
B. If we consider A as a 2-input OR gate and B as a 2-input
XOR gate, Fig. 1b shows all the possible outcome of the circuit
from Fig. 1a when S is active. For three input patterns “00, 01,
and 10” (in green colour), there is no change in the output O
although S is active. For input pattern “11” (in red colour) the
output is changed by which the explicit result will propagate
from the circuit. If we consider the input pattern “11” as the
rare one, for “00, 01 and 10” the HT circuit works as an
IHT. In these cases, the trigger signal S is active, but there
is no change in the output of the circuit due to inserted IHT.
Figs. 1c, 1d, and 1e demonstrates the same idea considering
A and B as NOR and XNOR, AND and XNOR, and NAND
and XOR, respectively.

The efficiency of a HT circuit depends on how it propagates
the malicious outcome [3] without being detected. For an IHT,
the trigger condition mainly creates the explicit occurrence of
the HT circuit rare. This situation can be explained clearly
with the help of two lemmas.

We consider a n-input circuit with 2n number of possible
input patterns which is divided into two disjoint sets X and
Y. X contains the input patterns which appear frequently in
run time, and Y includes the input patterns that appear rarely1.
Hence, it is evident that X∪Y=2n and X∩Y=ϕ, and we assume
|X| ≥ 1, |Y| ≥ 1, and |X| >> |Y|.

Lemma 1: The set X contains only the input patterns for
which the original output is similar with the IHT generated
output irrespective of the state of trigger signal.

Lemma 2: The set Y contains only the input patterns those
are rare and at least one of these input patterns is responsible
for generating the malicious outcome.

Lemma 1 ensures that if an input pattern appears frequently,
it will not affect the original outcome. As X contains most
of the possible input patterns and the trigger signal can be
activated anytime for the input patterns that belongs to set X, it
will not be suspected by the HT detection algorithms. Lemma
2 states that, from the set of rarely appeared input patterns, at
least one pattern will trigger the malicious outcome. Therefore,
the explicit condition must be rare enough to evade the HT
detection algorithms. From Lemmas 1 and 2, we conclude
that: the IHT can evade the detection algorithms by frequent
activation of the trigger signal, and the malicious outcome will

1With the primary knowledge of inserted trojan, it is possible to determine
Y at the design time.

A

B S

O

(a)

OR
(A)

XOR
(B)

0 0

1 1

1 1

1 0

INPUT

00

01

10

11

(b)

NOR
(A)

XNOR
(B)

 1 1

0 0

0 0

0 1

INPUT

00

01

10

11

(c)

AND
(A)

XNOR
(B)

0 1

0 0

0 0

1 1

INPUT

00

01

10

11

(d)

NAND
(A)

XOR
(B)

 1 0

1 1

1 1

0 0

INPUT

00

01

10

11

(e)

MIHT

MOIHT MEIHT

MEIHTS MEIHTD

(f)
Fig. 1: Illustration of IHT: (a) basic IHT circuit, (b)-(e) Logic gates and IHT alternatives, (f) classification of MIHT

appear too rarely to be detected.
To demonstrate the idea of Lemmas 1 and 2, we consider

the circuit in Fig. 1a by setting A as a 2-input OR gate
and B as a 2-input XOR gate as described in Fig. 1b. A
possible arrangement of X and Y are: X={00, 01, 10} and
Y={11}, respectively, which ensures all the aforementioned
cases. Similarly, for the case in Fig. 1d, a possible arrangement
of X and Y are: X={01, 10, 11} and Y={00}, respectively.

