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ABSTRACT

Our CPUs contain a compute instruction set, which regular
applications use. But they also feature an intricate under-
world of different CPU modes, combined with trap and ex-
ception handling to transition between these modes. These
mechanisms are manifold and complex, yet the layering and
functionality offered by the CPU modes is fixed. We have
to take what CPU vendors provide, including potential se-
curity problems from unneeded modes. This paper explores
the question, whether CPU modes could instead be defined
entirely by software. We show how such a design would
function and explore the advantages it enables. We believe
that pushing all existing modes under a common design um-
brella would enforce a cleaner structure and more control
over exposed functionality. At the same time, the flexibility
of software-defined modes enables interesting new use cases.
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1 INTRODUCTION

In bygone years, operating systems interacted with the CPU
in the simple terms of traditional user and kernel mode.
Privileged features, like page-table manipulation and inter-
rupt handling, were restricted to kernel mode, while user
mode handled regular application code. But as the systems
community demanded more features to play with, CPU ven-
dors delivered: Hypervisor modes with nested paging en-
able hardware-supported virtualization and monitor modes
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enable isolated security contexts [5]. In the recent past, the
trend of adding CPU modes! perpetuated: SGX [4], MPK [10],
and SEV [3] are among the latest additions to the family.

This plethora of new modes would not be a problem if
they did not also come with a lot of complexity added to
our CPUs [7]. The last years have shown how brittle CPU
implementations already are [15, 17, 22], and the new modes
certainly have their share of weird interactions [20]. In ad-
dition, the complexity associated with a mode is present,
whether the system uses it or not. Consequently, the isolation
promises between modes and between protection domains
implemented by a mode (like address spaces) have become
more difficult to reason about.

At the same time, the systems community has no shortage
of ideas for new CPU modes: MPK is being abused for intra-
application sandboxing [14], nested paging in user mode
would help with garbage collection [8]. But although details
of existing modes are implemented in microcode, they are
inseparably linked to the silicon. Although firmware is ulti-
mately software, the operating system cannot influence this
microcode to disable unneeded modes or to add new ones.

This paper poses the question: What if we could? What
if we approached the construction of CPU modes from a
completely different perspective? Let us assume we could
not just change microcode, but instead had CPUs, where the
very nature of CPU modes was fully programmable. The goal
of such a CPU design would be to throw away all existing
CPU modes and replace them with software. Let us explore
this idea in the remainder of this paper.

2 CPUPROGRAMMABILITY

Intuitively, CPUs should take the top spot on the list of pro-
grammable devices. All software is essentially programming
the CPU, because programs are represented by an instruc-
tion stream, which the CPU consumes and interprets. The
instructions invoke CPU-internal function blocks like arith-
metic logic units (ALUs) or load-store units. We experience
the resulting state changes as program execution. All code
works this way, applications as well as operating systems.
We call this portion of CPU operation the CPU data plane,

!n this paper, we define “CPU modes” quite broadly as different execution
semantics and thereby a switch between modes as a stateful change to these
semantics.
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because its main observable effect is the transformation of
program state in memory.

But next to this data plane, there is a whole other world,
which does not process data, but influences how the CPU
processes data. This CPU control plane is invoked by way of
traps and exceptions and contains the logic of CPU mode
switches. Its main effect is the transition of one CPU execu-
tion state to another, like the switch from user mode into
kernel mode. These transitions are hardwired and complex,
which is in stark contrast to the orthogonal and composable
function blocks of the data plane.

In a way, the principles of RISC have only been applied
comprehensively to the CPU data plane. There, we moved
from CISC’s complex, pre-packaged bundles of functionality
to orthogonal, composable building blocks that a compiler
stitches together. Software-defined CPU modes envision the
same for the control plane: reshape a set of complex, pre-
packaged CPU modes into orthogonal, composable building
blocks orchestrated by software. Once a programmable mode
substrate is in place, all CPU modes needed in a concrete
system can be configured into the CPU at runtime.

But what is the potential gain of this increased flexibility?
Surely we do not conduct this thought exercise only for a
more aesthetic CPU design. We believe that this flexibility
will help in two ways: First, it can help reduce the overall sys-
tem complexity by only establishing modes that are needed
for a given software stack. If a hypervisor mode or a trusted
execution mode are not needed, then not configuring them
into the CPU reduces the system’s attack surface.

