
A Control Pipeline for Robust Lane Keeping in
Model Cars

James Vero Asghar, Paul Auerbach, Maximilian Matthé
Connected Robotics Lab

Barkhausen Institut gGmbH
Dresden, Germany

firstname.lastname@barkhauseninstitut.org

Carsten Knoll
Chair of Fundamentals of Electrical Engineering

Technical University Dresden,
Dresden, Germany

carsten.knoll@tu-dresden.de

Abstract—Reliable lane keeping is a fundamental requirement
of autonomous model cars. This paper presents a sophisticated
image processing pipeline in combination with the Stanley
steering controller to reliably steer model cars on their lane at
high speeds. We show that the pipeline significantly improves
robustness compared to a naive steering implementation. The
results ensure reliable lane keeping and hence enable testing of
higher-level algorithms for e.g. overtaking or merging scenarios.

Index Terms—lane keeping, stanley controller, model vehicles,
image pipeline

I. INTRODUCTION

With the emergence of autonomous and automated vehicles,
the research on algorithms for improving reliability, efficiency
and safety has greatly increased. Despite having accurate
traffic and vehicle models used for simulation, results need
to be tested and verified in reality [1]. However, nowadays
cars are very complex, offer strict software interfaces, and
need to conform to safety regulations [2], which makes them
unsuitable for initial testing of algorithms in reality. Therefore,
after simulations small model vehicles are used to facilitate the
testing of new algorithms.

Robust lane keeping is a fundamental property of a research
platform for a wide range of traffic scenarios. Any high-
level traffic control or maneuvering algorithm assumes that
the vehicle can robustly and autonomously remain on its target
lane. Therefore, implementing a robust lane keeping algorithm
is a prerequisite for testing algorithms in traffic control or
vehicle maneuvers.

In this paper, we compare the performance of a well-
designed image processing and control pipeline for lane
keeping against a straight-forward naive implementation of
minimal implementation effort. We show that by using the
more complex pipeline, the vehicles will drive more robust
and hence can use higher speeds while driving smoothly along
the lane.

The employed vehicle platform is a realistic model car in
1:10 scale with a two-axle chassis with Ackermann steering
[3] that carries a Raspberry Pi as the compute unit, a servo
motor for steering, a DC motor for acceleration and a forward
facing Raspberry Pi camera as its main sensor. The test track
the cars drive on consists a yellow middle line (ref. Fig. 2),

which, together with the car’s cameras, is used to guide the
cars along the predefined track.

The remained of this paper is structured as follows: The
system model used when modelling the vehicle, as well as the
experimental environment used when testing the pipeline and
control algorithms is described in Sec. II. Afterwards, both
processing pipelines are described and simulation results are
presented. Sec. IV discusses the measured results and finally,
a conclusion is given.

II. SYSTEM MODEL

The kinematic equations of motion for a two axle vehicle
are commonly represented by the bicycle kinematic model [4].
This model is represented by the following nonlinear state
space representation:

ẋ = v cos(θ), (1a)
ẏ = v sin(θ), (1b)

θ̇ =
v

l
tan(ϕ). (1c)

The state variables of the model are x, y and θ, where x and
y are the cartesian coordinates of the midpoint of the rear axle
and θ is the heading of the vehicle. The input variables of the
model are v and ϕ, where v is the velocity of the vehicle and
ϕ is the current steering angle.

In reality, the car’s steering angle ϕ cannot change arbitrar-
ily or jump, which mathematically translates to the require-
ment of continuity. Therefore, ϕ is modeled to be the output
of a first order low-pass with the configurable time constant
T and input u, where u represents the target steering angle.

ϕ̇ =
(u− ϕ)

T
. (2)

The state of the model vehicle is estimated by the image
processing pipeline. This image pipeline processes pictures
taken from the front-facing camera of the vehicle and estimates
the heading θ relative to the lane and lateral distance efa
from the lane. A subsequent steering controller translates
this information to the target steering angle which is fed to
the vehicles servo. Fig. 1 represents the block diagram of
the control loop. The image processing pipeline and steering
controller are described in following sections.



