Towards Modular Trusted Execution Environments

Carsten Weinhold
Nils Asmussen

nils.asmussen@barkhauseninstitut.org
Barkhausen Institut
Dresden, Germany

Abstract

State-of-the-art implementations of Trusted Execution Envi-
ronments (TEEs) present system designers and users with
several problems: First, it is not possible to choose a TEE
implementation independently from the instruction set ar-
chitecture. Second, the security-critical functionality of such
TEEs is deeply integrated into the micro-architecture of com-
plex processor cores, making programs running in such TEEs
vulnerable to side-channel attacks. And third, the interface
and execution model of certain types of TEEs make it hard
to integrate these TEEs with the system software. To address
these issues, we propose a modular TEE design. We apply
this modular design to the M3 hardware/software co-design
platform and demonstrate how TEE support can be made a
first-class feature at the system-architecture level.

CCS Concepts: + Security and privacy — Hardware-based
security protocols; - Software and its engineering —
Operating systems.

Keywords: tile-based architecture, trusted execution

ACM Reference Format:

Carsten Weinhold, Nils Asmussen, Diana Géhringer, and Michael
Roitzsch. 2023. Towards Modular Trusted Execution Environments.
In 6th Workshop on System Software for Trusted Execution (SysTEX
’23), May 8, 2023, Rome, Italy. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3578359.3593037

1 Introduction

Today, the interface, functionality, and implementation of
a Trusted Execution Environment (TEE) are deeply inter-
twined with both the instruction set and the hardware ar-
chitecture of a processor. By deciding on an instruction-set
architecture (ISA), one also chooses a specific type of TEE,
and vice versa. This inter-dependency limits options for sys-
tem designers. With Intel SGX, there is a TEE variant (called

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SysTEX °23, May 8, 2023, Rome, Italy

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0087-3/23/05.
https://doi.org/10.1145/3578359.3593037

Diana Gohringer
diana.goehringer@tu-dresden.de

carsten.weinhold@barkhauseninstitut.org Technische Universitit Dresden
Dresden, Germany

Michael Roitzsch
michael.roitzsch@barkhauseninstitut.org
Barkhausen Institut
Dresden, Germany

an enclave) that supports running application code without
any additional system-level code inside the TEE. However,
SGX is only available for x86-64 and not, for example, for
Arm. And even on x86-64, SGX support is mostly limited
to high-performance and high-power CPUs. TEE flavors
isolating entire virtual machines (VMs) are also limited to
datacenter-class CPUs. Such VM-type TEEs are available
from Intel (Trusted Domain Extensions, TDX), AMD (Se-
cure Encrypted Virtualization, SEV), or Arm (Confidential
Compute Architecture, CCA).

However, not only are the interface and execution model
of a TEE tied to a specific ISA, but their implementation also
depends on the processor architecture. SGX, TDX, SEV, and
CCA are each deeply integrated into the micro-architecture
of a highly-complex processor core. Such cores have been
shown to be vulnerable to side-channel attacks [8], which
can also affect code running inside a TEE [13]. In the case
of SGX, research even demonstrated full compromise of the
secret signature keys inside the SGX quoting enclave [12].
AMD processors with support for SEV improve TEE security
by isolating the key material and cryptographic operations
required for attestation on a dedicated Platform Security
Processor (PSP) [2]. The PSP is separate from the x86-64 cores
used by the operating system (OS), applications, and VM-
based TEEs. Therefore, it is harder to attack the PSP using
side channel attacks like those that can compromise SGX’s
quoting enclave. In our view, a step in the right direction.

Finally, the TEE implementations that are available today
lack system-level integration. They have been designed un-
der the assumption that the OS (for enclave-type TEEs) or
the hypervisor (for VM-type TEEs) cannot be trusted. The
reasoning behind this assumption is that the system software
is a huge, highly complex, and often monolithic code base
that represents an unacceptably large attack surface. While
the OS running in a VM-type TEE may be self-sufficient, this
is not the case for user programs running in an enclave-type
TEE. In practice, most of them depend on services provided
by the host OS. This need is addressed by security wrappers
such as Scone [3], which either enable secure reuse of certain
OS functionality or duplicate it inside the TEE.

