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Abstract
SAT/SMT-solvers and model checkers automate formal verification of sequential programs. Formal
reasoning about scalable concurrent programs is still manual and requires expert knowledge. But
scalability is a fundamental requirement of current and future programs.

Sequential imperative programs compose statements, function/method calls and control flow
constructs. Concurrent programming models provide constructs for concurrent composition. Con-
currency abstractions such as threads and synchronization primitives such as locks compose the
individual parts of a concurrent program that are meant to execute in parallel. We propose to
rather compose the individual parts again using sequential composition and compile this sequential
composition into a concurrent one. The developer can use existing tools to formally verify the
sequential program while the translated concurrent program provides the dearly requested scalability.

Following this insight, we present ConDRust, a new programming model and compiler for Rust
programs. The ConDRust compiler translates sequential composition into a concurrent composition
based on threads and message-passing channels. During compilation, the compiler preserves the
semantics of the sequential program along with much desired properties such as determinism.

Our evaluation shows that our ConDRust compiler generates concurrent deterministic code that
can outperform even non-deterministic programs by up to a factor of three for irregular algorithms
that are particularly hard to parallelize.
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Figure 1 The ConDRust compiler translates imperative programs written in s, a subset of Rust
for sequential composition, into dataflow programs in p, a subset of Rust for parallel composition.

1 Introduction

Formal verification of sequential programs can be automated to a large extent which makes
it ready for widespread adoption. Verification of concurrent multi-core shared-memory
programs, instead, can only be automated to some extent and requires expert knowledge.
This is a major hurdle for safe systems which must rely on scalable parallelism to overcome
the physical boundary in current and future processors.

A formally verified program carries mathematical proof that certain properties of the
program hold. Determinism is such an interesting property. Deterministic programs are
straightforward to debug [12]. A deterministic execution increases the time predictability
of IoT systems [50] and establishes latency boundaries of service-level agreements in the
cloud [20, 4]. In recent database management systems with transaction support, determinism
removes costly synchronization and challenging distributed failure scenarios [52, 40].

Formal verification of program properties, such as determinism, proceeds along two
directions. Proof assistants such as Coq allow expressing properties in higher-order logic but
require a manual proof from the developer. SAT/SMT-based verifiers such as Prusti and
model checkers such as Kani for Rust programs are restricted to properties formulated in
first-order logic but calculate the proof automatically [3, 54]. That is, the hard part of formal
verification is automated which makes them particularly interesting for widespread adoption.
But concurrent programs require separation logic to state and prove their properties [51, 43].
Encoding separation logic into first-order logic is still ongoing research [15, 14, 44, 43] and
needs to sacrifice important (higher-order) parts. Expert knowledge in Coq is required to
take full advantage of separation logic [30]. At the time of this writing, none of the formal
verification tools for Rust programmers supports reasoning about concurrent programs.

Our insight is that two main steps are needed to translate a sequential program into a
concurrent one. We call these steps Decompose and Recompose. The Decompose step breaks
the sequential composition of a program to create independent parts that can execute in
parallel. The Recompose step composes these parts again using concurrency abstractions
such as threads and synchronization primitives such as locks or message-passing. We refer
to this as concurrent composition. In programming models such as threads with locks,
message-passing or software transactional memory (STM), the developer has to perform
both steps manually. Automatic approaches to tackle both steps require a precise points-to
analysis to create a concurrent program without concurrency hazards such as data races or
deadlocks. This analysis is known to be undecidable in general [48]. Hence, researchers resort
to speculative approaches [17] or language constraints for a precise dependence analysis [6].

The ConDRust approach

In this paper, we propose ConDRust, a new sequential programming model for the concurrent
composition in the Recompose phase. Our ConDRust compiler translates a sequential com-
position into a concurrent one automatically. This allows for testing and formal verification to
be performed on the sequential program, with guarantees that are carried into the concurrent
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one. More specifically, our current prototype compiler supports a well-defined subset of
safe Rust for sequential composition and generates concurrent dataflow composition in a
well-defined subset of safe Rust with threads and message-passing. The dataflow execution
model is the runtime representation for scalable parallelism in many domains such as em-
bedded systems, database systems and machine learning frameworks [38, 23, 27, 58]. Our
compiler design is based on rewriting steps that preserve the semantics of the sequential
input program. This includes the semantics of control flow constructs such as loops but
also properties such as determinism. Formally verifying the compiler is a larger effort [39]
that is beyond the scope of this paper. This paper, instead, investigates to what extent
the programming model is applicable to real-world programs and whether the compiler can
generate scalable concurrent composition that is at least on par with existing concurrent
programming models. Throughout the paper, we point to novel and interesting research
directions that our approach introduces.

Concretely, we make the following contributions:
The main contribution of this paper is a new programming model and compiler for the
compositional fragment, i.e., subset, of safe Rust (Sections 2 and 3).
We define s, a subset of Rust for sequential imperative composition with abstractions,
calls, variables but without references, and formally specify its type system and operational
semantics (in Section 4 and the Appendix).
We formally specify p, the subset of Rust for concurrent composition that the ConDRust
compiler targets in Section 6. The appendix contains the operational semantics, type
system and a proof sketch for the deterministic execution.
The key part of our compiler, visualized in Figure 1, is a transformation of sequential
imperative s composition into a functional representation based on the well-defined
concept of state threads [35]. Our compiler lowers this functional representation into
dataflow, a well-established abstraction for parallel execution [5, 2, 37, 29] (Section 5.1).
Key to scalable concurrent composition are two transformations to exploit data parallelism
even in stateful applications with (tail) recursion (Sections 5.2 and 5.3).
Our current ConDRust prototype compiler consists of ca. 20K lines of Haskell code that
can be lifted to Coq in future work to formally-verify semantic preservation (Section 7).
To provide a fair baseline with the same guarantees, we re-implemented a deterministic
STM (DSTM) algorithm [49] for an existing STM implementation in Rust. We ported 7
benchmarks from 3 different benchmark suites and provide implementations for sequential,
threads/DSTM, threads/STM and ConDRust (ca. 12K lines of Rust code). Our evaluation
in Section 8 shows that ConDRust produces programs that outperform all threads/DSTM
and even some of the non-deterministic threads/STM programs by up to a factor of 3.
We highlight directions for future work whenever ConDRust programs do not scale.

We review related work in Section 9 and conclude in Section 10.

2 Programming for Scalability: Decompose and Recompose

Before we introduce our programming model in more detail, we reflect on concurrent
programming. We argue that concurrent programming and our ConDRust programming
model contain the same Decompose–Recompose steps. That is, the reasoning for the developer
to prepare a scalable concurrent program is the same as for writing a ConDRust program.
But the implications are different. Figure 2 uses an inarguably contrived but easy to follow
example for a side-by-side comparison. The left column shows the sequential program. The
middle column lists the program with threads and atomics, i.e., transactions on a single
variable. And the right column shows the sequential ConDRust program.

ECOOP 2023
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Sequential Threads/Atomics ConDRust (This paper)
Seq. imperative composition Concurrent composition Seq. imperative composition

fn seq(xs: Vec<u32>)
-> u32 {
let mut z = 0;
for x in xs {

let y = x + 1;
z = y;

}
z

}

fn threads(xs: Vec<u32>)
-> u32 {
let z = Arc::new(State::new());
let mut handles = Vec::new();
for x in xs {

let zc = z.clone();
let handle =

thread::spawn(move || {
let y = x + 1;
zc.store(y)

});
handles.push(handle);

}

for handle in handles {
handle.join().unwrap()

}

Arc::try_unwrap(z)
.unwrap()
.get()

}

fn condrust(xs: Vec<u32>)
-> u32 {
let mut z = State::new();
for x in xs {

let y = x + 1;
z.store(y);

}
z.get()

}

mod gen {
fn condrust(xs: Vec<u32>)
-> u32 {

}
}

Concurrent composition
struct State { z: AtomicU32 }
impl State {

fn new() -> Self {
State { z: AtomicU32::new(0) }

}

fn store(&self, x: u32) {
self

.z.store(x, Ordering::SeqCst)
}

fn get(self) -> u32 {
self.z.into_inner()

}
}

struct State { z: u32 }
impl State {

fn new() -> Self {
State { z : 0 }

}

fn store(&mut self,
x:u32) {

self.z = x;
}

fn get(self) -> u32 {
self.z

}
}

#[test]
fn check() {

let xs = vec![1, 2];
let z = seq(xs);
assert!(z == 3)

}

#[test]
fn check() {

let xs = vec![1, 2];
let z = threads(xs);
assert!(z == 3)

}

#[test]
fn check() {

let xs = vec![1, 2];
let z = condrust(xs);
assert!(z == 3);
let zp =

gen::condrust(vec![1, 2]);
assert!(z == zp);

}

#[kani::proof]
fn verify() {

let x0 = kani::any();
let x1 = kani::any();
assert!(

seq(vec![x0,x1])
==
seq(vec![x0,x1]))

}

#[kani::proof]
fn verify() {

let x0 = kani::any();
let x1 = kani::any();
assert!(

threads(vec![x0,x1])
==
threads(vec![x0,x1]))

}

#[kani::proof]
fn verify() {

let x0 = kani::any();
let x1 = kani::any();
assert!(

condrust(vec![x0,x1])
==
condrust(vec![x0,x1]))

}
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Figure 2 Comparison between sequential, concurrent and ConDRust programs and their properties.
The sequential program executes deterministically and is amenable to verification. The concurrent
program offers parallel speedup but compromises determinism and verifiability. The ConDRust
approach preserves determinism and verifiability and compiles the program into a concurrent dataflow
for scalable parallel execution.
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The sequential program on the left iterates over a vector of numbers xs. For each number,
the program computes its increment and assigns it to a shared state z. The resulting value
of z is always the increment of the last number in xs. This is by definition of the sequential
execution order of statements and loop iterations in Rust. As such, we can check deterministic
execution with a simple test case for a vector with 2 elements and let Kani formally verify
this property in a simple proof harness (see bottom of left column in Figure 2). Apart from
detecting potential overflow, which is inconsequent for this example, Kani succeeds.

To arrive at a scalable concurrent version of the program, the developer needs two steps.
In the Decompose step, the developer identifies the parts of the program that can/should be
executed in parallel and the state that needs to be shared. In our example, the developer
selected the body of the loop for parallel execution. Any approach, that seeks to automate
this step, needs to solve the thread granularity problem [47, 1]. Tools now assist in identifying
the state [21]. The focus of this paper is on the second step. In the Recompose step, the
developer replaces the sequential composition with a concurrent composition, e.g., for the
loop iterations. Prevalent concurrent programming models for imperative programs consist of
two parts for composition: concurrency abstractions and synchronization primitives to access
(shared) state. The concurrent version of the program spawns a thread for each computation
on the elements of the input vector xs. Thereby, it removes the sequential execution order
of the for loop. Accesses to the state variable z now need to be protected with atomic
operations (or transactions) to prevent data races. But this protection cannot recover the
deterministic update order on z, even when opting for the strongest and least performing
memory ordering: sequential consistency (SeqCst). The test’s post-condition now may see
z == 2. That is, the determinism property of the program is lost. Even worse, Kani cannot
even help to detect this flaw because verification of concurrent programs needs a higher-order
(separation) logic which is (currently) out of reach for model checkers like Kani2.

To construct a ConDRust version of the program, the developer has to follow the same
two steps. The Decompose step is the same as in the construction of the concurrent version.
The developer identifies independent parts and shared state. In the Recompose step, the
developer uses the sequential composition constructs of the host language such as for example
statements, for loops, function calls and (imperative) method calls. The ConDRust program
defines the update to the state z with a method rather than an assignment. Assignments
are not supported in this paper because we tried to keep s minimal but can be added
easily. The program is free of concurrency abstractions and synchronization primitives. The
deterministic property on the result of the program can be tested and formally verified in
the same way as for the sequential version. Note that formal verification is performed on
the sequential condrust program. The ConDRust compiler is aware of the semantics of the
composition constructs and preserves them during compilation. The generated dataflow graph
(in gen::condrust) exhibits data parallelism for the computation of the increments and
pipeline-parallelizes this with the update of the state z. The state update order is preserved.
We can then dynamically verify that the generated concurrent program gen::condrust
preserves the semantics, including the determinism property.