Fig. 1: Graphical representation of control loop

The track and yellow lane line, that the vehicle needs to
follow, can be seen in Fig. 2. The track consists of four
identical straight and curved sections, forming a closed circuit.
When the vehicle is travelling around the track, a positive
controller output corresponds to a left turn, while a negative
output corresponds to a right turn. Therefore, when travelling
clockwise through the track, the target steering angle u is
expected to be negative on average.

Fig. 2: Track with yellow lane line.

III. IMAGE PROCESSING

A. Naive Implementation

In the most basic implementation of lane detection, all
yellow pixels from the incoming camera image are extracted
and the biggest grouping is considered to be the lane line. The
distance between the x-coordinate of the center of this group
and the center of the image is considered the cross-track error
efa and is provided as the input to the steering controller. No
heading information θ is extracted from this simple pipeline.

B. Improved Implementation

To improve the naive pipeline, extra steps were added in
order to extract additional information from an image, namely
the heading of the lane line. The improved pipeline is based
on [5]. It is composed of multiple stages in order to calculate
the heading θ and cross-track-error efa. The steps to do so
are explained in the following section.

1) Distortion Removal: The start of the image processing
pipeline is the distortion removal. For the cars, a fisheye
camera was chosen as opposed to a rectilinear camera. The
benefit of a fisheye camera arises from its wider angle of
view in comparison to a rectilinear camera. However, a fisheye
camera inherently has barrel distortion causing straight lines

to become curved. The curvature of these lines is depen-
dent on their radial distance from the center of the image.
Compensation for this distortion is possible through software,
using the process known as camera calibration or camera
resectioning [6]. We used the OpenCV library, in particu-
lar the initUndistortRectifyMap [7] and remap [8]
functions to accomplish this task. Fig. 3b shows the effect of
this stage of the pipeline.

2) Color Thresholding: The next step in the pipeline is
color thresholding. This stage removes all pixels from the
image that are not the color of the lane line. For this step
to be more robust against lighting changes, the image is first
converted to the HSV color space from the RGB color space.
In order to detect the yellow lane, the pipeline will filter out
colors outside of the yellow hue range and then truncate the
lower section of the lightness and saturation channels. As a
result of this, only bright yellow is left in the image. Fig. 3c
displays the effect of this stage of the pipeline.

3) Perspective Transformation: The third part of the image
processing pipeline is the perspective transformation [9].

Whenever an image is captured with a camera mounted
to the vehicle, the lane line will be trapezoidal as opposed
to rectangular, due to the angel the camera is mounted
on the car. This perspective requires that all calculations
regarding the lane line must compensate for its decreasing
width. In order to avoid this requirement, a perspective
transformation is employed. For this we use the functions
getPerspectiveTransform and warpPerspective
[8] of the OpenCV library.

A consequence of this new perspective, is that the resulting
image is a orthogonal view of the track. Fig. 3d displays the
effect of this stage of the pipeline.

4) Initial lane detection: After the perspective transforma-
tion stage, the start point for the sliding window method in
the next step is found. The number of white pixels is counted
for each column of the image. The column with the highest
number of white pixels is assumed to contain the lane, and is
selected as the start point for the sliding window method.

5) Sliding Window Method: In the fifth stage of the
pipeline, an analytical approximation of the lane is calculated
through the sliding window method [5][10] Using the least
squares method [11], a second order polynomial is approxi-
mated, creating a best fit through the centers of each sliding
window. The polynomial provides an analytical representation
of the lane, given by

g(y) = β0 + β1y + β2y
2, (3)

where βi are the coefficients determined using the numpy
method polyfit [12].

Fig. 3e and 3f display an example of the sliding window
method process and the resulting approximated polynomial,
respectively.

6) Calculation of Heading and Cross-Track-Error: In the
final stage of the pipeline, the heading and offset from the lane
line are calculated.



(a) Original image captured by the camera
on the vehicle (b) Image after applying the undistortion

(c) Image after filtering out all pixels that
don’t fit the color of the lane line

(d) Image after warping the perspective to
be orthogonal to the track

(e) Visualization of the sliding window
method applied to the image

(f) Visualization of the approximated lane
line (yellow) with the pixels corresponding
to the line (blue)

Fig. 3: Image processing pipeline

An analytical heading is found at a chosen point y along
the path with the equation:

θ = arctan(g′(y)), (4a)

with g′(y) being the derivative of the polynomial found in the
last stage.