In light of these observations, we argue that the interface
and feature set of TEEs, the enforcement of their security
guarantees, and the hardware that enables program execu-
tion should be decoupled from each other. This separation of

https://doi.org/10.1145/3578359.3593037
https://doi.org/10.1145/3578359.3593037

SysTEX 23, May 8, 2023, Rome, Italy

interfaces, functionality, and ISA enables both customization
of TEE implementations and more control over architectural
decision that determine their security properties.

The contributions we make in this paper are the following:
(1) We propose to modularize TEEs into six separate concerns
(Section 2). (2) We map these six concerns onto the M3 [5]
hardware/software co-design platform. We discuss which
hardware and software building blocks of M3 can be reused
and propose extensions that enable TEEs as a first-class
platform feature (Section 3). (3) We discuss our modular TEE
design in the context of related work and explore challenges
for further extending TEE integration (Sections 4 and 5).

2 Motivation and Background

We start by summarizing our understanding of the term TEE.
We discuss the six concerns of a TEE implementation and
show, how typical representatives lump them together in one
monolithic implementation. We then identify microkernels
and tiled architectures as a promising way forward.

2.1 Trusted Execution

In our view, a TEE is an execution container for code that
an external party wants to associate with security assertions
in order to establish trust. The external party therefore re-
quests cryptographic evidence from the TEE platform that
demonstrates the integrity of the TEE’s state, for example
that the intended program (and not a modified version) is
being executed on the expected hardware platform (and not
on an emulated processor). Remote attestation is therefore a
building block of a TEE.

A TEE however extends pure remote attestation with a
temporal assertion: The evidence collected from the platform
contains proof of mechanisms that ensure, that the integrity
of the TEE’s state will endure. The platform must provide
sufficiently strong isolation features, that the TEE’s integrity
not only holds at the time of evidence collection, but that
this integrity is ensured in the future. If, after inspecting the
evidence, the external party trusts this long-lived integrity,
then we have reason to call the execution container a TEE.

2.2 Separation of Concerns

We identify six concerns every TEE platform must provide:

e Computation: The TEE is an execution container for
code, so this code needs to run on a processor.

e Measurement: The cryptographic evidence supplied
to the external party is collected by the platform in a
measurement process, which includes a hash of the
loaded executable.

¢ Root of trust: The measurement alone is worthless,
because the execution container could lie about it.
Thus, the measurement is signed using key material
that is embedded in hardware in a root of trust (RoT).

Carsten Weinhold, Nils Asmussen, Diana Géhringer, and Michael Roitzsch

e Isolation: To maintain integrity over time, the plat-
form must protect TEEs from manipulation. Protection
is typically implemented by memory isolation (e.g.,
virtual memory) and memory encryption to prevent
physical attacks.

e Management: These isolation and encryption mech-
anisms need to be managed in order to multiplex the
platform to run multiple TEEs.

e Environment: A TEE running in perfect isolation is
rather useless. At least an output channel is required
to communicate results. More broadly, TEEs need con-
trolled access to system services.

We observe that current TEE implementations are often
monolithic, lumping many of these concerns together. SGX
for example ties together an Intel processor for computa-
tion with specific measurement code accessing a dedicated
RoT. Isolation mechanisms are managed by the opaque SGX
firmware. Environment access from an SGX enclave has
been notoriously difficult and spurred research work such
as Scone [3].

2.3 Deconstructing Trusted Execution

We argue that monolithic TEE implementations can be de-
constructed into orthogonal building blocks. Such a modular
TEE would have two advantages: First, as the individual
building blocks become smaller and have clear interfaces,
it becomes easier for external parties to inspect them and
be convinced of their correctness. Second, the platform can
offer more flexibility as different implementations of the TEE
concerns can be combined to configure different TEE flavors.