On the other hand, extending a system with bespoke
modes tailored to its use cases has potential to improve its
security, efficiency, and flexibility. Inspiring examples are:

e Type II hosted hypervisors can benefit from nesting
the guest kernel and guest user virtualization modes
inside host user mode. This way, they would no longer
require a detour through the host kernel for trap-and-
emulate functionality.

e Dune [8] showed that virtualization can be used to
provide applications access to privileged CPU features
and thereby, for example, improve the performance of
garbage collection. Software-defined CPU modes could
enable the same benefits, but without the - in this case
unwanted — drawbacks of virtualization: expensive
VM entries and exits.

e Just-in-time compiled languages like JavaScript typ-
ically collide with security measures such as write-
xor-execute [11]. A restricted sandbox mode inside
user mode can isolate JIT code by swapping write and
execute permissions.

e Similarly, when mixing code written in type-safe and
non-type-safe languages, the latter can be isolated by
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an in-app sandbox. Currently, Intel MPK is used to
emulate such a mode [14].

o Configuring the side-channel mitigations when transi-
tioning from user to kernel mode can enable trade-offs
between isolation and mode switch latency [18].

e Mapping devices into user mode like SPDK and DPDK
requires lightweight kernel-like isolation, when the
device mapping is shared between distrusting pro-
cesses [19].

This list is certainly not exhaustive, but it illustrates that
software-defined CPU modes offer interesting opportunities
for system-level improvements and are thus worth exploring.

3 IMPLEMENTATION VARIANTS

In this section, we first examine how a mode transition cur-
rently works in order to extract requirements for a software-
defined mode switch. We then propose two implementation
variants with increasing flexibility, but also increasing devia-
tion from the way CPUs operate today. We initially focus the
explanation on the well-known transition between user and
kernel mode, but also discuss a novel sandbox mode intended
to restrict portions of applications within user mode. This
additional mode illustrates the flexibility of the implementa-
tion variant by demonstrating how to add a mode that does
not exist in current commodity CPUs.

3.1 Current Mode Switch Behavior

We discuss a mode switch in three phases: trigger, recon-
figuration, and state transfer. Switches between user mode
and kernel mode are triggered for different reasons. Hard-
ware interrupts and exceptions are hard-wired in the CPU to
force a transition into kernel mode. Exceptions can be raised
as instruction side effects like touching unmapped memory
regions or division by zero. Furthermore, dedicated instruc-
tions exist to explicitly trigger the transition like sysenter
or syscall on x86 CPUs.

After initiating the switch and before executing the first
instruction in the new mode, the CPU is being reconfigured
internally by built-in mode-switch logic. These reconfigu-
rations affect multiple orthogonal subsystems of the CPU.
Specifically from user to kernel mode, instruction availability
and page-table permission-bit evaluation changes. Instruc-
tions such as those accessing machine registers like the root
page-table pointer or other security-critical functionality
are fully available in kernel mode. In user mode, executing
those instructions would be denied and raise an exception.
Page tables contain permission bits in each page-table entry.
Those bits are evaluated by the memory-management unit
(MMU) and include a kernel or supervisor flag. With this flag,
memory pages can be configured to be accessible from ker-
nel mode, but inaccessible from user mode. After the mode



Software-Defined CPU Modes

ID Parent ID  Entry Point
0 - 0x8000
parent-return ( 1 0 OaaOO ) parent—call
child-return  { 2 1 0x1230 ) child—call 2
3 1 0xff40

Figure 1: Examplary mode configuration table with
parent and child calls (current mode in blue).

transition, accessibility of certain memory pages therefore
changes as the MMU now evaluates page-permission bits
according to their kernel mode semantics.

The mode switch is completed by a limited transfer of state
between the exited and the entered mode. On x86 CPUs, the
user-mode value of instruction and stack-pointer registers
must be made available to kernel-mode code, otherwise they
cannot be recovered at a later kernel exit. This is because the
mode transition overwrites these registers with pre-defined
values for kernel entries. x86 transfers these registers by
pushing their values to the stack, other architectures use
different means like dedicated transfer registers. When all
of these steps are finished, the mode switch is completed by
fetching the first instruction from the kernel entry point, to
which the instruction-pointer register now refers.

From this description, we can identify independent control-

plane responsibilities that are touched upon during the switch:

e Some instructions like sysenter switch modes as their
main behavior, for others like division by zero it is a
conditional side effect. Which instructions trigger a
switch and under which conditions?

o To which mode do the various trigger reasons switch?

o During the switch, trigger behavior is reconfigured:
instructions may raise an exception in the exited mode,
but execute normally in the entered mode, or vice versa.
Which instructions change in which way?

e MMU page-permission interpretation is reconfigured:
a permission flag may raise a page fault in the exited
mode, but not in the entered mode, or vice versa. How
does the permission bit semantics change?

e Which state of the exited mode is made available to
the entered mode?