The offset from the lane line is calculated from the fitted
polynomial with the following function:

efa = (
w

2
− g(h)) · smpp, (5)

where w is the width of the image, g(h) is the value of the
fitted polynomial at the bottom of the image, smpp is a scaling
constant to translate pixels into meters.

IV. CONTROL ALGORITHMS

A. PID Control

The naive approach uses a PID controller [13] to control
the steering of the vehicle. As its input, the controller uses
the cross-track-error efa as calculated by the naive image
processing. The controller output is given by

u = kpefa + kdėfa, (6)

where the optimal values for the coefficients kp and kd where
found by trial-and-error. The I-component of the PID control

was intentionally set to zero, as it did not improve the driving
robustness. The target steering angle u is sent to the servo to
steer the vehicle.

B. Stanley Controller

1) Theoretical Background: The Stanley controller is a
non-linear control algorithm that was developed in 2005 by
Stanford University with the purpose of controlling a two-
axle vehicle using only the heading and the cross track error
from the path to be followed. The algorithm has been proven
to be asymptotically globally stable for the kinematic model
of a two-axle vehicle [14].

The Stanley controller is a path following controller instead
of a trajectory following controller. As a lateral controller,
it is designed to keep the vehicle on the path but has no
impact on the forward speed. This approach allows for a
flexible choice of the vehicle speed, which can be selected as
required for a given application, subject to dynamic effects.
The Stanley controller is represented mathematically by the
following equation:

u = θ + arctan

(
kefa
v

)
(7)

where u represents the controller output, θ is the current
heading of the vehicle relative to the path. k is a scaling factor,



0 1 2 3
x [m]

1

0

1

2

y 
[m

]
fs=50 Hz

Midpoint of Front Axle
Lane Line

(a) Simulated lane keeping of the Stanley con-
troller with a sample rate of 50Hz and instant
steering, i.e. T → 0. at a speed of 1.75m/s

(b) Simulated lane keeping of the Stanley
controller with a sample rate of 50Hz and a
time constant of T = 100ms at a speed of
1.75m/s

(c) Simulated lane keeping of the Stanley con-
troller with a sample rate of 50Hz and a time
constant of T = 150ms at a speed of 1.75m/s

Fig. 4: Simulated result of Stanley controller applied to vehicle model defined in section II, with varying parameters.

v is the velocity of the vehicle and efa is the cross track error
from the midpoint of the vehicle’s front axle to the path.

2) Simulation: To test the suitability of the Stanley con-
troller for our use case we setup a simulation of our scenario.
In particular, we were interested up to which steering delay T
and sample rate of the system the controller yields acceptable
driving performance.

The Stanley controller is modelled in continuous time,
which is different from what is used in real-world implemen-
tations. The vehicle captures images at a specific sampling
frequency, which are then processed by the pipeline before
being fed into the controller. Therefore, the behavior of a
zero-order hold is simulated. The output of this zero-order
hold is then fed into the Stanley controller. This allows for
the behavior of the vehicle to be investigated for different
sampling frequencies, which allows for a tolerance to be set
for the processing speed of the pipeline. The output of the
simulation with discrete time processing, sampled at 50 Hz,
is shown in Fig. 4. As visible, with a sample rate of 50Hz the
controller steers nicely around the track.

Secondly, the behavior of the Stanley controller when sub-
jected to dynamic effects on the steering angle is of great
importance, as the global asymptotic stability of the controller
was only proven on the kinematic two-axle vehicle model [14].
Therefore, a configurable parameter of the simulation is the
time constant T describing the dynamics of the steering servo.
The output of the simulation with time constants T 100 ms and
150 ms are shown in Figs. 4b and 4c, respectively. T is shown
to have considerable influence on the behaviour of the Stanley
controller. As we measured the actual time constant of our
steering servo to be in the range of 100-150ms, the simulation
results indicate that lane following is possible, however slight
deviations from the track and oscillations are to be expected.