For example, one external party might desire an SGX-
enclave style TEE that laterally interacts with outside ser-
vices, whereas others prefer a TDX-style virtual machine
bringing its own operating system. Regarding isolation, some
parties may require memory encryption with costly fresh-
ness protection, while others choose to disregard physical
attacks. Measurement may need to cover only the TEE ad-
dress space for some use cases, while other users want to
integrate an external device into the TEE, thus requiring
more complex measurement logic. As to the RoT, different
parties may request different cryptographic algorithms like
traditional or quantum-safe options. And ultimately, for com-
putation of their TEE, some users may want to restrict their
most critical use cases to hardened in-order processors.

All these choices are currently only possible by completely
switching platforms, because each specific platform has one
instance of each concern baked in. A modular TEE would be
able to offer such choices within a single platform.

2.4 Microkernels as a Starting Point

Current TEE implementations are not far away from micro-
kernel systems. Intel TDX for example manages its TEEs
using a hidden software-implemented microkernel running

Towards Modular Trusted Execution Environments

in a new processor mode [7]. This hidden microkernel pro-
grams page tables and memory encryption to isolate the
TEEs and it interfaces with a hardware-embedded RoT to
sign an attestation measurement. The microkernel becomes
part of the attested software stack such that an external party
can be convinced of the correct usage of isolation features.

Including a microkernel in the trusted platform may seem
counter-intuitive, because a selling point of TEEs has been
to remove trust in the operating system. But this was moti-
vated by large and complex monolithic operating systems.
A microkernel is orders of magnitude smaller and can be
formally verified. Many existing TEE implementations like
SGX or TDX include a hidden microkernel in firmware that
is implicitly trusted because it is provided by the hardware
vendor.

Using an actual, explicit microkernel however improves
transparency as the code can be inspected. Exposing the
kernel enables TEEs to use APIs for cross-TEE communi-
cation and security mechanisms. Furthermore, it allows to
separate hardware and software building blocks to enable
the customization choices we desire. For example, it en-
ables co-existence of process-style and VM-style TEEs on the
same system as today’s microkernels offer both abstractions.
Process-style TEEs no longer require a bespoke processor
enclave mode and can therefore naturally access system ser-
vices via the microkernel’s native communication primitives.

However, a microkernel-based system cannot easily of-
fer a choice of different processors to execute the TEEs. A
traditional microkernel runs in kernel mode on the same
processor as the TEEs it protects. This construction is vul-
nerable to side-channel attacks, because all TEEs as well as
critical components with access to the RoT share processor
hardware.

In addition to a composable software layer, our modular
TEE platform also needs composable hardware. Therefore,
we build upon the M3 architecture, which we briefly explain
before presenting our modular TEE design in Section 3.

2.5 The M3 Architecture

M3 [5] proposes a new system architecture based on a hard-
ware/software co-design. On the hardware side, M3 builds
upon a tiled architecture, as shown in Figure 1. M3 extends
its tiles by adding a new hardware component called data
transfer unit (DTU) to them. Each tile contains a DTU and
either a core, an accelerator, or memory (e.g., a memory in-
terface to off-chip DRAM) and the tiles are connected via
a network-on-chip. As the DTU is the only way to access
tile-external resources, the DTU controls the tile’s access
permissions. By default, all tiles are isolated from each other.
To perform message-passing between tiles or access memory,
a corresponding communication channel (thick black lines
in the figure) needs to be established. These communication
channels are represented as endpoints in the DTU (orange

dots).

SysTEX ’23, May 8, 2023, Rome, ltaly

Core Core Core
|App IServ | | Application |
[TieMux__] [TieMux]

DTU
[

DTU
©i\6;

Core Accelerator

DTU

| ——

Figure 1. System architecture of M3: one DTU per tile iso-
lates tiles from each other and selectively allows communi-
cation. TileMux multiplexes its tile among the applications
on it.