Concurrency vs. Parallelism. Throughout the paper, we use the words concurrent and par-
allel in the following well-established sense [53]. Concurrency means interleaved execution of
computations. Parallelism exploits additional (multi-core) hardware to execute computations
simultaneously. That is, concurrency does not necessarily imply parallelism. But in this

2 https://model-checking.github.io/kani/rust-feature-support.html#concurrency
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struct Grid(
Vec<Vec<GridCell>>);

struct GridCell {
status: Status

}
enum Status {

Wall,
Vacant,
Occupied

}

type Point = (u64,u64);
type Pair = (Point,Point);
type Path = Vec<Point>;

1 impl Grid {
2 fn fill(&mut self,
3 pairs: Vec<Pair>) {
4 for pair in pairs {
5 self.map_path(&pair);
6 }
7 }

1 fn map_path(&mut self,
2 pair: &Pair) {
3 let path: Option<Path> =
4 self.find_path(pair);
5 self.update(path);
6 }
7 }

maze.map_path( ((1,1),(3,3)) );

1
1

x y

Figure 3 Illustration of the labyrinth benchmark on a 2D grid in imperative sequential Rust.

paper, we focus on scalable concurrency. Scalable concurrency assumes multi-core hardware
to turn explicit concurrency in the program into implicit parallelism. Hence, whenever we
refer to parallelism, we mean independent concurrent computations in the program. ◀

3 The ConDRust programming model

In this section, we present the ConDRust programming model that we formally specify and
embed into the Rust programming language (see Section 4). We compare programming
in ConDRust to concurrent programming with threads and software transactional memory
(STM). As a running example, we use Labyrinth, an irregular application from the STAMP
benchmark suite [41]. Irregular programs contain algorithms where concurrent programming
models particularly shine because such algorithms are notoriously hard to parallelize at
compile-time. We start from the sequential version of the labyrinth algorithm and then
develop a version based on threads and STM to compare it against programming in ConDRust.

3.1 The Labyrinth benchmark

The labyrinth benchmark implements Lee’s algorithm to find wire-paths between points on a
multi-layer printed circuit board [36]. The challenge consists in finding paths that do not
overlap across layers. The original STAMP implementation and our re-implementation in
Rust execute on a 3D board (or 3D grid). In this section, we restrict ourselves to a 2D grid
because it is easier to visualize while retaining the core principles required by our exposition.

Figure 3 illustrates the problem and shows a sequential imperative Rust implementation.
The left-hand side defines a grid as a vector of vectors where a grid cell holds one of the
three states: wall (in dark grey), vacant (in white) or occupied (in yellow). A point in the
grid is a tuple of an x- and a y-coordinate. A pair is a tuple of two points and a path is
a sequence of points represented as a vector. The algorithm to fill a given grid is given
on the right-hand side of the figure. For each pair, the function map_path finds a path
and declares the corresponding grid cells as occupied. Note that both steps find_path and
update require access to the grid. That is what makes introducing concurrency particularly
challenging for the developer.
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3.2 Concurrent Labyrinth

Concurrently mapping paths onto the grid requires changes to the algorithm. Two candidate
paths computed concurrently may overlap and thus one of them has to be re-computed.
We visualize this effect in the middle column of Figure 4 and compare the threads/STM
version in the left column with the ConDRust version in the right column. These alternative
implementations are discussed in the following.

3.2.1 Threads/STM

We use threads for concurrency and synchronize grid access via STM. We chose STM over
locks for two reasons. First, STM guarantees data-race freedom without creating deadlocks.
Second, deterministic STM algorithms exist that provide the same deterministic execution
properties as ConDRust. For this paper, we used rust-stm3, an STM implementation in
Rust, that follows the design of the STM in Haskell [28].

The threads/STM implementation in the left-hand column of Figure 4 starts with a
re-definition of the grid data structure. Cells hold the state of the grid that the algorithm
mutates and hence must be protected to prevent data races. Wrapping the cells into
transactional variables (TVars) means that all grid methods need to be redefined for two
reasons: First, accesses are now through the TVar. Second, each access needs a transaction
which is an additional parameter to every grid method. That is the reason why all benchmarks
in STAMP are implemented twice: with and without STM.

Concurrency is introduced in Line 7 of the Threads/STM implementation. We deliberately
assume a higher-order function spawn_join to abstract from the verbose spawn-join pattern
given in Figure 2. For every pair, the closure from Line 7–10 tries to map a path on the grid.
The combination of the loop over the pairs and the closure’s move semantics for threads
demand a clone of the grid for every loop iteration. The update method of the new StmGrid
then tries to occupy the corresponding cells on the grid for a computed path. When a path
cell is already occupied, a retry error (Line 30) aborts the transaction and triggers a retry.

For this particular example, the map_path method is particularly important for scalability
reasons. The general structure of map_path is straightforward. It consists of a closure with
the two steps of the algorithm (Lines 39–46): finding a path (Line 44) and updating the
grid (Line 45). Line 39 places the closure onto a transaction. The key to scalability lies
in the updates to the shared state. A naive implementation for find_path, as shown in
the comment on Line 42, would operate directly on the grid (StmGrid) through the TVar
(see Line 24). As a result, the transaction’s read set increases dramatically which leads to
a much higher probability for collisions in update. A common pattern is thus to have the
path-finding operate on a non-transactional clone of the grid (local). To illustrate the effect,
the bar plot below the map_path function compares the scalability of the naive version to
that of the optimized one.

The function map_path is representative of a common pattern found in irregular applica-
tions. The optimization described above requires the developer to find the maximal set of
accesses that still preserves data-race freedom. This, in turn, requires carefully distinguishing
the parts of the program that have side-effects on the state from the ones that are pure.
Making this distinction explicit is a core idea behind the ConDRust programming model.

3 https://github.com/Marthog/rust-stm
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threads/STM

1 struct StmGrid(
2 Vec<Vec<TVar<GridCell>>>);

3 fn fill(grid : StmGrid,
4 pairs: Vec<Pair>
5 ) -> StmGrid {
6 spawn_join(
7 | grid_clone,
8 pair | {
9 grid_clone.map_path(pair)

10 },
11 &grid,
12 pairs
13 );
14 grid
15 }

16 impl StmGrid {
17 fn update(&self,
18 path: Option<Path>,
19 tx: &mut Transaction
20 ) -> StmResult<()> {
21 if let Some(p) = path {
22 for (x,y) in p {
23 let gc =
24 self.0[x][y].read(tx)?;
25 if gc = Status::Vacant {
26 self.0[x][y]
27 .write(
28 tx,
29 Status::Occupied)?;
30 } else {
31 return Err(StmError::Retry);
32 }
33 }
34 Ok(())
35 } else {
36 Ok(())
37 }
38 }
39 fn map_path(&self, pair: Pair) {
40 atomically(| tx | {
41 /* naive:
42 let path = self.find_path(&pair, tx); */
43 let local: Grid = self.local_clone();
44 let path = local.find_path(&pair);
45 self.update(path, tx)
46 })
47 }
48 }

retries

ConDRust

fn fill(grid : Grid,
pairs: Vec<Pair>) {

let retries = Vec::new();
let shared =

Arc::new(grid.clone());
for pair in pairs {

// map_path:
let local = shared.clone();
let path =

find_path(local, pair);
let retry =

grid.update_c(path);
retries.push(retry);

}
let not_empty =

retries.filter_some();
if not_empty {

fill(grid, retries)
} else {

grid
}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

fn find_path(
grid : Arc<Grid>, pair: Pair

) -> Option<Path> {
grid.find_path(&pair)

}

23

24

25

26

27

impl Grid {
fn update_c(&mut self,

paths: &Vec<Option<Path>>
) -> Option<Pair> {

for path in paths {
if self.is_vacant(path) {

self.update(path);
None // success

} else {
Some( // retry

( path[0]
, path[path.len() - 1]
))

}
}

}
}

28
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31

32

33

34

35

36

37
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Figure 4 Introducing concurrency into the labyrinth benchmark adds collisions. The left column
shows the implementation with threads and STM. The right column shows the imperative sequential
ConDRust program.
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3.2.2 ConDRust
The right-hand column in Figure 4 presents the ConDRust version of the labyrinth benchmark.
We start with an informal introduction to the ConDRust programming model. We then
explain how concurrency and synchronization arise naturally from a ConDRust program
while preserving determinism and verifiability.

3.2.2.1 Programming model

A ConDRust program consists of three abstractions: functions, stateless function calls and
stateful function calls.

▶ Definition 1 (ConDRust Functions). A ConDRust function is a top-level function or an
anonymous (lambda) function definition in the host language that the ConDRust compiler
translates into a concurrent dataflow graph.

We highlight the ConDRust function for fill and map_path with a gray background. In the
actual code base, the two functions would be located in a dedicated Rust module that is
input to the ConDRust compiler. A ConDRust function may use control flow constructs of
the host language, call other ConDRust functions or call stateless/stateful functions. We
focus on loops because conditionals are rather unimportant when it comes to concurrency.

▶ Definition 2 (Stateless Function Call). A stateless function call is a (host language) term
of the form f(t1, . . . , tn) where t1, . . . , tn are terms and f is a function symbol.

▶ Definition 3 (Stateful Function Call). A stateful function is a (host language) term of the
form ts.f(t1, . . . , tn) where ts, t1, . . . , tn are terms and f is a function symbol.

Stateless functions such as find_path (Lines 23–27) represent pure computations to the
ConDRust compiler. Stateful functions such as update_c (Lines 29–43) represent computa-
tions with side-effects to a particular state. The implementation of the stateless and stateful
functions are outside the realm of the ConDRust compiler. That is, the developer may
use the full set of the host language’s, i.e., Rust’s, features inside these functions without
violating the stateless/stateful semantics.

The ConDRust programming model is general enough for embedding it into other
languages such as Java or Python. But Rust is particularly well-suited because it allows
to enforce state encapsulation via its type system. That is, the ConDRust compiler can
reject programs with stateful function calls that return references to their state. Our Rust
embedding does not support references as of now. Moving forward, we are interested in
ConDRust in the context of share-nothing software architectures (e.g., serverless computing),
where references do not exist. In the shared-memory context of this paper, the developer
can either pass data by value or by reference using Rust’s Arc’s. In Section 4, we present the
details of the type system for ConDRust.

3.2.2.2 Concurrency and synchronization

The ConDRust compiler translates the input program into a concurrent dataflow graph.
In this graph, pipeline and task-level parallelism arise naturally from the data and control
flow dependencies in the program. Our transformation, defined in Section 5, introduces
data parallelism for stateless function calls inside loops. In the labyrinth benchmark, the
find_path computation is a good candidate. It is located inside the loop of fill function
and actually does not have side effects on the grid. But in the sequential version of Figure 3,

ECOOP 2023
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find_path is a method on the grid. To tell the ConDRust compiler that this computation is
stateless, the developer turns the method into a stateless function (Lines 23–27). At Line 26,
the stateless find_path function just wraps the find_path method on the Grid data type.

Note that the ConDRust version of map_path (right column, Lines 7–12) is almost
identical to the STM/threads version (left column, Lines 38–46). At Line 8, the ConDRust
compiler requires the developer to create a clone of the grid. State, in this case the grid,
may only be used once inside a loop, i.e., the loop in fill at Lines 6–11. The ConDRust
compiler forces the developer into the optimization that the STM/threads version needed to
scale. As a consequence, the new update_c method on the Grid now needs to take collisions
and retries into account. This is almost identical to the StmGrid::update method but is
not based on a transaction for retrying. Instead, it returns the colliding pair at Lines 37–40.

After the loop, the remaining code in fill first filters the successfully mapped paths
(Line 16) and then uses a (tail) recursion to retry the collisions. That is, the fill function
explicitly defines the recursion that is implicit in the concept of a transaction. But the
execution semantics is different.

3.2.2.3 Determinism

Transaction execution order in STM is non-deterministic but the generated dataflow program
executes deterministically. The ConDRust program presented in the right-hand column of
Figure 4 is a valid, i.e., well-typed, sequential Rust program. The Rust compiler translates this
into a deterministically executing binary. The ConDRust compiler preserves the semantics
of the program including the deterministic execution property. For the labyrinth benchmark,
this boils down to the sequential order in which the stateful function update_c is called
within the loop in fill. The ConDRust compiler preserves this order even though the paths
are computed concurrently (in a data-parallel fashion).