V. RESULTS

A. Maximum Forward Velocity

Using the naive pipeline and PID controller on the vehicle,
velocities exceeding 1.5 m/s result in reduced robustness.

The naive pipeline and PID controller cause the vehicle to
oscillate when an outlier in the calculation of the cross-track-
error occurs and requires more time to return to the lane.
The magnitude of these oscillations increases with the forward
velocity of the vehicle. If the velocity exceeds 2.0 m/s, the
PID controller crashes the vehicle against the track wall. Even
velocities between 1.5 and 1.75 m/s require supervision and
manual emergency stops to avoid crashes.

In contrast, the improved pipeline and Stanley controller
require no supervision until the forward velocity of the vehicle
reaches 2.3 m/s. However, at higher velocities the vehicle
oscillates about the path, never converging onto the path. This
behaviour has been also foreseen from the simulation results.

B. Controller Output

1) Controller Output over Time: Fig. 5a shows the output
of the two controllers over time at forward velocity of 1.0 m/s.
At low velocity the two controllers have similar behaviour. As
the forward velocity of the vehicle increases, the controller
output scales appropriately. Between forward velocities 1.0
and 1.5 m/s, the signal output of the two controllers are
similar, however at 1.75 and 2.0 m/s the sinusoidal nature
of the PID controller degrades, while the sinusoidal nature of
the Stanley controller increases.

At 1.75 m/s, the naive pipeline and PID controller can
still control the vehicle onto the lane, however as can be seen
in Fig. 5b, outliers are more common than with the Stanley
controller. These lead to high oscillations in the controller
output. When the naive pipeline incorrectly identifies the lane,
the PID controller has difficulty returning the vehicle to the
lane. This can also lead to the controller crashing the vehicle
into the wall, which can be seen at the right end of the graph.
In contrast, the improved pipeline and the Stanley controller
have no issue following the path at the same velocity.

At 2.0 m/s, the PID controller is unable to robustly control
the vehicle. As can be seen in Fig. 5c, the output varies
between -30 and 30 degrees and there is no periodicity. In
comparison, the Stanley controller has a stable oscillation



0 5 10 15 20
Time [s]

20

10

0

10

C
on

tro
lle

r O
ut

pu
t [

de
gr

ee
]

Stanley, v = 1.0 m/s

0 5 10 15 20
Time [s]

20

10

0

10

C
on

tro
lle

r O
ut

pu
t [

de
gr

ee
]

PID, v = 1.0 m/s

(a) For v=1.0m/s, both controllers exhibit a
periodic and rather smooth steering behaviour.

0 10 20 30
Time [s]

40

20

0

20

C
on

tro
lle

r O
ut

pu
t [

de
gr

ee
]

Stanley, v = 1.75 m/s

0 10 20 30
Time [s]

40

20

0

20

C
on

tro
lle

r O
ut

pu
t [

de
gr

ee
]

PID, v = 1.75 m/s

(b) For v=1.75m/s, the PID controller yields
a more hectic steering pattern, whereas the
Stanley controller keeps a smooth behaviour.

0 5 10
Time [s]

40

20

0

20

C
on

tro
lle

r O
ut

pu
t [

de
gr

ee
]

Stanley, v = 2.0 m/s

0 5 10
Time [s]

40

20

0

20

C
on

tro
lle

r O
ut

pu
t [

de
gr

ee
]

PID, v = 2.0 m/s

(c) For v=2.0m/s, the PID controller lets the
vehicle oscillate around the lane and eventually
crashes against the wall, whereas the Stanley
controller still shows a regular and smooth
steering pattern.

Fig. 5: Controller output of PID and Stanley controller over time for different forward velocities v.

between -30 and 0 degrees and is periodic, which corresponds
to a smooth driving behaviour.

Outliers do not lead to high oscillations when the vehicle is
being controlled by the Stanley controller. It has been observed
that the vehicle will reorient itself onto the path much quicker
than the PID controller.

Due to the relatively short straight section of the track, both
controllers are unable to converge to a steady state before the
next curve.