Service

TileMux

D

On the software side, M3 runs a microkernel (red) on a
dedicated kernel tile, and applications and OS services on the
remaining user tiles. Applications and OS services on user
tiles are represented as activities, comparable to processes.
An activity on a general-purpose tile executes code, whereas
an activity on an accelerator tile uses the accelerator’s logic.
Activities can use existing communication channels, but only
the M3 kernel is allowed to establish such channels. Applica-
tions are placed on different tiles by default, but as shown by
M3y [4], tiles with general-purpose cores can also be shared
efficiently and securely among multiple applications. For
that reason, every core-based user tile runs a multiplexer
called TileMux (yellow), which is responsible for isolating
and scheduling the applications on its own tile, similar to
a traditional microkernel. However, in contrast to a kernel,
each TileMux instance has no permissions beyond its own
tile. Instead, only the M3 microkernel can make system-wide
decisions, hence its name.

3 Modular TEEs as a Platform Feature

Because of its disaggregated hardware architecture and its
microkernel-based OS, the M3 platform is an ideal starting
point for a modular TEE design. Before we discuss this design,
we define the threat model and security assumptions.

3.1 Threat Model

Our threat model considers the hardware and software build-
ing blocks of M3 that are critical to providing the six TEE
concerns defined in the preceding section.

We assume that the DTUs and the network-on-chip through
which they are connected cannot be manipulated or accessed
directly at the hardware level. We also assume that secret
key material belonging to the RoT is embedded into the
hardware and therefore inaccessible to an attacker. These

SysTEX 23, May 8, 2023, Rome, Italy

Environment

Application Filesystem RoT
1 \ T / Measurement
Service Loader e Attester
Management Isolation
M3 Kernel DTUs

Figure 2. Mapping of TEE concerns onto hardware and
software building blocks of M3.

assumptions are comparable to those for contemporary TEE-
enabled CPUs. We further assume the kernel tile, its pro-
cessor core, and the memory used by the M3 kernel to be
trusted. The same applies to user tiles that host software-
based functionality that is critical to implementing any of
the six TEE concerns. The system services that provide such
functionality will be detailed in Subsections 3.2.5 and 3.2.3.
All other user tile processor cores and the software running
on them need not be trusted.

From an application’s point of view, additional system
services or applications may be considered security-critical.
We discuss application-specific trust in Subsection 3.2.4.

3.2 Mapping of TEE Concerns onto M3

Figure 2 visualizes how the six TEE concerns map onto hard-
ware and software components of M3. Below, we explain the
roles of these building blocks and what extensions we made
to M3 to implement TEEs as a first-class feature.

3.2.1 Compute and Isolation. An activity executing on
a user tile is similar to what is called a process in other OSes.
The processor core on a user tile enables program execution.
Between activities, M3 offers two levels of isolation: Inter-tile
isolation is enforced by the DTU, which enforces commu-
nication and memory-access permissions without relying
on cores to self-restrain by means of page tables. If multiple
activities share the processing core of a user tile, isolation
among them is enforced by TileMux. This intra-tile isolation
is based on page tables and support for multiple privilege
levels as provided by the processor core on that tile.

We can reuse the activity abstraction to provide the Com-
pute and Isolation concerns for a modular TEE. If a user tile is
assigned exclusively to only one TEE, the program running
in that TEE is less susceptible to side-channel weaknesses
in the core’s micro-architecture. Since no untrusted code
shares the core, side-channel attacks can only originate from
outside the tile [11]. Alternatively, by colocating a TEE with
other activities, tile utilization can be increased at the cost
of weaker isolation.