The behavior of any concrete mode transition is currently
baked into hardware. Implementing software-defined CPU
modes means offering fine-grained configuration hooks for
these responsibilities.

3.2 Mode Configuration Table

Our first proposal is to represent the currently active execu-
tion mode with a configuration vector. In its simplest form,
the hierarchy of available modes is initialized at system boot
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by feeding them into a processor configuration table. A sim-
plified example of such a table is depicted in Figure 1. Each
table row represents one processor mode and instructions
can trigger transitions upwards or downwards in this table.

Each mode configuration vector consists of individual
fields for aspects of the CPU control plane that are now
configurable instead of hardcoded. In particular, each vector
contains:

e the id of the mode’s creator or parent,

e an entry-point address to which the CPU jumps when
the mode is entered,

e trap behavior for instructions,

e MMU permission semantics for page-table entries to
specify accessible pages.

The table is organized such that the initial mode after boot
is located in the top row and less privileged modes follow in
subsequent rows. Instructions like sysenter and sysexit
are replaced with two new instructions: parent-call and
parent-return, which trigger a mode transition upwards
and downwards in the configuration table, respectively. State
transfer works similarly to current processor implementa-
tions by pushing the instruction pointer of the exited mode
to the stack or special registers. Additionally, we propose
the instructions child-call and child-return. In contrast
to parent-call, child-call takes the destination mode as
an argument and the hardware ensures that it’s a child of
the current mode. Additionally, child-call hides state like
the instruction pointer from the callee and child-return
implicitly resumes execution at the prior location.

Implementing Existing and New Modes. Traditional user and
kernel mode can be implemented by loading a mode ta-
ble with two rows, one for kernel mode and one for user
mode. The entry-point address for kernel mode points to
the same starting point for kernel code that the traditional
sysenter instruction would use. The system boots into ker-
nel mode and the first user process can be launched us-
ing parent-return. MMU permissions are configured such
that supervisor pages are accessible in kernel mode, but
not in user mode. Applications issue system calls using
parent-call and the kernel uses parent-return to resume
execution of the application.

An additional sandbox mode within user mode can easily
be configured with a third table row. Applications continue
to run in user mode by default, but can use child-call to en-
ter the sandbox, whereas the sandboxes uses child-return
to return to the application. Memory isolation between appli-
cation and sandbox can be achieved by changing the MMU
permission semantic for the sandbox mode (e.g., adding an-
other bit to the page-table entries). Furthermore, certain
instructions can be configured to trap when used inside the
sandbox.
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Many Modes in Tree Structure. An initial design might place
the mode table in dedicated CPU configuration memory
that can be written once at boot time before entering the
first mode. However, when systems want to configure many
modes, a better solution would be to use a portion of DRAM
and configure beginning and end of the table with CPU con-
figuration registers. In order to allow quick mode transitions
without costly DRAM accesses, we propose a Mode Looka-
side Buffer (MLB). The similarities to page tables are obvious.

The design discussed so far only allows for a linear hier-
archy of modes. However, by amending each mode vector
with a parent field, the stored table logically becomes a tree
of modes. The parent-call instruction now transitions to
the parent of the current mode based on the parent field,
whereas the child-call instruction takes the child id as
an argument to support multiple children per mode. The
hardware is responsible to check whether the desired mode
is in fact a child mode of the current mode.

Now with an unbounded number of modes, a bit per mode
in page-table entries is not sufficient to control memory
access anymore. However, todays page-table construction
conflates physical-to-virtual address translation and access-
control responsibilities into one mechanism. Similar to other
works [1, 6], we suggest to disentangle the two, dedicating
the current radix-tree-based page tables exclusively for ad-
dress translation and a separate data structure for access
control. It needs to be evaluated whether another radix tree
or a simple region list is the better solution for access control.
This separation allows each mode to reference its own per-
mission data structure. The current Translation Lookaside
Buffer (TLB) would gain a companion Permission Lookaside
Buffer (PLB) which caches permission information.

Mode Configuration at Runtime. Adding an extra bit to each
mode configuration vector allows to distinguish, whether a
mode can change the mode configuration table at runtime.
In a traditional user/kernel setup, the kernel would have
this privilege and would thus be able to add new modes like
the aforementioned sandbox mode at runtime. System calls
can be devised by which applications can instruct the kernel
about the desired mode configuration for additional per-
application modes. To prevent that all applications running
in the same user mode can enter the sandbox mode, the
kernel clones the mode of the calling application on creation
of the first child mode. Therefore, by default all applications
run in the same user mode, but applications that created a
child mode receive their own copy of user mode with a child
mode attached to it.