In Section 5, we define a transformation to take advantage of amorphous data parallelism
in irregular algorithms. This transformation produces code that limits the number of collisions,
and thereby re-computations, for a single recursion round. To activate this transformation, the
developer has to change the type of the input pairs from an ordered vector Vec<Pair> into
a HashSet with deterministic iteration order. All of the transformations that we introduce
in this paper preserve determinism and the semantics of the input program.

3.2.2.4 Verification

Semantic preservation allows the developer to apply and even formally verify further op-
timizations to the algorithm. The ConDRust version of the labyrinth benchmark is free of
concurrency constructs. Kani fully supports Arc’s4. As such, the developer can formally
verify properties of the ConDRust labyrinth implementation.

Zero-clone concurrent labyrinth. Note that both the threads/STM and the previously
discussed ConDRust versions required cloning the state for scalability reasons. By cleverly
using ConDRust and the underlying Rust semantics it is possible to avoid having to clone in
the first place, while retaining determinism and verifiability. This is again a pattern that
extends to other irregular applications.

The zero-clone implementation for concurrent path-finding is shown in Figure 5. For
the reader’s reference, the comments in the code contain the previous implementation from
Figure 4. On the left-hand side, we restate the ConDRust version of the fill function from

4 https://model-checking.github.io/kani/rust-feature-support.html

https://model-checking.github.io/kani/rust-feature-support.html
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1 fn fill(grid : Grid, pairs: Vec<Pair>) {
2 let /* retries */ paths = Vec::new();
3 let shared =
4 Arc::new(grid/*.clone()*/ );
5 for pair in pairs {
6 let local = shared.clone();
7 let path = find_path(local, pair);
8 /* let retry =
9 grid.update_c(path);

10 retries.push(retry); */
11 paths.push(path);
12 }
13 /* let not_empty =
14 retries.filter_some(); */
15 let (paths, grid) = unarc(paths, shared);
16 let (not_empty, retries) =
17 grid.updates(paths);
18 if not_empty {
19 fill(grid, retries)
20 } else {
21 grid
22 }
23 }

impl Grid {
fn updates(

&mut self,
paths: Vec<Option<Path>>

) -> (bool, Vec<Pair>) {
let mut retries = Vec::new();
for path in paths {

let r = self.update_c(path);
retries.push(r)

}
let not_empty =

retries.filter_some();
(not_empty, retries)

}
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

fn unarc<S,T>(
s:S, t: Arc<T>

) -> (S,T) {
match Arc::<T>::try_unwrap(t) {

Ok(t) => (s,t),
_ => panic!("Failed to unarc.")

}
}

16

17

18

19

20

21

22

23

Figure 5 The unarc optimization provides a ConDRust version of the labyrinth benchmark that
does not have to clone the grid.

Figure 4. We extracted the updates to the grid from Lines 8–9 to Lines 16–17 after the
loop. This requires defining a new method (/stateful function) updates on the Grid that
performs the loop over the computed paths. The corresponding code in the upper right part
of Figure 5 also directly filters the retries. At this point, the key observation is that we can
safely reuse the grid after the loop. At Line 4, Arc::new takes ownership of the grid. We had
to clone the grid to use it inside the loop for updates and after the loop for the recursion.
In the new version, the updates happen after the loop and the find_path actually takes
ownership of the cloned Arc from Line 6. That is, when all path computations are done, we
can safely take the grid out of the Arc again. This is what we specify at Line 15 and in the
ConDRust version of Figure 4 at Line 24.

Figure 5 defines the stateless function unarc in the lower right part. The unarc function
unpacks the Arc, its first argument, but leaves the second unchanged. We have to add a
panic for the case where the Arc is still held elsewhere. But this is impossible by definition
of Line 15. We verified this property and among the 422 reachable checks Kani reports:

Check 321: <std::vec::Vec<std::option::Option<benchs::Path>>
as benchs::Unarc>::unarc.assertion.1

- Status: SUCCESS
- Description: "Failed to unarc."
- Location: src/benchs.rs:269:18

in function <std::vec::Vec<std::option::Option<benchs::Path>>
as benchs::Unarc>::unarc

Due to the semantic preserving transformations in ConDRust, this property also holds for
the generated concurrent dataflow code.
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Terms t ::= x | v | |x : T |-> T { t } | t(t) | let x : T = t; t | let mut x : T = t; t |
fSL(t1) | ts.fSF(t1) | for x in t { t } | trfix t t

Values v ::= l | v | |x : T |-> T { t }

Figure 6 Syntactical constructs of s.

Note that this unarc optimization is only necessary because the compiler presented in
this paper does not support references. Support for references is future work but will remove
such optimizations from the code and move them into the compiler. In the meantime, the
developer can formally verify such optimizations with existing tools such as Kani.

4 s– A subset of Rust for sequential composition

In this section, we formally specify s, the subset of the Rust language that embeds the
ConDRust programming model. Since s is a subset of Rust, the operational semantics are
the same as for Rust. Therefore, we restrict the presentation to the syntactical constructs.
The appendix defines the type system and the operational semantics for the interested reader.

ConDRust supports the subset of Rust’s syntax that is necessary to compose calls to
stateless and stateful functions (also called methods). We define this subset in Figure 6 as

s– a subset of Rust for sequential composition. For this paper, we restrict the terms of
the language to variables x, abstractions (closures in Rust) |x : T|-> T { t }, algorithm
application t(t), immutable and mutable bindings, for-loops and tail-recursion (trfix). We
restrict the definition of s in the following (common) ways:
1. Abstractions and calls may only have a single parameter. The extension to support

multiple parameters is straightforward.
2. We desugar top-level algorithm definitions into let-bound closures such that a top-level

defined function can be used in multiple locations of succeeding function definitions.
The key ingredient in ConDRust’s programming model are stateless function calls fSL(t1)
and stateful function calls ts.fSF(t1).5 The definition of stateless and stateful functions is not
part of s, as discussed before. Inside these functions, developers re-gain the full features of
Rust. We further restrict control flow to loops and tail recursion leaving out other forms
such as conditionals that play only a minor role in the parallel execution of a program. In
Section 5 and in our implementation, loops may in fact iterate over all data types that
implement Rust’s Iterator trait which for instance includes HashSet. This allows the
developer to specify that the loop does not depend on a particular order and enables our
second transformation that extracts amorphous data parallelism. To model this in s, we
assume a stateless function that uses the iterator to collect the items into a list before looping
over them. In fact, collect is a standard function of Rust’s Iterator. We allow loops
with an unknown iteration count via tail recursion. Tail recursion is a derived form. Precise
definitions with their restrictions on variable usage are in the appendix. In the context of
this paper, we are particularly interested in the case where the arguments to the recursion
are a state to be updated and a worklist that triggers these updates.

5 We allow ConDRust algorithms to be called from anywhere in a Rust program. Such a call may have
arguments.
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trfix
(fill)

Vec::new

clone Arc::new

for

reuse

reuse

reuse

clone

find_path update_c push

filter_some
grid

pairs

shared

pair path

grid

()

not_empty
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grid
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Figure 7 ConDRust dataflow graph for the (unoptimized) labyrinth code listed in Figure 4. The
graph contains state arcs that transfer state into and out of the loop scope. The for and reuse nodes
make sure that processing inside the loop is well-balanced, i.e., does not get stuck.

↓ST let x = xs.f(x1); t := let (x′
s, x) = xs.f(x1); ↓ST [xs 7→ x′

s]t
↓ST let x = f(x1); t := let x = f(x1); ↓ST t

↓ST let _ = for x1 in x2 { t3 }; t4 := let _ = for x1 in x2 { ↓ST t3}; ↓ST t4
↓ST |x : T |-> T { t } := |x : T |-> T { ↓ST t }
↓ST t := t

let _ = for x1 in x2 {↑STL let (x′
s) = for⋆ x1 in x2 {↑STL

↑STL t3; let (x′
s, x3) = xs.f(x1); t4 := t3; let (x′

s, x3) = xs.f(x1); t4; (x′
s)

}; ↑STL t }; [xs 7→ x′
s](↑STL t)

↑STL (↑STL t) := (↑STL t)

Figure 8 Transformation of an imperative program into a functional one based on state threads.

Limitations. Currently, s does not include include references and in particular borrowing.
The support for references and their translation into dataflow is interesting future work.

5 Compiling ConDRust algorithms to dataflow

In this section, we describe the main steps in ConDRust compilation from an imperative
algorithm to a dataflow graph. The dataflow representation of the program is not the usual
program dependence graph that is used in classic compilers such as LLVM for dataflow
analyses. The dataflow graph that ConDRust targets is a runtime representation and parallel
execution model of a program. Dataflow runtimes are the foundation for scalable database
engines, data streaming for embedded systems and data analytics [38, 23, 27, 58]. This
dataflow model is a perfect fit for such systems because it makes parallelism explicit in
the graph. In this section, we focus primarily on the 3 forms: task-level, pipeline and
data parallelism. We start with the translation of algorithms into dataflow and present the
dataflow representation informally to define our transformations for data parallelism. In
Section 6, we formally specify the semantics of the dataflow graph construction and execution
as part of ConDRust’s code generation process.

5.1 From sequential-imperative to parallel-functional dataflow
ConDRust’s programming model with its restrictions on variable usage enable the compiler to
translate a s program into a dataflow graph that exposes pipeline and task-level parallelism
while preserving the program’s semantics. This translation encompasses two steps that we
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define in Figure 8. In the first step, ConDRust translates an algorithm in s into applicative
normal (ANF) form. In ↓ST, every call to a stateful function becomes a state thread (ST):
let (x′

s, x) = xs.f(x1). The state x′
s is the updated state after the call. To make sure that

succeeding stateful function calls on xs operate on the new state x′
s, we substitute xs with

x′
s in t. In the second step, the compiler removes the global notion of imperative state

and effectively transforms the program into a functional one. This transformation relies on
the notion of state threads [35, 56, 25]. ↑STL turns every loop into a state thread, i.e., a
state-threading loop (STL). The resulting states of a loop are all states of the state threads
inside the loop. We restrict the definition to a single state x′

s for brevity. ↓ST rewrites the
term before recursing into the subterms. To handle nested loops, ↑STL recurses into the
subterms first and rewrites the current term with the already rewritten subterms.

From this functional program representation, the ConDRust compiler translates stateless
and stateful calls into nodes. Data dependencies become arcs that transfer data values in
FIFO order. We denote the different types of nodes in a ConDRust dataflow graph as follows:

n ::= fSL | fSF | for | reuse | trfix

The first two node types execute calls to stateless and stateful functions respectively. In
order to perform a call, a node needs to retrieve a data value from each of its incoming
arcs and emits the result of the call to its outgoing arc before the next call is constructed.
Stateful nodes additionally emit their updated state via a dedicated outgoing arc.

ConDRust translates loops and tail recursions directly into dedicated dataflow nodes.
The for node streams the elements of the vector into its outgoing arc. The trfix node ties
the knot of the recursion. Both language constructs, loops and tail recursion, open a new
contextual scope, i.e., a subgraph. For tail recursion, this subgraph is closed such that the
only way for data to enter and leave the graph is the trfix node. For loops, data enters the
subgraph via for and reuse nodes and leaves it via a stateful function call node.

The dataflow construction is best explained on the dataflow graph for the labyrinth
benchmark, shown in Figure 7. ConDRust generated this graph from the s specification
on the right of Figure 4. Data that enters the loop subgraph via the for node drives
the computation. State variables entering the loop body are retries and grid. The
corresponding arcs are gated by reuse nodes that receive the data entering the loop. The
reuse node attaches a reuse count n where n is the number of loop iterations, i.e., elements
in the vector of pairs. Function call nodes with such a reuse count as input reuse the data
values for n calls.

Task-level and pipeline parallelism

Task-parallelism automatically arises whenever nodes are (data) independent of each other,
such as for example the clone node and the Vec::new node. The for node introduces
pipeline parallelism between all data dependent nodes in the loop scope subgraph. As such
the computation of the path for the third pair can already start while at the same time, the
grid is updated with the found path for the second pair and the result of the first computed
path is pushed onto retries, the result vector.