3.2.2 Root of Trust. Inter-tile isolation is ideal to protect
the platform’s RoT in our modular TEE design. We propose

Carsten Weinhold, Nils Asmussen, Diana Géhringer, and Michael Roitzsch

to add a new, dedicated RoT tile that stores an identity key
in hardware. The key itself is not accessible from any user
tile or the kernel tile. However, a software-implemented RoT
service, which runs on a core that is also part of the RoT
tile, can make use of the RoT’s key to perform signature
operations. A TEE signature is created in two steps: First,
the measurement components (see Subsection 3.2.5) report
to the RoT what software is running in a TEE. Second, the
ROT creates a signature over the TEE measurement using
its identity key, thus producing cryptographic evidence of
the previously reported software configuration in that TEE.
Such attestation evidence is sent as the reply to a remote
attestation request.

To minimize the attack surface, the RoT service’s complex-
ity should be reduced. Since it is the only software running
on the tile, there is no need to run TileMux on the RoT tile’s
core. In fact, it is possible to exploit M3’s support for het-
erogeneous cores to reduce hardware complexity as well:
System designers can configure the RoT tile with an in-order
processor core without support for virtual memory and priv-
ilege separation to reduce the risk of hardware bugs and
timing side-channels.

3.2.3 Management. In M3, a loader service is responsible
for making the code and data sections of the program binary
available in an activity’s address space. To accomplish this
task, the loader asks the M3 kernel to configure DTU end-
points that allow the program to access appropriate memory
regions in off-tile DRAM. Additionally, the loader requests
the kernel to configure DTU endpoints for message-passing
channels between the TEE and other activities; for exam-
ple, to allow an application to communicate with system
services.

The M3loader already has all information about the startup
state of an activity, including input and output channels to
other activities on the system. This information is precisely
what an external party can use to assess the trustworthiness
of the program running in this activity.

3.2.4 Environment. No special privilege level (like SGX’
enclave mode) or adapter (like Scone [3]) are needed to let
a user program in an M3-based TEE interact with the rest
of the system. Also, software running in such a TEE does
not need to bring its own OS, as is required for the VM-type
TEEs like those provided by Intel TDX [7] and other vendors’
solutions. However, there are no architectural limitations
that prevent it either; for example, a complete Linux OS
including user programs could run on a user tile. In this case,
TileMux would be replaced by the Linux kernel, which could
enable Linux user programs to interact with M3 activities
on other tiles by providing a device driver that abstracts the
DTU for cross-tile communication. Thus, a modular TEE
design based on M3 can support both native user programs
(running as activities) and VM-type TEEs. In both cases,
access control for off-tile resources would be managed in the

Towards Modular Trusted Execution Environments

same way. Any software running in an M3-based TEE can
use all APIs and access any service on any tile, as long as
it has permission to do so (i.e., DTU endpoints have been
configured accordingly).

However, programs that depend on certain system services
or other applications, may have to trust in the integrity and
correct behavior of other activities beside their own TEE. On
M3, such trusted system services can easily be considered
as a TEE themselves, since there is no downside to doing so
regarding cross-activity interaction. In practice, we therefore
consider groups of cooperating TEEs rather than single TEEs.

3.2.5 Measurement. To report the state of one or more
TEEs to an external party, a cryptographic protocol called
remote attestation is used. This protocol is executed between
two computer systems: an attester that measures and reports
evidence of the state of a set of TEEs, and a verifier, which
is a remote entity that wants to learn about the attester’s
TEE state. In this subsection, we explain the role of the at-
tester in a modular TEE implementation on M3. To do so, we
describe how measurement reporting works, when a remote-
attestation request is received by an application over the
network.