VI. CONCLUSION

In this paper we have compared two approaches on lane
keeping for model cars. Our results show that a more elaborate
processing pipeline including sophisticated image processing
and steering control can significantly enhance the robustness of
model cars in lane keeping scenarios compared to a simple PID
control implementation. With the presented Stanley controller
pipeline, our model cars could reliably steer at speeds of
2.3m/s which is sufficient for many traffic scenarios. There-
fore, the presented pipeline serves as a basis for subsequent
tests of e.g. overtaking or merging traffic scenarios with the
employed model cars.

REFERENCES

[1] J. Pohlmann, M. Matthe, T. Kronauer, P. Auerbach,
and G. Fettweis, “Ros2-based small-scale development

platform for ccam research demonstrators,” IEEE Ve-
hicular Technology Conference, vol. 2022-June, 2022,
ISSN: 15502252. DOI: 10.1109/VTC2022-Spring54318.
2022.9860981.

[2] S. H. Leilabadi, N. Katzorke, M. Moosmann, and S.
Schmidt, “Systematic test case design for autonomous
vehicles,” 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems, ITSC 2020, 2020.
DOI: 10.1109/ITSC45102.2020.9294389.

[3] P. Ge, L. Guo, and J. Chen, “Electronic differen-
tial control for distributed electric vehicles based on
optimum ackermann steering model,” 2021 5th CAA
International Conference on Vehicular Control and In-
telligence, CVCI 2021, no. Cvci, pp. 1–6, 2021. DOI:
10.1109/CVCI54083.2021.9661256.

[4] P. Polack, F. Altché, B. d’Andréa-Novel, and A. de
La Fortelle, “The kinematic bicycle model: A consistent
model for planning feasible trajectories for autonomous
vehicles?” In 2017 IEEE Intelligent Vehicles Symposium
(IV), 2017, pp. 812–818. DOI: 10 . 1109 / IVS . 2017 .
7995816.

[5] A. Sears-Collins, The ultimate guide to real-time lane
detection using opencv, [Online; Stand 11. Mai 2023],
2021. [Online]. Available: https : / / automaticaddison .
com/the- ultimate- guide- to- real- time- lane- detection-
using-opencv/.



[6] R. Hartley and A. Zisserman, Multiple view geometry
in computer vision. Cambridge university press, 2003.

[7] OpenCV, Fisheye camera model, [Online; accessed 19-
June-2023], 2022. [Online]. Available: https : / / docs .
opencv.org/3.4/db/d58/group calib3d fisheye.html.

[8] ——, Fisheye camera model, [Online; accessed 19-
June-2023], 2022. [Online]. Available: https : / / docs .
opencv.org /3 .4 /da /d54 /group imgproc transform.
html.

[9] R. Szeliski, Computer vision: Algorithms and applica-
tions. Springer Nature, 2022.

[10] K. C. Bhupathi and H. Ferdowsi, “An augmented slid-
ing window technique to improve detection of curved
lanes in autonomous vehicles,” in 2020 IEEE Interna-
tional Conference on Electro Information Technology
(EIT), 2020, pp. 522–527. DOI: 10 . 1109 / EIT48999 .
2020.9208278.

[11] J. Gergonne, “The application of the method of least
squares to the interpolation of sequences,” Histo-
ria Mathematica, vol. 1, no. 4, pp. 439–447, 1974,
ISSN: 0315-0860. DOI: https : / / doi . org / 10 . 1016 /
0315 - 0860(74 ) 90034 - 2. [Online]. Available: https :
/ / www . sciencedirect . com / science / article / pii /
0315086074900342.

[12] NumPy, Numpy polyfit, [Online; Stand 19. Juni 2023].
[Online]. Available: https : / / numpy . org / doc / stable /
reference/generated/numpy.polyfit.html.

[13] L. Wang, “Basics of pid control,” in PID Control System
Design and Automatic Tuning using MATLAB/Simulink.
2020, pp. 1–30. DOI: 10.1002/9781119469414.ch1.

[14] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and
S. Thrun, “Autonomous automobile trajectory tracking
for off-road driving: Controller design, experimental
validation and racing,” in 2007 American control con-
ference, IEEE, 2007, pp. 2296–2301.