Task-level and pipeline parallelism fall out naturally from a dataflow representation
of a program, but they are insufficient to compete with a threads/STM-based program.
This is because exploiting data parallelism is key for scalability. Almost all programs in
shared memory benchmark suites such as STAMP and PARSEC contain some data-parallel
part [41, 8]. Apart from data parallelism, scalability in threads/STM implementations also
depends on the retry overhead introduced by the STM in case of collisions.
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Figure 9 Data parallelism inside a dataflow graph.

5.2 Dynamic data parallelism in a static dataflow
Data parallelism arises from an implicit (in-)dependence between the same stateless function
call across loop iterations. As such, every stateless function call inside a loop is an opportunity
for data parallelism. The find_path call in the labyrinth algorithm is an example of this.
But introducing data parallelism into a static dataflow graph as shown in Figure 9a may lead
to suboptimal performance. This is especially the case when the n nodes f1

SL . . . fn
SL feature

different computation times for different input values. For example, find_path executes the
same code but some pairs are more difficult to connect than others. As such the deterministic
merge in the collect node stalls, waiting for straggling work [26]. This stalling does not
occur in the threads/STM execution because STM does not enforce a deterministic order.

The performance problems of static work assignments are well known. This motivated
Cilk’s dynamic dataflow model (fork/join) and its work-stealing runtime scheduler [11]. To
mitigate these problems without sacrificing determinism, we integrate dynamic dataflow into
our static dataflow graph. In a dynamic dataflow graph, nodes are created at runtime. A
node executes a task, i.e., a stateless function call, that gets spawned(/forked) on demand
and executes once. Spawning a task creates a handle to its future value, i.e., the result of
the stateless function call. This handle provides a get method to join the forked task with
the spawning task by blocking until the call completed and the result is available. In Rust,
the API for futures is equivalent to thread spawn and join as presented in the thread/STM
version in Section 3. Tasks are processed by a pool of threads, as in Cilk. Whenever a
thread is idling, it may steal tasks from other threads to reduce idle time. In the case of the
labyrinth benchmark, a thread that already finished its path computation may steal queued
path computations from a thread with a long-running path computation.

Determinism. The transformation in Figure 9b integrates dynamic dataflow to data-
parallelize nodes with stateless function calls and uses the static dataflow to preserve the data
value order, i.e, determinism and the semantics of the algorithm. Instead of replicating the
stateless function call fSL node, we lift it into a spawn<fSL> node. For every received input,
when normally a stateless function call would be executed, the spawn<fSL> node submits this
computation as a task to a work-stealing runtime system and emits the corresponding future.
The downstream get node retrieves the value from the future. No reordering takes place
because both spawn<fSL> and get are stateless function call nodes in the static datalfow
graph connected via a FIFO channel.

5.3 Amorphous data parallelism
The (data) parallelism in threads/STM-based programs is implicitly affected by two aspects:
the available compute cores of the system and the operating system scheduler. Both impact
the number of collisions. Our amorphous data parallelism transformation makes these implicit
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effects explicit in the dataflow graph and exposes a knob to fine-tune runtime performance
at compile-time. We first explain how the implicit effects influence the performance of
threads/STM vs. ConDRust programs. Then we describe our transformation.

The implicit cap in threads/STM

In the ConDRust-based version of the labyrinth algorithm, the number of collisions per
round is capped by n, the number of input pairs. In the worst case, n − 1 paths need to
be recomputed. This is independent of whether the algorithm executes sequentially or is
compiled into a dataflow graph for concurrent and parallel execution. Although the STM-
based version spawns the same n threads/computations, it is unlikely for this implementation
to hit this upper bound. For example, when we input 256 pairs then 256 threads race for
updating the grid. In a system with 24 cores, the operating system scheduler will delay the
execution of most of the threads. Putting concurrency aside for easier analysis, the first
“round” would consist of 24 threads, of which at most 23 would collide. We refer to this
bound as collision limit. The limit defines how many computations will see an outdated grid,
i.e., shared data structure, and could thus lead to collisions. In the case of the ConDRust
version, the algorithm defines the limit to be 256, i.e., all pairs, (for the first round) which
translates into the worst case collision count of 255.

Setting a cap into irregular ConDRust algorithms

To compete with STM implementations, the ConDRust programming model makes the cap
on the collision limit explicit in the algorithm. We do so by automatically transforming the
algorithmic skeleton used across irregular applications to update state. As exemplified by
the labyrinth benchmark, irregular applications (tail-)recurse over a worklist wl to evolve a
complex data structure, i.e., a state s. In the benchmark, the worklist updates the grid.

The transformation is shown in Figure 10. To make sure it preserves the semantics, the
worklist wl must be of type Set, i.e., the developer has to explicitly specify that there is
no particular order for the elements of the worklist. The transformation distinguishes two
different structures. In the in-loop version, the state s is updated inside the loop. The
unoptimized ConDRust version of the labyrinth benchmark from Figure 4 is an example of
this. In the out-of-loop version, the state update occurs at some point after the loop. This
structure occurs in the unarc version of the ConDRust labyrinth implementation presented in
Figure 5. In both cases, the take_n-node extracts the first N data items from the worklist wl

and concatenates the rest with the recomputations after s was updated. Now, the compiler
can optimize the parameter N , something that is not possible for threads/STM programs.
N is an interesting target for further research in compiler optimization.

Determinism. Even though this transformation relies on the developer specifying that
the worklist is a set, it preserves a deterministic execution. This holds as long as the
set implements a deterministic iteration order when the same elements are inserted. For
example, in Rust, several libraries exist that provide this property to hash set and hash map
implementations.6 Intuitively speaking, when the worklist is a set then the algorithm is
independent of a particular iteration order. Our transformation essentially picks one of these
orders at compile time. But when the generated program is executed then it will always be
the same deterministic order that the worklist is being processed.

6 https://crates.io/crates/deterministic-hash
https://docs.rs/hash_hasher/latest/hash_hasher/

https://crates.io/crates/deterministic-hash
https://docs.rs/hash_hasher/latest/hash_hasher/
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Figure 10 Transformation for amorphous data parallelism.

Terms t ::= x | v | n | c; t | run(t, t)
Nodes n ::= nSL(fSL, t, t) | nSF(fSF, t, t, t, t) | for(t, t, t) | reuse(t, t, t) | trfix(t, t, t, t)

Channels c ::= let x = chan(t) | let (x, x) = chan()
Values v ::= l | v

Figure 11 Syntactical constructs for terms and values of p.

6 p– A subset of Rust for parallel composition

With the transformations in place, we now formally specify the backend of the ConDRust
compiler. We present the syntactic constructs for p– a subset of Rust for parallel composition,
that the ConDRust compiler targets in Figure 11. p terms basically consist of two parts:
Graph construction An arc is a channel (c) in Rust’s message-passing terminology and we

define n, i.e., a term for each type of node in the dataflow graph.
Graph execution We abstract over an explicit implementation of a scheduler for a dataflow

graph with a single run construct.
For the construction, we abstract over a concrete channel implementation. All we rely upon
is the FIFO ordering property. Composition of nodes via arcs works solely via variable
bindings. For example, the term in Figure 12 constructs a graph with a single (stateless)
identity function (idSL) call node. For execution, we pass the receiving endpoint result and
the list of nodes to run which executes the graph and reduces to the final result.

let src : Recv<i32> = chan(5);
let (result : Recv<i32>,

out : Send<i32>) = chan();
run(result, (nSL(idSL, src, out) ∼: [ ]))

idSL
src out result

Figure 12 A p program with a single
identity node and the corresponding data-
flow graph.

let (out, result) = std::sync::mpsc::channel();
let mut nodes = Vec::new();
nodes.push(Box::new(move || -> _ {

let x = id(5);
out.send(x)?;
Ok(())

}));
run(nodes);
result.recv()?

Figure 13 The generated code for the graph of
Figure 12.
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We assume a type Node for nodes and align our specification for channels closely with
std::mpsc::channel from Rust’s standard library where Receiver<T> and Sender<T>
represent the receiving and the sending endpoint of a channel, respectively. In our encoding,
the types Recv<T> and Send<T> are reference types (in T ) for locations l in the store µ,
i.e., channels are values in the store. The types T , the context Γ (without usage tracking),
the store µ, the store typing Σ and the environment ∆ follow the specification in s. The
appendix has the complete definition of the syntax, the operational semantics of p and a
sketch of the proof for determinism. Informally, dataflow graphs in p are essentially Kahn
Process Networks (KPN) [31]. KPNs execute deterministically because incoming arcs have
blocking semantics7 and the executed code of the node is scott-continuous. Our evaluation
relation adheres to both of these properties.

7 Implementation

The current prototype of ConDRust comes with batteries included. No need for the developer
to provide any specific implementations for channels, nodes or even a scheduler. ConDRust is
currently implemented in 20K lines of Haskell code and takes advantage of existing language
parsers with defined abstract syntax tree data structures for Rust 8. Our implementation
slightly diverges from the formal description of p in terms of the reuse nodes. The
ConDRust compiler implementation contains additional transformations in the backend to
fuse reuse nodes with their downstream neighbours into a single node. That way we do
not have to define reuse and non-reuse versions of all the nodes. Otherwise, our backend
generates code that closely aligns with the formalization in Section 6. Figure 13 presents
the generated code for the sinlge-id-node graph of Figure 12. The ConDRust compiler does
not create source channels but inlines values directly into the corresponding nodes. The
generated Rust code uses Rust’s channels from the standard library and creates a closure for
each of the nodes in the dataflow graph. The code generator moves the channels into the
closure of the node such as for example out, the sending endpoint of the channel for the final
result. The run function just spawns a thread for each of the nodes and rejoins them, just as
in the threads/STM code of Figure 2. For the dynamic dataflow part, the compiler generates
code that uses the tokio runtime which provides a work-stealing scheduler.9 Our compiler
generates safe Rust code and as such the Rust compiler verifies the absence of data races.

Limitations. Our current implementation does not yet fully implement the type system
that we formally specified in Section 4. In particular, we did not yet rigorously implement
the guard for amorphous data parallelism transformation that checks whether the worklist
is indeed a (hash) set. This is not due to a fundamental restriction. We believe that
implementing this is straightforward and thus focused on more challenging aspects, such as
implementing the transformations and code generation.

8 Evaluation

We evaluate ConDRust on benchmarks from 3 different benchmark suites. Our selected
benchmarks cover a broad spectrum ranging from stateless to irregular algorithms. In our
evaluation, we seek to answer the following questions:

7 Blocking semantics prevent the construction of a non-deterministic merge node, the explicit notion of
non-determinism in dataflow [2].

8 https://github.com/harpocrates/language-rust
9 https://github.com/tokio-rs/tokio

https://github.com/harpocrates/language-rust
https://github.com/tokio-rs/tokio
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Algorithm Data
Name Benchmark Suite State Type Parallelism I/O

BlackScholes PARSEC [8] – Regular Dynamic –
K-Means STAMP [41] Point-cluster assignment Regular Dynamic –
Labyrinth STAMP [41] 3D grid of coordinates Irregular Amorphous –
Canneal PARSEC [8] Interconnected Mesh Irregular Amorphous –
Intruder STAMP [41] Hash map Regular State local –
Genome STAMP [41] Hash map Regular State local –

Key-value store YCSB [19] Nested hash map Regular Dynamic/ ✓
State local

Figure 14 Benchmark description.

1. Is the ConDRust programming model expressive enough for a broad range of applications?
2. What is the effort to translate the sequential benchmark code to ConDRust code?

(Appendix Section A.2 has a first comparison of the effort to convert sequential programs
into threads/STM programs and ConDRust programs.)

3. Can the deterministic code, that the ConDRust compiler generates, deliver performance
that is on par with the non-deterministic threads/STM-based code?