In such a scenario, the application program, running as an
activity (i.e., TEE) on the attester system, forwards the attesta-
tion request through an API to the loader service that started
the application. For the reasons outlined in the preceding sub-
section, the configuration of memory and message-passing
endpoints among groups of cooperating TEEs must be part
of TEE measurement. Hence, the loader must able to provide
a reply with an evidence report that includes the state of mul-
tiple TEEs. We propose to extend the already existing loader
service of M3 with the aforementioned API to forward at-
testation requests. Furthermore, we introduce a new attester
service, to which the loader outsources the measurement of
all relevant program binaries that it needs to start as TEEs.
The attester service computes cryptographic hashes of the
programs before they are mapped into their respective TEE
address spaces. In our current design, the attester service
does so by acting as an interposition layer between the M3
file-system service and the loader. The following steps take
place to perform a measured start of an application program
in a modular, M3-based TEE:

1. The loader opens the application’s binary.

2. The attester service intercepts this open request, cre-
ates a copy of the complete binary file in private mem-
ory, and computes the hash over this copy of the file.

3. The attester service makes the in-memory copy of the
file available to the loader in response to the open
operation. It retains the measurement hash for future
requests.

By creating a copy of the program binary, the attester ser-
vice prevents time-of-check-time-of-use (TOCTOU) attacks
on the original file in the file system, where the binary is

SysTEX ’23, May 8, 2023, Rome, ltaly

modified after measurement. Therefore, the file system need
not be trusted for integrity. The above steps are executed,
when TEEs are started. The following steps are performed,
when the attestation request arrives over the network.

4. The loader passes the hashes of the binary programs
running in the TEE group and the configuration of
their message-passing and memory endpoints to the
RoT.

5. The RoT signs the set of hashes and the associated
configuration with its identity key, thereby creating
cryptographic evidence that describes the group of
cooperating TEEs and the programs executing in them.

6. The loader receives the signed evidence and passes
it back to the application, which then sends it to the
verifier.

Finally, the verifier (i.e., the external party) can now vali-
date the signature over the received evidence using the public
part of the RoT’s signature key. If the signature is found to be
valid, and the TEE configuration described in the evidence
report is deemed acceptable, it can place trust in the integrity
and correct behavior of the TEEs in the attester device.

3.2.6 Open Issues. Our design, as described so far, does
not address the problem of securely starting the kernel, the
ROT service, and other services such as the loader. This in-
cludes the issue of how to include cryptographic hashes over
the kernel and basic services in the evidence report. We also
did not discuss the need for software updates, how to derive
RoT identity keys from hardware secrets so as to enable re-
vocation and re-provisioning, and the possible involvement
of certificate authorities that vouch for security properties of
an M3-based hardware platform. We believe these issues can
be solved using existing technologies and we plan to address
them in future work.

4 Comparison with Related Work

To show the unique benefits of M3-based modular TEEs, we
qualitatively compare the discussed design with existing
commercial and research solutions regarding their modular-
ity.

All-in-one Solutions. Products like Intel SGX [1] are mono-
lithic solutions, disallowing separate consideration of the
individual concerns. Although some aspects of SGX are im-
plemented in firmware, the interaction with the hardware
remains opaque. Sancus [9] is less complex and targeted at
microcontroller cores, but it explicitly addresses all TEE con-
cerns in hardware. Such all-in-one solutions reduce trust to
a single artifact: the processor core. While this can simplify
trust decisions, it is deliberately non-modular.

Microkernels. A number of current solutions are based on
amicrokernel or micro-hypervisor to manage TEEs, program
the hardware isolation features, and interact with measure-
ment and RoT. Intel TDX [7] runs a signed micro-hypervisor

SysTEX 23, May 8, 2023, Rome, Italy

provided by Intel. Arm CCA equally uses software to switch
between their flavor of TEEs called Realms. Sanctum [6] is a
research extension to the RISC-V ISA, which runs a security
monitor in the RISC-V machine mode.