3.3 Software-defined Mode Transitions

The mode configuration table already provides several ad-
vantages over the state of the art like more flexibility for
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applications and faster transitions into and out of sandboxes.
However, the implementation of mode transitions and in
particular the state transfer between the exited and entered
mode is defined by the CPU (e.g., with microcode) and un-
changable by software. For example, a transition between
a virtual machine and the hypervisor requires more state
transfer than the instruction and stack pointer. This is be-
cause the virtual machine also works on its own copy of the
control registers and therefore they need to be included in
the state transfer. Another example is an enclave, where it is
desirable to encrypt most of the state in enclave mode before
switching to the host OS.

Control-Plane Code. Addressing use cases like virtualization
and enclaves therefore requires an even more flexible ap-
proach. We propose to replace mode transitions completely
with software. That is, whenever a mode transition is re-
quired the CPU executes a special piece of software, called
control-plane code, that implements the mode transition by
reconfiguring the CPU and transferring the state. We see
two variants for its implementation. First, a dedicated mode
called mode-switch mode, which executes the control-plane
code. This approach looks self-contradicting at first glance,
because we are essentially proposing to add yet another CPU
mode. However, the goal of this mode is to subsume all other
built-in CPU modes by allowing the control-plane code to
implement all other modes dynamically in software.

Alternatively, the CPU could be equipped with a sepa-
rate control-plane processor that executes the control-plane
code. Whenever a mode transition is required, the CPU sig-
nals the control-plane processor, which executes the code
and thereby reconfigures the function blocks of the CPU to
perform the mode transition. Afterwards, the CPU simply
continues executing with the new configuration (possibly
with changed instruction pointer, MMU permissions, etc.).
Similar to FlexSC [21], using a dedicated core for control-
plane code could be faster than a transition between modes
on the same core. Furthermore, a clear separation between
the CPU and the core for control-plane code could protect
the control-plane code from side-channel attacks.

Keeping State. Both variants need to read and write data-
plane registers critical for control flow, especially the data
plane instruction pointer. We think that instruction trap-
ping, MMU configuration, and register access is sufficient to
implement traditional user and kernel mode. Additionally,
the control-plane code must remember the currently active
mode. Current CPUs remember the mode as part of their
architectural state. We propose control-plane code to have a
small amount of freely usable scratchpad memory available.
To reduce complexity, the control-plane code should not have
access to regular main memory at all. Otherwise, we would
have to deal with the headaches of paging the mode that
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controls paging semantics. Reading and writing this scratch-
pad requires a small set of simple memory and control-flow
instructions as part of the control-plane instruction set. State
sharing between control plane and data plane is enabled
by adding data-plane instructions to access the scratchpad.
Of course, it is control-plane configurable whether these
instructions work or trap.

We believe that these facilities are sufficient to also support
use cases like virtualization and enclaves. For virtualization,
the control-plane code would be responsible to save and
restore all registers including control registers. However,
nested paging would still need to be a hardware building
block for efficiency reasons. Similarly, enclave control-plane
code could encrypt and decrypt the state during mode transi-
tions to the host OS, but needs hardware-accelerated encryp-
tion for this state and for main memory to make enclaves
efficient. Additionally, the control-plane code can be respon-
sible for key management and the measurement state for
attestation.

4 INITIAL RESULTS

We have built an early prototype of the mode configuration
table approach to study its feasibility and performance. We
used the gem5 hardware simulator [9] and the 64-bit RISC-V
instruction set architecture as a foundation. We extended
gemb5 by the instructions described above, as well as an MLB
and PLB. The PLB allows to configure memory protection
for each CPU mode with variable-sized memory regions. We
also ported xv6 [2], a simple re-implementation of UNIX
version 6, to make use of parent-call and parent-return
for system calls instead of ecall and sret. We configure
gemb to use a CPU and system clock frequency of 1 GHz,
the out-of-order CPU model, and classical caches. The CPU
has a single core containing 32 KiB L1 instruction cache,
32 KiB L1 data cache and 512 KiB L2 cache and accesses
gem5’s DDR3 1600 8x8 model as main memory. The MLB
and PLB both contain 64 entries and are software-loaded.
Since the MLB is only required during mode transitions, it is
searched sequentially. In contrast and like the TLB, the PLB
implements a fully parallelized search and adds no additional
latency as it needs to be consulted for every instruction. All
experiments are performed with 10 warmup rounds and 90
repetitions.