4. What is the effect of the amorphous data parallelism transformation from Section 5.3?

Benchmarks. Figure 14 summarizes the benchmarks used in our evaluation. We selected 7
benchmarks from 3 different benchmark suites: STAMP [41], PARSEC [8], and YCSB [19].
STAMP is a benchmark suite intended to investigate the performance of software and
hardware transactional memory implementations. Benchmarks in STAMP basically fall into
two categories: (1) Algorithms where most of the execution time is spent inside transactions
and (2) algorithms with very small transactions. Transaction size directly correlates to the
amount of computation that depends on the global state structure. We selected several
benchmarks from both categories. Labyrinth, Intruder and Genome fall into the first category,
K-Means is located in the second. K-Means clustering spends only 7% of the execution time
inside transactions. No other STAMP benchmark spends fewer cycles inside transactions.
Labyrinth is one of the 3 benchmarks in STAMP that spend nearly 100% of their execution
time inside lengthy transactions. It is also one of 2 STAMP benchmarks with an irregular
algorithmic structure. The other benchmarks in STAMP have similar characteristics to
the ones that we selected [41]. SSCA2 has characteristics similar to K-Means while Yada
(Delaunay Mesh Refinement) and Bayes are similar to Labyrinth. Vacation is similar to
Genome. Vacation simulates database transactions with STM which is not possible in real-
world database systems where transactions involve network I/O between the client and the
database server. For a more realistic setting with I/O, we chose YCSB, the state-of-the-art
benchmark for key-value stores. We selected 2 more benchmarks, Canneal and BlackScholes,
from PARSEC that both fall into the second category with small transactions. Canneal
performs simulated annealing and is also irregular. Transactions in Canneal are short but the
overall time spent inside transactions is about 70%. BlackScholes is the baseline for linear
scalability. Overall our benchmark set consists of ca. 12k lines of Rust code.

Setup. Our experiments ran on an Intel Core i9-10900K CPU with 3.70 GHz, 32 GB RAM
and 20 hardware threads, i.e., 10 cores and 10 hyperthreads. The operating system was
Ubuntu version 20.04. We used the latest rust-stm version 0.4.0 and extended it to support
deterministic transactions [49]. We executed each experiment 30 times and report the mean.
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Figure 15 Speedup comparison of threads/DSTM, threads/STM and ConDRust across different
benchmarks. Baseline is the sequential version.

Whenever possible, we used the data sets of the original benchmarks. Otherwise, we ported
the data generation too. Appendix Section A has the input configurations.

Metrics. For our experiments, we ported the C/C++ reference implementations from
STAMP and PARSEC to safe Rust. For each benchmark, we created 4 versions:
sequential a sequential baseline implementation,
threads/DSTM a concurrent version based on threads and DSTM, and
threads/STM a concurrent version based on threads and STM,
ConDRust a ConDRust version.
Benchmarks in STAMP, PARSEC and other benchmark suites (such as Lonestar for Galois
programs [32]) for concurrent programming do not address the problem of finding the best
granularity of work to place onto a thread. The benchmark code explicitly splits work into
chunks and the size of these chunks is determined by the number of parallel threads. We
follow this principle because ConDRust does not address the thread granularity problem
either. For the STAMP and PARSEC benchmarks, we report the speedup over the sequential
baseline. For the YCSB benchmark, we measure throughput.

Since we are particularly interested in the exploitation of data parallelism, we vary
the number of data parallel cores. This is the natural metric for these applications and
their respective threads/STM implementations. For the ConDRust versions, there are more
threads because every dataflow node is assigned its own thread and we vary the number
available threads for the dynamic part of the dataflow graph. Although ConDRust executes
deterministically, we expect ConDRust programs to have performance that is on par with
the threads/STM version if the collision-limit is tuned properly. For this reason, we explore
different values of the limit and compare with the threads/STM performance. Auto-tuning
approaches or heuristics can be used in the future to automatically tune the collision-limit.

8.1 Benchmark study

Figure 15 shows the overview of our benchmark study. For BlackScholes, K-means clus-
tering, Labyrinth, and Canneal, the deterministic ConDRust programs outperform even
the non-deterministic threads/STM counterparts. Benchmarks for genome sequencing and
intrusion detection exploit data parallelism that ConDRust cannot yet exploit. In all of these
benchmarks, DSTM synchronization delivers poor performance. In the following, we analyze
the benchmark results from left to right and present further details. We add features one at
a time. We start with dynamic data parallelism, then investigate irregular algorithms and
then turn to ConDRust’s limitations. Afterwards, we case study a key-value store.
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Dynamic data parallelism

The first benchmark is BlackScholes, a bulk data parallel workload. We present two versions.
The first version is most intuitive. It creates vectors for the results on-demand and joins
these vectors into a single result vector. That is, memory allocation is interspersed with the
computation of stock options that does not require a shared data structure. This final result
vector is shared state that requires synchronization. The second version pre-allocates all
memory. This is the version that is most commonly used in the literature [16].

In the experiment of Figure 15, we used the intuitive benchmark version and naively
opted for DSTM and STM to do the synchronization. The single-threaded ConDRust version
completed the calculation of 40M stock options in 650 ms. The DSTM/STM versions timed
out after 10 minutes. This shows that protecting a data structure blindly with STM is not
really a practical solution. Efficient transactions have to be fine-grained and as such require
a re-implementation of the data structure. That is why STAMP includes several dedicated
STM-based data structure implementations.

To be fair, we also compared the ConDRust version against 3 more versions. The first
version (T+lock) uses a lock instead of a transaction to protect the data structure. Figure 16
shows that this version does finish but features poor performance. Protecting large data
structures with locks is no option either, and thus fine-grained locking is required. To explore
this, we use an available implementation of a concurrent queue. But even this T+ConcQueue
version does not scale well either. Finally, in Rust, threads are implemented as futures, i.e.,
when joined, they return a result of the computation on the thread. Figure 16 shows that
only futures deliver performance comparable with the dataflows that ConDRust generates.

We also evaluated the second version of the benchmark that pre-allocates the memory.
The ConDRust and futures versions both pre-allocate the individual result vectors for the
parallel computations. To avoid the memory-allocations and copies to produce a single flat
result vector, these version return a vector with the nested individual result vectors, i.e.,
a vector of vectors. We also created a futures (unsafe) version that mimics exactly the
C version of PARSEC. That is, it pre-allocates the result vector and passes ranges to the
individual computations where the results can be written to. In safe Rust, we did not find
a way to tell the borrow checker that these ranges do not overlap and data races cannot
occur. Hence, we had to introduce unsafe code. The results in Figure 17 show that the
ConDRust version benefits from pre-allocating memory but is not yet on par with the futures
versions. This is due to the fact that the computations are rather small such that additional
runtime overhead of the concurrent ConDRust code becomes visible. We are certain that
optimizations are possible that reduce this runtime overhead further.

K-means clustering is the first recursive algorithm with state. The K-means plot in
Figure 15 shows that scalability of deterministic ConDRust programs is on par with the
non-deterministic threads/STM counterparts.

Amorphous data parallelism

Labyrinth and Canneal are irregular applications. The plots in Figure 15 show that ConDRust
generates programs that even outperform the threads/STM versions. This is because
costly synchronization overhead is not present in the generated dataflow programs. In
both benchmarks, we used the unarc optimization from Section 3 to avoid state cloning.
ConDRust performed both transformations from Section 5, for dynamic data parallelism and
amorphous data parallelism. To gain insights into the algorithm structure and the effects of
these transformations, we perform further analyses.
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loop state updates.

State update placement. We study the effect of placing the update to the state inside or
outside the loop that iterates the worklist (Section 5.3), with results shown in Figure 18.
The in-loop version has the update to the state inside the loop. Respectively, the generated
dataflow combines data parallel computations with pipeline parallel state update. The
outside-loop version performs the state update only after the loop when all computations
have been computed. Pipeline parallelism does not arise but the algorithm can leverage the
unarc optimization from Section 3 for a zero-clone version. The results show that pipeline
parallelism does not really lead to speedups on either of the two benchmarks. In the case of
labyrinth, both versions have the same performance and for canneal, the in-loop version does
not scale at all. Pipeline parallelism only pays off when pipeline stages are balanced. This
is not the case for both benchmarks where the first stage computes while the second stage
only updates. The results also show that the performance of the Labyrinth benchmark is not
sensitive to the update placement. This is mainly because of the low overhead incurred in
cloning the state of the labyrinth. Canneal has a much larger state which explains the bad
scalability of the in-loop update.

Collision-limit. To study the effect of the amorphous data parallelism transformation in
ConDRust, we compiled both benchmarks once with and once without this transformation.
Figure 19 shows that the amorphous data parallelism has no effect on the performance of
Canneal but has a big impact on the performance of Labyrinth. The plots in Figure 20
vary the collision-limit (c-limit) as a multiple of the thread count such that work distributes
evenly across the data parallel workers (i.e., threads). The right-most bars in the plots show
the performance without amorphous data parallelism. In Canneal (re-)computation is cheap
and the state large. Setting a low collision limit just prevents data parallelism to take full
effect. In Labyrinth, finding a path is expensive and so are re-computations. As such, the
collision-limit for optimal performance is only a small multiple of the thread count. With
our optimization, the compiler can tune performance along these complexity coordinates:
state size and (re-)computation complexity.

Threads/STM. For the Canneal benchmark, the ConDRust version in Figure 15 even
greatly outperforms the threads/STM version. In fact, the threads/STM version for Canneal
does not scale at all. This is due to the characteristics of the algorithm. The workload issues
tens to hundreds of thousands of rather short transactions which makes the STM overheads
a dominating factor. This is not the case in the Labyrinth benchmark where long-running
transactions outweigh their overhead.



F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:23

labyrinth canneal

2 4 6 8 10 2 4 6 8 10
0

1

2

3

0

1

2

3

# data parallel cores

sp
ee

du
p

data par data par + amorphous

Figure 19 Amorphous.

amorphous par

1 1.4 1.8 2 2.2 2.4 3 4 5 6 Inf
0

1

2

3

4

x times # threads

sp
ee

du
p

Threads 4 10

amorphous par

1 1.4 1.8 2 2.2 2.4 3 4 5 6 Inf
0

1

2

3

4

x times # threads

Threads 4 10

Figure 20 Collision-limit effects.

50/50 read/write 95/5 read/write 100% read

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
0

10000

20000

30000

# Threads

m
ea

n 
th

ro
ug

hp
ut

 (o
ps

/s
ec

)

Framework Sequential
ConDRust

threads/DSTM
threads/DSTM++

threads/STM
threads/STM++

Figure 21 Throughput comparison for the key-value store implementations.

8.2 Beyond data parallelism
For Intruder and Genome, ConDRust fails to extract the data parallelism. Both benchmarks
operate on a partitionable state structure. Intruder uses a hash map to reassemble network
packets. Similarly, Genome uses a hash map to assemble and deduplicate genome sequences.
The computation is stateful but operates only on a local part of the structure, for example,
a bucket in the hash map. Deriving parallelism from extended knowledge about the state
type and its structure is an interesting future research direction.

Conclusions. Overall, from the results in Figure 15 and our detailed analysis in Figures 16–
20, we conclude that ConDRust generates dataflow programs that scale for certain application
classes. The generated code executes deterministically while the sequential input programs
remain verifiable. We managed to implement several benchmarks which establishes confidence
that the programming model is expressive for a broad range of applications. Stateful functions
with local effects on the state, as well as platforms with heterogeneous hardware [45] are an
interesting future research direction.

8.3 Case study: Key-value store
For the YCSB benchmark, we populated the key-value store with 10,000 entries and configured
a load of 30,000 operations, executed by 8 threads in parallel. We ran 3 configurations: (1) a
write-heavy configuration with 50% reads and 50% writes, (2) a cloud-typical configuration
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with mostly reads (95%) and (3) a read-only configuration. Figure 21 presents the throughput
results for the key-value store implementations. In addition to the threads/(D)STM versions,
we add another version called threads/(D)STM++. The threads/(D)STM++ version uses
additional atomic-read instructions for read operations. We provide this implementation for
fairness reasons because the threads/(D)STM version does not scale at all. This is due to
the fact that the benchmark essentially just queries the data structure or updates it, with
no substantial computation. Hence, the load creates a lot of accesses to the data structure,
similar to Canneal. Even worse, STM clones the read value to provide an isolated private
view on the read data. In the case of the key-value store, that data is essentially the entire
underlying hash map. The atomic-read operations prevent this effect.

Even compared against the threads/(D)STM++ optimized version, the ConDRust gener-
ated code scales better in the write-heavy configuration and is almost on par with thread-
s/STM++ in the cloud-typical configuration. Naturally, threads/(D)STM++ performs
better when there are only reads. The ConDRust key-value store implementation cannot
extract the parallelism from partitioning the hash map of the key-value store, similar to the
Intruder and Genome benchmarks. The takeaway of this experiment is that the developer
can write simple sequential code and the ConDRust compiler provides speedups that are on
par with fine-tuned threads/STM implementations, while preserving determinism.