The microkernel approach is conceptually much closer to
our modular design. It can accommodate different measure-
ment approaches or different RoT implementations. Whether
vendors offer such configurability is merely a business deci-
sion, not an architectural one. However, these microkernels
run in bespoke hardware modes on the same processor. This
design has two consequences: First, being a mode on the
same processor cores, the microkernel is susceptible to side
channel attacks. This can have devastating consequences,
when key material from the RoT can be accessed. Second,
this bespoke CPU mode has access to architectural features,
which the processor vendor intends to be used for inter-TEE
isolation. These isolation features may dictate a certain TEE
flavor (process-style of VM-style) and may complicate TEE
cooperation.

The Sanctum authors identified these two limitations and
addressed them by hardening the core against side-channel
attacks using cache partitioning and flushing, as well as by
offering synchronous communication primitives for TEE
interaction in their security monitor.

Tiled Architectures. AMD SEV externalizes TEE manage-
ment, measurement, and RoT interaction to a separate pro-
cessor, the Platform Security Processor (PSP) [2]. This way,
TEE computation on the main processor is separated from
TEE management on the PSP. The main processor no longer
has access to any key material, mitigating a number of po-
tential attacks. In a way, M3 extends this idea further. AMDs
model still relies on parts of the main processor for inter-TEE
isolation. The M3 DTU offers a way to separate inter-TEE
isolation and communication concerns from the processor
cores entirely. TEEs become possible with any unmodified
core, offering new platform configuration options.

Two caveats apply: Context-switching among multiple
TEEs on the same M3 tile still relies on core-internal isola-
tion features. However, M3 could include a Sanctum-style
hardened core for this purpose. Multithreaded TEEs cur-
rently require a multicore processor within one tile. Cache
coherence between tiles is future work. We still believe the
M3 design constitutes the most modular point in the solution
space.

5 Challenges

The main security benefit of a tiled architecture like M3
stems from the physical separation of the compute units on
the chip. An interesting question for the security of TEEs
therefore is, how this isolation could be compromised. Tra-
ditional processors are often attacked through cache-based
side-channels, because the cache is a high-throughput shared
resource. In M3, two such shared resources remain: shared

Carsten Weinhold, Nils Asmussen, Diana Géhringer, and Michael Roitzsch

DRAM and the network-on-chip (NoC). For DRAM, existing
solutions like memory encryption and Rowhammer protec-
tion are available. The shared NoC however constitutes an
interesting target for timing side-channels and thus requires
further study.

The NoC topology, switching mechanism, and routing
algorithm each have a strong influence on non-functional
parameters, such as observed message latency or aggre-
gate throughput. The recent trend of in-network computing
would exacerbate these problems. In-NoC computing allows
to see the NoC as a large array of routers with computing
capabilities [10]. Similar as for in- and near-memory comput-
ing, the idea here is to process the data as close to its current
location as possible and to use all available computing com-
ponents for it. This allows leveraging the communication
latencies within the router for executing simple computa-
tions on the data. Examples are reduction instructions on
data elements of a network packet, e.g. by summing up all
data elements.

In-NoC computing brings additional challenges to a tile-
based TEE implementation, because the NoC constitutes a
high-throughput shared resource and needs to be trusted.

6 Conclusion

To overcome the inflexibilities of existing TEE implemen-
tations, we have presented a modular design approach. We
extended the M3 hardware/software co-design platform with
a TEE infrastructure, where building blocks like measure-
ment, isolation, management, and environment interaction
can be freely configured and exchanged. The modular design
uses a microkernel and existing cores rather than complex
core modifications to enable trusted execution.

Acknowledgments

This research is funded by the European Union’s Horizon
2020 research and innovation program under grant agree-
ment No. 957216 (iNGENIOUS), as well as grant agreement
No. 101092598 (COREnext) under the Horizon Europe pro-
gram. It is also financed on the basis of the budget passed by
the Saxon State Parliament in Germany.

References

[1] 2021. Intel Software Guard Extensions (Intel SGX).
https://www.intel.com/content/www/us/en/architecture-and-
technology/software-guard-extensions.html. (Accessed on April 12,
2023).