In a first experiment, we evaluated how calls to the OS
using parent calls perform in comparison with traditional
system calls and function calls. The results are depicted in
Figure 2 (left). As expected, parent calls are slower than
function calls, but faster than system calls. However, as these
are early results based on simulation, we merely conclude
that parent calls are competitive to traditional system calls.
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Figure 2: Latency of parent calls to implement syscalls
(left) and child calls to implement sandboxing (right).

We performed a second experiment to study how child
calls can enable fast transitions into and out of sandboxes.
Mode configuration tables enable sandboxes by allowing
applications to create a new CPU mode for a part of their ap-
plication. The application can change the protection for parts
of its address space to restrict the sandbox to specific regions.
The instructions child-call and child-return are used to
enter and leave the sandbox, respectively. We compare this
approach (child-call in the figure) with the typical way to
isolate parts of an application on traditional architectures:
different address spaces and process switches to enter and
leave the sandbox (proc-switch). Since the performance of
process switches depends on the operating system, we also
compare to a raw address-space switch (as-switch) with a
tagged TLB and therefore no TLB flush, which can be seen as
the lower bound on traditional architectures. The results are
depicted in Figure 2 (right), which shows the performance
for entering and leaving a sandbox and compares the three
mentioned approaches. As can be seen, child-call and
child-return are two orders of magnitude faster than two
process switches and still one order of magnitude faster than
two address-space switches. The primary reasons for the per-
formance advantages are that child calls avoid address-space
switches and do not involve the OS kernel.

5 DISCUSSION

The flexibility and early performance results look promis-
ing, but also raise several questions that we want to briefly
discuss.

System Security and Complexity. Moving more responsibility
from hardware to software raises the question of whether
it increases or decreases the overall system complexity and
security. On the one hand, isolation of applications on to-
days systems is already not only dependent on the hardware,
but also on the privileged software layers, which would not
change with our proposal. On the other hand, it is unclear
how the system complexity changes if more functionality is
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provided in software instead of in hardware. However, we be-
lieve that current CPUs have evolved beyond a manageable
complexity and should therefore be simplified. We also be-
lieve that a single and general hardware mechanism that can
be used in various ways by software is easier to verify and
reason about than the current state: various different hard-
ware mechanisms that have been designed independently,
leading to unforeseen interactions [20].

Memory Protection. CPU modes inherently interact with
memory protection due to the desire to restrict modes differ-
ently. We proposed to separate translation and protection and
to only relate protection with modes. This separation allows
more lightweight per-mode protection of specific memory re-
gions instead of requiring different address spaces even when
only the protection should differ. However, it remains to be
studied whether variable-sized and fine-granular regions or
same-sized and coarse-grained regions are preferable.

Flexibility and Performance. Both the mode configuration
table and the control-plane code approach offer advantages
over traditional CPU-mode designs. Mode configuration ta-
bles provide more flexibility for software and showed promis-
ing early performance results. However, as state transfer is
still hardwired, use cases like virtualization or secure en-
claves would still need to be baked into hardware. While
software-defined mode transitions have the flexibility to
cover these use cases, it remains to be seen whether the
performance is sufficient. Considering that current CPUs
implement mode transitions and enclaves partially in mi-
crocode, we believe that a software-based implementation is
feasible.

Compiler-initiated Mode Switches. We believe that compilers
can become one of the primary users of software-defined
CPU modes. If applications define their own modes and
switch between them without involving OS-specific primi-
tives, compilers can sandbox parts of applications without
manual intervention of the developer. For example, instead of
generating function calls into an untrusted library, the com-
piler can introduce a new mode for the library with restricted
memory access and generate child calls instead, similar to
Glamdring with SGX enclaves [16]. Like for function calls,
the compiler defines the calling convention between these
isolated parts and potentially uses a dedicated memory area,
accessible by caller and callee, to exchange data.

Related Work. The Alpha architecture [12] features PALCode,
which can software-define instructions. PALCode was de-
signed to accelerate OS primitives, but it cannot implement
new CPU modes. Metal [13] is an early-stage software imple-
mentation of CPU modes, but proposes to trap on individual
memory accesses to implement protection.
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6 CONCLUSION

The systems community every now and then comes up with
ideas that would benefit from a new, bespoke CPU mode, but
without software-configurable modes, these ideas remain
thought experiments. We think the examples we have briefly
enumerated here together with our reasonable initial results
demonstrate the potential of software-defined CPU modes.
Realizing this idea requires a concerted effort of the CPU
design, operating system, and compiler communities. Should
we choose to overcome the inertia of the status quo, this
concept could spark a whole new era of operating system
and programming language design opportunities.
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