9 Related work

Various approaches exist to make concurrent programming deterministic but they either
are not expressive enough or target functional rather than imperative programs. Language
extensions such as the effect (type) system proposed by the Deterministic Parallel Java (DPJ)
project primarily focus on proving the deterministic guarantees and providing these to the
developer in the most non invasive way [13]. The DPJ authors conclude: “[. . . ] studying a
wide range of realistic parallel algorithms has shown us that some significantly more powerful
capabilities are needed for such algorithms. ” NESL is a functional language with the
well-known higher-order functions map and reduce to parallelize stateless applications [9].
MapReduce is the programming model that has seen popularity for the very same reasons
but has fallen from grace due to its limited expressivity, i.e., no states, no variables, no
loops etc. None of the approaches derives scalable concurrency straight from imperative
sequential programs that can be formally verified. The closest in spirit is MOLD, a tool that
translates sequential imperative Java programs into MapReduce programs [46]. But MOLD
does neither define a precise subset that it can translate nor reasons about verifiability or
determinism of the compiled program.

Deterministic parallelism is a well-studied area but so far no approach could provide
on-par performance with non-deterministic executions. To provide deterministic parallelism
in MapReduce, the developer has to make sure that the function passed as an argument to
reduce is associative and commutative. Commutativity also plays a key role in revisions,
an extension to NESL’s programming model to support shared state [10]. In this case, the
developer has to provide a commutative function that is used at runtime to acquire a lock
on a data value. Programming-wise, this shares similarities to programming lattice-based
data structures [33]. Semantic-wise, the execution of revisions is the same as for software
transactions which underpin most of the runtime approaches for deterministic parallelism
in one form or the other. Notable examples include deterministic Galois [42], DeSTM [49]
and LiTM [57]. Even CoreDet, the only fully compiler-based approach, uses the notion
of a transaction and a barrier to synchronize threads and enforce a deterministic commit
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order [7]. DMP, CoreDet’s predecessor, fully relied on software transactions which did not
scale because the transactions became too large [22]. CoreDet relied on hardware transactions,
but implementations of these turned out to support only very small transactions and were
even disabled again from Intel processors because their inherent complexity allowed various
side-channel attacks [24, 18, 34]. ConDRust requires no additional commutativity properties
nor specialized hardware. Nevertheless, we do acknowledge that performance could certainly
benefit from properties such as associativity and commutativity.

We are not the first to recognize the benefits of dynamic task scheduling and the collision
limit for irregular applications. However, we are the first to build atop a dataflow runtime
and are not aware of a compiler with explicit transformations for these key performance
concepts. Higher-level abstractions for data parallelism often build upon dynamic dataflow
constructs such as Cilk’s fork/join primitives [11]. Examples include Galois collections
and the parallel loops in the style of NESL in the revisions programming framework. All
other approaches, use threads to let the operating system schedule operations. Similar to
our collision limit, the authors of revisions perform rounds of computations in batches to
bound the number of computations per round [10]. LiTM implements revisions as simple
transactions and the internal algorithm that executes these transactions is almost identical
to the result of the in-loop state update transformation to limit the collisions per round in
Figure 10 [57]. But LiTM again inherits all the overhead that is connected with an STM
implementation such as maintaining read/write sets and lock tables. ConDRust does not
incur such overheads because there are no data races in the generated dataflow programs
and as such no synchronization is required.

10 Conclusion and Future Work

We presented ConDRust, a new programming model and compiler to translate verifiable
sequential imperative Rust programs into scalable concurrent ones. The developer can
use existing tools such as Kani to formally verify the sequential program. For scalable
concurrency, the ConDRust compiler translates the sequential composition into a concurrent
one based on threads and message-passing channels. Our compiler design fosters semantic-
preserving transformations that preserve interesting properties such as determinism. In our
evaluation, the ConDRust compiler generated code that even outperformed non-deterministic
concurrent programs. Our compiler is aware of stateful calls and serializes them without
costly synchronization. This benefit is big enough to outweigh the cost of enforcing a
particular deterministic order even for stateful irregular applications that are notoriously
hard to parallelize. Our results motivate the following interesting directions for future work:
Semantic preservation In this paper, we argued only informally that our compiler trans-

formations preserve the semantics of the input program. Nevertheless, the described
transformations can serve as the foundation for a formally-verified version of our compiler.

References s, the subset for sequential imperative composition, presented in this paper,
does not include references. The developer has to use runtime-checked reference im-
plementations (Arcs) and according optimizations such as the unarc optimization from
Section 3. Adding references to s is certainly an interesting future research direction.

Partitioned state A limitation of our programmming model so far is the missing notion
of functions that operate on disjoint parts of a state structure. Performance for such
algorithms is not on par with their concurrent counterparts. What is a sufficient encoding
of partitioned state in s?
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A Evaluation

This section provides the details for our evaluation. We list configuration parameters and
afterwards show code metrics to compare the threads/STM programs with the ConDRust
programs.

A.1 Configurations

Benchmark Arguments
BlackScholes in_40M.txt
K-Means -n 40 -t 0.00001 random-n65536-d32-c16.txt
Labyrinth random-x512-y512-z7-n512.txt
Canneal –swaps 15000 -t 2000 -m 128 400000.nets
Intruder -a 10 -l 16 -n 4096 -s 1
Genome -g 16384 -s 64 -n 16777216
YCSB kv-store size = 10, 000 records, operation count: 30, 000

Figure 22 Benchmark parameters and inputs.

Figure 22 lists the configurations that we used in our experiments. Whenever possible,
we used the data sets from the original benchmarks. When this was not possible, we ported
the data generation too.

A.2 Programmability Comparison
Table 1 compares ConDRust and threads/STM in terms of the programming effort required
to derive the respective implementation from a sequential one. Of course effort in itself is
hard to measure, as different abstractions and frameworks require different thought processes
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Table 1 Comparison of the programming effort required to adapt a sequential program to
ConDRust (ConDrs) and threads/STM.

Benchmark State Function Synchronization Concurrency
Modifications Recompositions Primitives Code
ConDrs STM ConDrs STM ConDrs STM ConDrs STM

K-Means 0 2 7 7 0 11 0 2
Labyrinth 1 1 10 6 0 4 0 2
Canneal 12 3 12 8 0 31 0 2
Intruder 0 1 4 4 0 12 0 2
Genome 3 8 11 5 0 15 0 4

when used. Therefore, the table compares how a number of key properties of the applications
in question changed. State modifications denote changes to fields of the program state and
are a direct result of adapting an application to another framework. In order to derive a
concurrent composition and accomodate state modifications, functions must be changed.
These changes are denoted as function recompositions. Furthermore, the derivation of a
concurrent application requires in case of the threads/STM approach the introduction of
concurrency and synchronization code. Of course, some modifications prompt further changes
affecting categories. A state change may require adjusting multiple function signatures and
bodies, while added concurrency requires synchronization. Hence, fewer modifications are
always better, as they require less effort. Note that this comparison is potentially biased, as
the original STAMP suite did not include sequential versions. We derived these manually
from the parallel code, which may result in the sequential versions being easier to port to
the threads/STM framework.

The first difference is that ConDRust programs are free of concurrency abstractions
and synchronization primitives. This does not only enable verification but prevents the
introduction of concurrency hazards such as data races or deadlocks. We observe that
increased use of synchronization primitives results in more transaction conflicts and degraded
performance. As synchronization in threads/STM works on the type level, the framework
requires generally more state modifications, but fewer individual function recompositions.
This means that while a smaller percentage of the code base is changed, the changes are
more substantial. A single recomposition here may include incorporating synchronization
or concurrency, such that functions or parts thereof can be run in a transaction. Since
transactions may fail, failure models have to be considered while altering the code. Also,
since transactions can not be nested, special care must be taken to avoid that. Finally,
transaction size plays an important role in the overall performance and must therefore be
carefully chosen.

ConDRust on the other hand for the most part only needs few state changes. These
are mostly done to remove types that are not thread-safe and could hence not be used in a
concurrent environment. In the case of Canneal, a large struct had to be used to replace
a non type safe state sharing approach. The main work required to derive a ConDRust
implementation indeed lies in the decomposition and recomposition of functions. In contrast
to threads/STM this often only entails breaking up bigger functions into several smaller ones
(which are counted individually) and removing references from function definitions. As a
result, the code bases became more fine-grained and compartimented, with each function
only handling a single task.
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Terms t ::= x | v | |x : T |-> T { t } | t(t) | let x : T = t; t | let mut x : T = t; t |
fSL(t1) | ts.fSF(t1) | for x in t { t } | trfix t t

Evaluation context E ::= □ | E(t) | v(E) | let x : T = E; t | let mut x : T = E; t |
fSL(E) | E.fSF(t) | vs.fSF(E) |
| for x in E { t } | for x in v { E } | trfix E t | trfix v E

Values v ::= l | v | |x : T |-> T { t }
Types T ::= Ref<T > | T | mut T

Typing context Γ ::= ∅ | x : (n, T )
Store µ ::= ∅ | µ, l = v

Store typing Σ ::= ∅ | Σ, l : T

Environment ∆ ::= ∅ | fSL : T ->T | fSF : mut T ->T ->T

t | µ −→ t′ | µ′

E[t] | µ −→ E[t′] | µ′ E-CTXT

Figure 23 Syntactical constructs and evaluation context of s.

Overall, we observe that ConDRust requires less severe changes to the code base. The
changes that are required are merely the breaking up of functions to expose parallelism and
the removal of state sharing.

B s– A subset of Rust for sequential composition

In this section, we formally specify s, the subset of the Rust language that encompasses
the ConDRust programming model. We start with the synatx and the operational semantics
with focus on the integration of stateless and stateful function calls. Afterwards, we specify
the type system that guards the usage of state. A clear specification of state is important
for the compiler to reason about the various forms of parallelism in the derived dataflow
representation of the program.

B.1 Syntax
ConDRust supports the subset of Rust’s syntax that is necessary to compose calls to stateless
and stateful functions (also called methods). We define this subset in Figure 23 as s– a
subset of Rust for sequential composition. The semantics of s are the same as for Rust.
For this paper, we restrict the terms of the language to variables x, abstractions (closures
in Rust) |x : T|-> T { t }, algorithm application t(t), immutable and mutable bindings,
for-loops and tail-recursion (trfix). We restrict the presentation of s in the following
(common) ways:
1. Abstractions and calls may only have a single parameter. The extension to support

multiple parameter is straightforward.
2. We desugar top-level algorithm definitions into let-bound closures such that a top-level

defined function can be used in multiple locations of succeeding function definitions.
The evaluation context E specifies that terms evaluate from left to right in a call-by-value
fashion. s and Rust are imperative languages such that require a store µ to model the
state of the program. Store locations l are part of the syntactical constructs. The small-step
operational semantics t | µ −→ t′ | µ′ relates a term t and a store µ to a term t′ and a
store µ′. The store µ maps labels to values where µ, l 7→ v denotes the usual conjuction of
store mappings µ and the mapping from label l to value v. Values are store locations, (tail
recursion) abstractions and the values defined in the Rust language itself. In the specification
of s’s operational semantics, we assume general types and values for booleans, tuples and
lists with constructors [ ] for the empty list and v ∼: vs (cons) where v is the head with the
tail vs. In Rust, the corresponding data structure to a list is a vector (Vec).
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B.2 Operational Semantics
The usual way for values to enter the evaluation is via the key ingredient in ConDRust’s
programming model: stateless functon calls fSL(t1) and stateful function calls ts.fSF(t1). 10