Advanced Micro Devices, Inc. 2016. Platform Security Proces-
sor (PSP). https://www.amd.com/system/files/TechDocs/52740_16h_
Models_30h-3Fh_BKDG.pdf, 156-157.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-
dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’keeffe, Mark Stillwell, David Goltzsche, Dave Eyers, Ridiger Kapitza,
Peter Pietzuch, and Christof Fetzer. 2016. Scone: Secure Linux Contain-
ers with Intel SGX. In 12th USENIX Symposium on Operating Systems

[2

—

[3

—_

https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.amd.com/system/files/TechDocs/52740_16h_Models_30h-3Fh_BKDG.pdf
https://www.amd.com/system/files/TechDocs/52740_16h_Models_30h-3Fh_BKDG.pdf

=

—
—

—
—

Towards Modular Trusted Execution Environments

Design and Implementation (OSDI) (Savannah, GA, USA). USENIX,
689-703.

Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, and
Michael Roitzsch. 2022. Efficient and Scalable Core Multiplexing with
M?®v. In 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (Lausanne,
Switzerland). ACM, 452-466. https://doi.org/10.1145/3503222.3507741

[5] Nils Asmussen, Marcus Volp, Benedikt Nothen, Hermann Hartig, and

Gerhard Fettweis. 2016. M3: A Hardware/Operating-System Co-Design
to Tame Heterogeneous Manycores. In 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (Atlanta, GA, USA). ACM, 189-203. https://doi.org/
10.1145/2872362.2872371

[6] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum:

Minimal Hardware Extensions for Strong Software Isolation. In 25th
USENIX Security Symposium (USENIX Security 16). 857-874.

Intel. 2021. Intel Trust Domain Extensions. Technical Report.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2018. Spectre Attacks: Exploiting Speculative Exe-
cution. meltdownattack.com (2018). https://spectreattack.com/spectre.
pdf

[9] Job Noorman, Jo Van Bulck, Jan Tobias Miihlberg, Frank Piessens,

Pieter Maene, Bart Preneel, Ingrid Verbauwhede, Johannes Gétzfried,

SysTEX ’23, May 8, 2023, Rome, ltaly

Tilo Miiller, and Felix Freiling. 2017. Sancus 2.0: A low-Cost Security
Architecture for IoT Devices. ACM Transactions on Privacy and Security
(TOPS) 20, 3 (2017), 1-33.

[10] Jens Rettkowski and Diana Goéhringer. 2021. Wormhole Comput-

ing in Networks-on-Chip. In 31st International Conference on Field-
Programmable Logic and Applications (FPL). IEEE, 273-274.

Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. 2019. NetSpectre: Read Arbitrary Memory over Network.
In Computer Security - ESORICS 2019 - 24th European Symposium on
Research in Computer Security, Luxembourg, September 23-27, 2019,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11735), Kazue
Sako, Steve A. Schneider, and Peter Y. A. Ryan (Eds.). Springer, 279-299.
https://doi.org/10.1007/978-3-030-29959-0_14

[12] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom,
and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In 27th USENIX
Security Symposium (USENIX Security 18). 991-1008.

Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2019. RIDL: Rogue In-Flight Data Load. In 2019 IEEE Symposium on
Security and Privacy (SP). 88-105. https://doi.org/10.1109/SP.2019.
00087

https://doi.org/10.1145/3503222.3507741
https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1145/2872362.2872371
https://spectreattack.com/spectre.pdf
https://spectreattack.com/spectre.pdf
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1109/SP.2019.00087

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Trusted Execution
	2.2 Separation of Concerns
	2.3 Deconstructing Trusted Execution
	2.4 Microkernels as a Starting Point
	2.5 The M3 Architecture

	3 Modular TEEs as a Platform Feature
	3.1 Threat Model
	3.2 Mapping of TEE Concerns onto M3

	4 Comparison with Related Work
	5 Challenges
	6 Conclusion
	Acknowledgments
	References