III. MULTIPLE IMPLICIT HARDWARE TROJANS (MIHTS)

In this section we propose the concept of multiple IHTs
(MIHTs) embedded in an IP core. In this case, more than
one logic gate will be replaced by the implicit logic circuit as
mentioned in Figs 1b-1e2. Based on the selected logic gates,
MIHTs can be classified into two categories as follows. (i)
Multiple Homogeneous IHTs (MOIHTs): The altered logic
gates are alike, e.g., all selected OR gates are replaced by XOR
gates (Fig 1b). In this case, the set of rare patterns Y remains
the same along the IP core. (ii) Multiple Heterogeneous IHTs
(MEIHTs): The altered logic gates are different, e.g., in an
IP core one OR gate is replaced by XOR gate (Fig 1b), and
one AND gate is replaced by XNOR gate (Fig 1d). In this
case, the set of rare patterns Y for each logic gate to be
replaced may or may not be equal. The set of rare patterns
for the IP core YIP will be union of each set of rare patterns
Y of each altered logic gates, that is YIP= ∪n

i=1 Yi, where
Yi is the set of rare patterns of ith altered logic gate. The
MEIHTs can be further classified into two categories based
on the set of rare patterns described below. Fig 1f reports the
overall classification of MIHTs. (i) Multiple Heterogeneous
IHTs with Same rare conditions (MEIHTSs): In this case,
the altered logic gates (different) have the same set of rare
input patterns. For example, one OR gate is replaced by
XOR gate (Fig 1b) and one NOR gate is replaced by XNOR
gate (Fig 1c), and both have the same rare pattern “11”. (ii)
Multiple Heterogeneous IHTs with Different rare conditions
(MEIHTDs): In this case, the altered logic gates (different)
have different set of rare input patterns. For example, one OR
gate is replaced by XOR gate (Fig 1b) and one NAND gate is
replaced by XOR gate (Fig 1e), and they have different rare
patterns “11” and “00”.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We implement MEIHTS (Fig. 1f) on ISCAS-85 benchmark
circuit C432 (27-channel interrupt controller). In C432 an OR
gate and a NOR gate are replaced by an XOR gate and an

2Note that IHT/ MIHT can be implement in several ways. In this paper we
have limited our discussion into the mentioned basic gates only.

0

20

40

60

80

50 100 150 200 250

%
 o

f
A

ct
iv

at
io

n

Number of Input Pattern

ts1 ts2 malicious outcome

Fig. 2: Activation rates of ts1 and ts2 of MEIHTS on C432

XNOR gate respectively for the MEIHTS implementation. The
simulation is performed five times by increasing the number
of input patterns with a step of 50. The ts1 and ts2 denote
the trigger signals used for MEIHTS design. From Fig. 2 it
is observed that the activation rate of ts1 and ts2 are 63%
and 69% respectively when 50 input patterns are passed. The
activation rates of ts1 and ts2 are decreased when the number
of input patterns is increased. This proves that both the ts1 and
ts2 are activated frequently but there is no effect on the original
outcome. It is seen that for a particular input pattern, the
malicious outcome is spotted. For the second simulation, one
rare input pattern is passed intentionally for which the original
output is replaced by the malicious outcome. Considering the
wires with trivial activation rates, it will be impossible to detect
the trigger signals ts1 and ts2 due to their higher activation
rate.

V. CONCLUSION AND FUTURE DIRECTION

This paper describes the concept of implicit HT (IHT),
proposes idea and classification of multiple IHTs (MIHTs).
It is observed that MIHT evades the HT detection methods by
activating the trigger signals frequently, and shows malicious
behavior only when the rare trigger condition is met. Con-
sideration of other possible cases of IHTs and MIHTs, and
corresponding detection strategies are left as the part of future
direction.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan taxonomy
and detection. IEEE design & test of computers, 27(1):10–25, 2010.

[2] M. Tehranipoor et al. Trusthub.” [online]. available: http://trust-hub.org.
[3] S. Haider et al. Hatch: Hardware trojan catcher. IACR Cryptol. ePrint

Arch., 2014:943, 2014.
[4] J. Zhang, F. Yuan, and Q. Xu. Detrust: Defeating hardware trust

verification with stealthy implicitly-triggered hardware trojans. In Proc.
of ACM SIGSAC CCS, pages 153–166, 2014.