The definition of stateless and stateful functions themselves are not part of s. We define ∆
as an environment in the typing relation that holds the typing information for the stateless
and stateful functions used in the term to be evaluated. As such, the operational semantics
for calls to stateless and stateful functions rely upon the evaluation relation of Rust (⇓ ):

t | µ −→ t′ | µ′

fSL(v) | ∅ ⇓ vr | ∅

fSL(v) | µ −→ vr | µ
E-FSL

ls.fSF(v1) | ls 7→ vs ⇓ vr | ls 7→ v′
s

ls.fSF(v1) | µ, ls 7→ vs −→ vr | µ, ls 7→ v′
s

E-FSF

Inside these functions, developers re-gain the full feature set of Rust. Stateless calls do not
have side-effects. Side-effects for stateful calls are restricted to a particular state location ls
in the store µ. These are the only rules that leverage Rust’s evaluation relation (⇓ ). In
fact, calls are the only places where computation takes place while the rest of the language is
for composition. Our operational semantics are based on the standard beta-reduction such
that [x 7→ t1]t2 with x ∈ FV (t2) replaces all occurences of the free variable x in t2 with t1.
The usual rule then covers application of simple abstractions:

|x : T |-> T { t2 }(v1) | µ −→ [x 7→ v1]t2 | µ (E-ABSAPP)

Stateless bindings solely rely on beta-reduction. Mutable bindings register values in the
store.

let x : T = v1; t2 | µ −→ [x 7→ v1]t2 | µ (E-LET)
let mut x : T = v1; t2 | µ −→ [x 7→ l1]t2 | µ, l1 = v1 where l1 ̸∈ dom(µ) (E-LETMUT)

As such, the only values in the store refer to mutable state references. We further restrict
control flow to loops and tail recursion leaving out other forms such as conditionals that play
only a minor role in the parallel execution of a program. Loops iterate over a list of values.

for x in [ ] { t2 } | µ −→ () | µ (E-LOOPDONE)
for x in v ∼: vs { t2 } | µ −→ let x1 = [x 7→ v1]t2; for x in vs { t2 } | µ (E-LOOPSTEP)

where x1 ̸∈ F V (t2)

In Section 5 and in our implementation, loops may in fact iterate over all data types that
implement Rust’s Iterator trait which for instance includes HashSet. This allows the
developer to specify that the loop does not depend on a particular order and enables our
second transformation that extracts amorphous data parallelism. To model this in s, we
assume a stateless function that uses the iterator to collect the items into a list before looping
over them. In fact, collect is a standard function of Rust’s Iterator. We allow loops with
an unknown iteration count via tail recursion. Tail recursion is a derived form:

10 We allow ConDRust algorithms to be called from anywhere in a Rust program. Such a call may have
arguments. The assumptions would be stated in Γ and require another context to acces them during
evaluation. We omit this detail at this point in favor of a concise presentation.



F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:33

Σ(l) = T

Γ | Σ ⊢ l : Ref<T >
T-LOC ∆, x : (1, T ) | Σ ⊢ x : T

T-VAR

∆, Γ1 | Σ ⊢ t1 : T1
∆, Γ2 | Σ ⊢ t2 : T1 -> T2

∆, Γ1 ⊕ Γ2 | Σ ⊢ t2(t1) : T2
T-APPABS

x ̸∈ Γ Γ, x : (n, T1) | Σ ⊢ t : T2

∆, Γ | Σ ⊢ | x : T1 | -> T2 { t } : T1-> T2
T-ABS

∆, Γ1 | Σ1 ⊢ t1 : T1 ∆, Γ2, x : (1, T1) | Σ2 ⊢ t2 : T2

∆, Γ1 ⊕ Γ2 | Σ1, Σ2 ⊢ let x : T1 = t1; t2 : T2
T-LET

∆, Γ1 | Σ1 ⊢ t1 : T1 ∆, Γ2, x : (n, Ref<mut T1>) | Σ1 ⊢ t2 : T2

∆, Γ1 ⊕ Γ2 | Σ1, Σ2 ⊢ let mut x : T1 = t1; t2 : T2
T-LETMUT

∆, Γ | Σ ⊢ t1 : T1
∆(fSL) = T1 -> T2

∆, Γ | Σ ⊢ fSL(t1) : T2
T-FSL

∆, Γ1 | Σ1 ⊢ t1 : Ref<mut T1> ∆, Γ2 | Σ2 ⊢ t2 : T2
∆(fSF ) = mut T1 -> T2 -> ⃝ T3

∆, Γ1 ⊕ Γ2 | Σ1, Σ2 ⊢ t1.fSF (t2) : T3
T-FSF

∆, Γ2 | Σ ⊢ t2 : Vec<T1> ∆, Γ3, s : (1, Ref<mut Ts>) , x1 : (n, T1) | Σ ⊢ t3 : ()

∆, Γ2 ⊕ Γ3, s : (1, Ref<mut Ts>) | Σ ⊢ for x1 in t2 { t3 } : ()
T-LOOP

where ∀s ∈ F V (t) ∧ s ̸= x1

∆,∅ | Σ ⊢ t1 : (bool, T2, T1) ∆,∅ | Σ ⊢ t2 : T1 -> (bool, T2, T1)
∆,∅ | Σ ⊢ trfix t1 t2 : T2

T-FIX

∆, Γ | Σ ⊢ t : T

Figure 24 ConDRust’s type system tracks and restricts variable usage.

let f = |x : T1| -> T2 {
let (x1, x2, x3) = tb;
if x1 { x2 }
else { f(x3) }

};

def=

let f = |x0 : T1| -> T2 {
let f ′ = |x : T1| -> (bool, T2, T1) { tb };
trfix f ′(x0) f ′

};

Desugaring captures tb, the computation of the recursion, as f ′. Our tail-recursive combinator
trfix takes two arguments. Argument 1 is an application f ′ to x0, the initial parameter of a
recusive call. This application reduces to a triple (x1, x2, x3) with the boolean descriminator
x1, the final term x2 and x3, the argument to the tail-recursive call. Argument 2 is f ′

for recursion. We encode the conditional that guards this tail recursive call into trfix’s
semantics:

trfix (true, v2, v3) v4 | µ −→ v2 | µ (E-FIXDONE)
trfix (false, v2, v3) v4 | µ −→ trfix v4(v3) v4 | µ (E-FIXRECUR)

In case the descriminee is true, we return the final result v2. Otherwise, we apply the
recursive argument v3 to the abstraction that is always the second argument of trfix. Again,
we restrict the presentation to a single recursive argument and argue that the extension
to multiple arguments is straightforward. In the context of this paper, we are particularly
interested in the case where the arguments to the recursion are a state to be updated and a
worklist that triggers these updates.
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B.3 Type system
The ConDRust programming model carefully distinguishes between stateless and stateful
computations. This enables the compiler to perform the translation of an algorithm into a
dataflow representation and extract data parallelism while preserving the algorithm semantics.

The type system enforces the following programming discipline:
1. A variable may either be used as state or as input to a function call.
2. A variable that is input to a function call may only be used once.
3. A state variable may be used more than once except for a loop term where it may only

be used once.
These somewhat restrictive rules are key enablers of our approach.

Data often needs to be shared across the concurrent parts of the program. A good
example of this is the grid in the STM implementation that required a deep clone to make
the concurrent execution scale. Often, introducing parallelism into a program represents
a trade-off between speedup and memory efficiency. To make sophisticated decisions that
strike a good balance for this trade-off, data structure knowledge is required by the compiler.
We leave this to future work and enable the developer to explicitly make that decision by
cloneing or sharing cloned Arcs. These techniques are already common practice for sharing
data in Rust.

In ConDRust’s type system, presented in Figure 24, we use concepts from linear types to
track and restrict variable usage [55]. The typing context Γ (defined in Figure 23) captures
not only the types of variables but also their usage count (see rule T-VAR). The types T

are the types of the Rust programming language. With the rules T-LET and T-LETMUT,
we distinguish between variables that are input to functions and state. In T-LET, input
variables have a non-referential type and require a usage count of 1, i.e., they can only be
used exactly once.11 In T-LETMUT, state variables reference locations in the store µ and
are marked with Rust’s annotation for mutable types. Rules T-FSL and T-FSF specify the
use of input and state variables in the type of the stateless and stateful function. Values in
input position t1 are of type T1 while the state position ts is required to be of type mutable
reference Ref<Ts>. We define the state encapsulation property of a stateful function on the
output type as ⃝T3. A type T has this property if it does not contain borrowed references.

The type information of the values behind the references is captured in the store typing
Σ. As such, a typing judgement ∆, Γ | Σ ⊢ t : T reads as follows:

▶ Definition 4 (Well-typed). Given an environment ∆ and a (local variable) context Γ with
type assumptions on store locations Σ; a term t is well-typed if there exists a type T such
that ∆, Γ | Σ ⊢ t : T .

The rule T-LOOP restricts state variables to a single usage in the loop term t3. Only due
to this restriction, the ConDRust compiler can derive pipeline parallelism. Rule T-FIX
prevents tail recursive functions from accessing contextual variables at all by requiring Γ = ∅.
Accessing captured variables in a recursive closure is also uncommon in Rust because the
closure needs to explicitly communicate the lifetime of such variables. That is particularly
challenging, for a closure that performs an unknown number of iterations.12 In the spirit of

11We treat unused variables as an undesirable property of a program that would benefit from a similar
error message. Rust actually has similar warnings/errors for unused variables.

12 Recursive closures need to be captured in structs to explicitly communicate lifetime information for the
captured variables to the borrow checker. For more details see: https://stevedonovan.github.io/
rustifications/2018/08/18/rust-closures-are-hard.html

https://stevedonovan.github.io/rustifications/2018/08/18/rust-closures-are-hard.html
https://stevedonovan.github.io/rustifications/2018/08/18/rust-closures-are-hard.html
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Γ ⊕ ∅ = ∅
∅ ⊕ Γ = ∅

Γ1, x : (n : T ) ⊕ Γ2, x : (m : T ) = Γ1 ⊕ Γ2, x : (n + m, T )

Figure 25 Conjunction of typing contexts.

Terms t ::= x | v | n | c; t | run(t, t)
Nodes n ::= nSL(fSL, t, t) | nSF(fSF, t, t, t, t) | for(t, t, t) | reuse(t, t, t) | trfix(t, t, t, t)

Channels c ::= let x = chan(t) | let (x, x) = chan()
Values v ::= l | v

Types T ::= Ref<T > | T | mut T

Typing context Γ ::= ∅ | x : T

Store µ ::= ∅ | µ, l = v

Store typing Σ ::= ∅ | Σ, l : T

Environment ∆ ::= ∅ | fSL : T ->T | fSF : mut T ->T ->T

Figure 26 Syntactical constructs of p.

linear types, we merge store typings via logical conjunction and define the conjunction for
contexts in Figure 25. Based on this Rust subset, the ConDRust compiler can translate a
sequential algorithm into a dataflow graph that makes all inherent parallelism explicit.

C p– A subset of Rust for parallel composition

With the transformations in place, we now formally specify the backend of the ConDRust
compiler to show that the generated code executes deterministically. We present the syntactic
constructs for p– a subset of Rust for parallel composition, that the ConDRust compiler
targets in Figure 26. Terms in this subset basically consist of two parts:
Graph construction An arc is a channel (c) in Rust’s message-passing terminology and we

define n, i.e., a term for each type of node in the dataflow graph.
Graph execution We abstract over an explicit implementation of a scheduler for a dataflow

graph with a single run construct.
We abstract over a concrete channel implementation. All we rely upon is the FIFO ordering
property which we specify via the usual list constructors: [ ] empty list, v ∼: v′ (cons) where
v is the head with the tail v′ and the dual v′ :∼ v (snoc) where v is the last element in the
list and v′ the list of the preceding elements. Additionally, we assume the presence of tuples
in the Rust values v and types T . Composition of nodes via arcs works solely via variable
bindings. For example, the following term constructs a graph with a single (stateless) identity
function (idSL) call node:

let src : Recv<i32> = chan(5);
let (result : Recv<i32>, out : Send<i32>)= chan();
run(result, (nSL(idSL, src, out) ∼: [ ]))

idSL
src out result

For execution, we pass the receiving endpoint result and the list of nodes to run which
executes the graph and reduces to the final result. We assume a type Node for nodes and
align our specification for channels closely with std::mpsc::channel from Rust’s standard
library where Receiver<T> and Sender<T> represent the receiving and the sending endpoint
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Σ(l) = T

Γ | Σ ⊢ l : Ref<T >
T-LOC

∆, x : T | Σ ⊢ x : T
T-VAR

∆, Γ1 | Σ1 ⊢ t1 : T1 ∆, Γ2, x : Recv<T1> | Σ2 ⊢ t2 : T2

∆, Γ1, Γ2 | Σ1, Σ2 ⊢ let x = chan(t1); t2 : T2
T-LETSRC

∆, Γ,
x11 : Recv<T11>,
x12 : Send<T12> | Σ1 ⊢ t2 : T2

∆, Γ | Σ1, Σ2 ⊢ let (x11, x12) = chan(); t2 : T2
T-LETCHAN

∆(fSL) = T1 -> T2

∆, x1 : Recv<T1>,
x2 : Send<T2>

| Σ ⊢
nSL(fSL,
x1,
x2)

: Node

T-NSL

∆,
x1 : Recv<Vec<T >>,
x2 : Send<T >,
x3 : Send<N>,

| Σ ⊢
for(
x1,
x2,
x3)

: Node

T-NLP

∆(fSF) = mut T4-> T1 -> T2

∆,
x1 : Recv<T1>,
x2 : Send<T2>,
x3 : Recv<(N, T3)>,
x4 : Send<T3>

| Σ ⊢

nSF(fSF,
x1,
x2,
x3,
x4)

: Node

T-NSF

∆,
x1 : Recv<T >,
x2 : Recv<N>,
x3 : Send<(N, T )>

| Σ ⊢
reuse(
x1,
x2,
x3)

: Node

T-NRU

∆,

x1 : Recv<T1>
x2 : Send<T1>,
x3 : Recv<bool>,
x4 : Recv<T2>,
x5 : Recv<T1>,
x6 : Send<T2>

| Σ ⊢

trfix(
x1,
x2,
x3,
x4,
x5,
x6)

: Node

T-NFIX

∆, Γ | Σ ⊢ t2 : Vec<Node>

∆, Γ, x1 : Recv<T > | Σ ⊢ run(x1, t2) : T
T-RUN

∆, Γ | Σ ⊢ t : T

Figure 27 The linear type system of p for the construction and execution of the dataflow graph.

of a channel, respectively. In our encoding, the types Recv<T> and Send<T> are reference
types (in T ) for locations l in the store µ, i.e., channels are values in the store. In fact,
channels and their respective elements are the only values in the store. This simplication
is possible because in ConDRust every state arrives along an arc, i.e., channel, where we
preserve it across loop iterations. The context Γ (without usage tracking), the store µ, the
store typing Σ and the environment ∆ follow the specification in s.

In the following, we first define the specifics of graph construction via the typing rules
and afterwards present the operational semantics for graph execution to finally present our
proof (sketch) for determinism.

C.1 Linear dataflow construction
Figure 27 defines the type system of p. A dataflow graph consists of channels and nodes.
In a dataflow graph each arc has exactly one sending node and one receiving node. To
encode this invariant, we again resort to a linear type system approach and highlight linear
aspects accordingly. The rules T-LOC and T-VAR type locations and variables. Channel
construction is typed in rules T-LETSRC and T-LETCHAN. Source channels (chan(t)) bind
only a sending endpoint to pipe parameters from the surrounding Rust program into the
dataflow graph. All other channels (chan()) bind a receiving and a sending endpoint. In
both cases, the usual conjunction of typing contexts (Γ1, Γ2) asures that each endpoint is
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used exactly once. The rest of the rules (T-NSL, T-NSF, T-NLP, T-NRU, T-NFIX) concern
the construction of nodes and the execution of the graph (T-RUN). We increase readability of
the inference rules in the typing and evaluation relation in two ways. First, to make the flow
of the different types of data more pbvious, we highlight receiving and sending endpoints,
value reuse and state. Second, to better align the type assumptions, we deliberately present
the terms for nodes and run with variables instead of subterms, i.e., nSL(x1, x2) instead of
nSL(t1, t2). This is not a restriction because we defined that channel endpoints have to be
bound such that (node and run) terms requiring endpoint types can only be variables.

To keep the formal specification concise, only the T-NSF rules enables the reuse of data –
in this case state. In the full formal specification and in our implementation, there are at
least two versions for all nodes: one where the received input is of type T and another where
it has an attached resuse count (N, T ). Without loss of generality, we shows this only for the
state input of the stateful function call node nSF.

C.2 Operational semantics

In the small-step operational semantics, we use the store µ to define the relation of nodes
that can be executed. Evaluation is again from left to right as in s following the E-CTXT
rule from Figure 23. The construction of channels allocates dedicated locations in the store
and the types Send and Recv are effectively references to a store location l.

t | µ −→ t′ | µ′

let x1 : Recv<_> = chan v; t | µ −→ [x1 7→ l]t | µ, l 7→ (v ∼: [ ]) (E-LETSRC)
where l ̸∈ dom(µ)

let (x1 : Recv<_>, x2 : Send<_>) = chan; t | µ −→ [x1 7→ l, x2 7→ l]t | µ, l 7→ [ ] (E-LETCHAN)
where l ̸∈ dom(µ)

For a source channel, the corresponding value is stored directly into the list and only the
receiving end is emitted. Hence, the channel emits exactly one data value and remains empty
for the rest of the computation. The receiving end x1 and the sending end x2 for all other
channels, point to the same location l in the store. A channel is initially an empty list. For
both types of channels, the evaluation makes a step using beta reduction.

The interesting part is the execution of the dataflow graph. Computation is complete
when there is a value in the channel of the final endpoint.

run(v, l) | µ, l 7→ (v ∼: [ ]) −→ v | µ
E-DONE

∃vn ∈ vg. vn | µ −→ vn | µ′

run(vg, l) | µ, l 7→ [ ] −→ run(vg, l) | µ′ E-RUN

Otherwise, there must a node vn in the list of nodes vg that can take a step that updates
the store µ. This property holds because our linear typed construction does not allow for
dangling channels and the following rules for the nodes in the graph always send data in
every step. A stateless call node can make a step if its incoming channel referenced by label
l1 has data available:

fSL(v1) | ∅ ⇓ v′
1 | ∅

nSL(fSL, l1, l2 | µ,
l1 7→ (v1 ∼: v12),
l2 7→ v2

−→ nSL(fSL, l1, l2 | µ,
l1 7→ v12,
l2 7→ (v2 :∼ v′

1)

E-NSL

ECOOP 2023
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The node retrieves the head vi of the channel’s list, performs the call and appends the
resulting data value v′

1 to the list of the outgoing channel (l2). The execution of the stateless
function itself is the same as defined in the operational semantics for stateless calls (E-FSL)
in s defind in Section 4. Loop nodes follow the same execution pattern:

v1.size() | ∅ ⇓ n | ∅

for(l1, l2, l3) | µ,
l1 7→ (v1 ∼: v12),
l2 7→ v2,
l3 7→ v3

−→ for(l1, l2, l3) | µ,
l1 7→ v12,
l2 7→ (v2 :∼: v1),
l3 7→ (v3 :∼ n)

E-NLOOP

A loop node streams the incoming list v1 by concatenating (:∼:) it with the outgoing channel’s
list v2. We define list concatenation as usual:

xs :∼: (y1 ∼: (y2 ∼: . . . (yn ∼:)) . . .)) = (. . . ((xs :∼ y1) :∼ y2) . . . :∼ yn)

The loop node additionally emits the number of streamed elements n to a reuse node that
pairs it with the gated value:

reuse(l1, l2, l3) | µ,
l1 7→ (v1 ∼: v12),
l2 7→ (v2 ∼: v22),
l3 7→ v3

−→ reuse(l1, l2, l3) | µ,
l1 7→ v12,
l2 7→ v22,
l3 7→ (v3 :∼ (n, v1))

(E-NREUSE)

In our presentation, only state is reused. To do so, the stateful function node receives the
state value v2 with the attached reuse count n on its state channel l3.

ls.fSF (v1) | ls 7→ v3 ⇓ v22 | ls 7→ v′
3

nSF (fSF ,

l1,
l2,
l3,
l4

) | µ,

l1 7→ (v1 ∼: v12),
l2 7→ v2,
l3 7→ ((n, v3) ∼: v31),
l4 7→ v4

−→ nSF (fSF ,

l1,
l2,
l3,
l4

) | µ,

l1 7→ v12,
l2 7→ (v2 :∼ v22),
l3 7→ ((n − 1, v′

3) ∼: v31),
l4 7→ v4

E-NSFREUSE

ls.fSF (v1) | ls 7→ v3 ⇓ v22 | ls 7→ v′
3

nSF (fSF ,

l1,
l2,
l3,
l4

) | µ,

l1 7→ (v1 ∼: v12),
l2 7→ v2,
l3 7→ ((1, v3) ∼: v31),
l4 7→ v4

−→ nSF (fSF ,

l1,
l2,
l3,
l4

) | µ,

l1 7→ v12,
l2 7→ (v2 :∼ v22),
l3 7→ v31,
l4 7→ v4 :∼ v′

3

E-NSFEMIT

Rule E-NSFREUSE preserves the computed state v′
3 with a decremented reuse count in the

incoming state channel l3. When the reuse count is 1 then Rule E-NSFEMIT emits v′
3 to

the outgoing state channel. Both rules rely on ⇓ which requires the state value v3 to be
behind a reference ls. But ls exists solely to satisfy this requirements. It is not contained
anymore in our store µ. That is the result of the translation from an imperative into a
functional program in the ConDRust compiler. The trfix node (which we omit at this
point for brevity) follows the same principle to wait for a single recursive call to complete: It
enqueues a ⊥ data value into its incoming arc x1 that is dequeued only when a recursion is
finished and the resulting value was sent along the respective channel x6 (see T-NFIX).

C.3 Determinism
With the operational semantics and typing relation defined, we can prove that evaluation in

p and as such execution in ConDRust is deterministic. The evaluation relation keeps the
selection of the next node abstract. It just states the particular data availability requirements
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for the nodes to be evaluated. Stateful call nodes have more than one outgoing channel
effectively creating subgraphs, i.e., task-level parallelism, and potentially adding more than a
single successor into the evaluation relation. Additionally, a for-node emits a whole stream
of data values allowing the downstream nodes to be executed repeatedly, i.e., in a pipeline
parallel fashion. As such, there may be more than one node ready to be evaluated. The
evaluation relation does not specify a concrete evaluation order and applies to any scheduler
that follows the defined evaluation rules. As such, we show that evaluation in t | µ −→ t′ | µ′

is deterministic.

▶ Lemma 5 (Single-step Determinism). If t : T is a well-typed term in p then

t | µ, l 7→ vs −→ t′ | µ′, l 7→ (v ∼: vs) ∧
t | µ, l 7→ vs −→ t′′ | µ′,′, l 7→ (v ∼: vs) ⇒ t′ = t′′ ∧ µ′ = µ′′.

Proof Sketch. The proof is by induction on a derivation of t and the store µ. Assume a
term t′ whose activation into the evaluation relation requires data value v available at store
location l. For a term t whose evaluation places v into store location l, we distinguish the
following two cases:
1. t is the construction of a source channel or
2. t is the evaluation of an upstream node.
The first case is immediate. In the second case, we also know that by the induction hypothesis
the activations of this (upstream) node is deterministic. Now assume that t evaluates to t′′

by storing a value at location l. By the linear construction of the channels in the dataflow
graph, store location l only has a single receiver that is owned by exactly one node. Hence,
t′ = t′′ and consequently µ′ = µ′′. ◀

Dataflow graphs in p are essentially Kahn Process Networks (KPN) [31]. KPNs execute
deterministically because incoming arcs have blocking semantics13 and the executed code of
the node is scott-continuous. Our evaluation relation essentially adheres to both of these
properties.

However, lemma 5 is insufficient to prove determinism for the whole computation, i.e.,
for the multi-step evaluation t | µ −→∗ v | µ′:

▶ Theorem 6 (Determinism). If t : T is a well-typed term with ts
ConDRust−−−−−−→ t then

t | µ
c−−→

∗
v ∧ t | µ

c−−→
∗

v′ ⇒ v = v′.

The proof of this thereom needs a proof of termination which in turn requires two things:
well-founded recursion and cycle freedom. Cycle freedom is based on a formal specification
of the transformations in ConDRust to prove that the dataflow graph does not have cycles
other than the ones guarded by trfix nodes. This formalization is outside the scope of this
paper and left for future work.

13 Blocking semantics prevent the construction of a non-deterministic merge node, the explicit notion of
non-determinism in dataflow [2].
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