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Abstract—The emergence of Internet of things (IoT) appli-
cations brings the challenge of finding lightweight schemes for
secret key distribution. A promising solution coming from the
physical layer is the so called secret key generation (SKG) from
shared randomness. SKG allows two communicating parties
to extract the shared randomness already present in wireless
channels. This work investigates the achievable SKG rates using
received signal strength (RSS) as a key generation parameter.
A multi-path scenario is considered and the probability density
function of the RSS in different channel conditions is evaluated.
Next, through a numerical evaluation, the SKG rates are derived
in the form of mutual information (MI) estimates, using a 3GPP
standard channel model. The simulations are performed for
different values of bandwidth and delay spread. We demonstrate
that while both parameters have similar impact on how multi-
path components are resolved, their effect on the MI is opposite.

Index Terms—IoT, multi-path, mutual information, physical
layer security, secret key generation.

I. INTRODUCTION

A major limitation of 5G networks, especially in the context
Internet of things (IoT), is related to security [1]. Standard
cryptographic solutions rely on computationally intensive
modulo arithmetic operations which makes them unsuitable
for power constraint devices. This issue has been addressed
in the report on approved lightweight cryptographic primi-
tives from the national institute of standards and technology
(NIST), where well-known public key encryption (PKE) al-
gorithms, such as Diffie-Hellman and Rivest-Shamir-Adleman
(RSA), are excluded. The report includes mainly symmetric
key block ciphers, such as the advanced encryption standard
(AES), which achieve quantum supremacy with appropriate
key lengths for IoT scenarios [2]. In this sense, lightweight
alternatives to PKE for secret key distribution are sought.

A viable solution, considered for deployment in the sixth
generation (6G) mobile networks [3], is provided by the
physical layer security (PLS) paradigm. The PLS-based secret
key generation (SKG), first proposed in [4] and [5], allows two
wireless nodes to extract shared randomness leveraging the
reciprocity of wireless channels, within the coherence time
of the channel. A major advantage of the SKG process is
that it can be employed using any PHY waveform (as long
as the transmitted power spectral density is known) and it
does not require matched receivers [6], [7]. However, the key
generation rates depend strongly on the stochastic behaviour
of the wireless medium. While other studies suggest that the
achievable rates of received signal strength (RSS) based SKG

are independent from the number of multi-path components
(MPCs) [8], here we demonstrate that this might not be true
in general.

Motivated by the above, in this work we evaluate the
achievable RSS-based SKG rates over frequency selective
channels. Our system model consists of two legitimate parties,
namely Alice and Bob, and an eavesdropper, Eve. To generate
a shared random bit sequence, Alice and Bob simply use their
observations of the measured power, i.e., entropy is extracted
without additional computational overhead. The dependence
of the SKG rates with respect to (w.r.t.) different channel and
system parameters, such as delay spread and signal bandwidth
is evaluated. The performance of the key generation is verified
through numerical evaluation using 3GPP-based tapped delay
line (TDL) channel model [9].

The focus of this work is to evaluate the SKG rates using
the RSS parameter. First, the RSS distribution is evaluated,
showing its dependency on the receivers’ bandwidth. Next,
through numerical analysis we evaluate the number of key
bits that can be extracted using different channel and system
parameters. Overall, the analysis shows that no single solution
can be applied for all cases. The rest of the paper is organized
as follows: Section II introduces the SKG concept, Section
IIT presents the system model and gives the derivation of the
distribution of the measured power at Alice and Bob, Section
IV shows our numerical analysis for the achievable SKG rates,
and, Section V concludes this paper.

II. SECRET KEY GENERATION

The standard SKG process consists of three phases:

1) Advantage distillation: In this phase Alice and Bob sequen-
tially exchange probe signals, with constant power [10], and
obtain estimates of their reciprocal channel state information
(CSI). Due to the presence of noise and imperfect CSI
estimation, the observations at both sides, will differ. Eve,
a third party who acts as an eavesdropper, could also obtain
channel estimates during this phase. CSI can be obtained with
different granularity levels, however, due to its availability in
off-the-shelf chipsets, typical parameter is the RSS.

2) Information reconciliation: At the beginning of this phase,
Alice and Bob quantize their observations to binary vectors.
Next, errors due to imperfect CSI estimation are corrected
through a public exchange of reconciliation information.
Numerous information reconciliation algorithms have been
proposed in the literature [11].



3) Privacy amplification: To generate a secret key, the recon-
ciled information at each of the legitimate users is compressed
using a one-way collision-resistant function, e.g., hash func-
tion. This last phase ensures that the generated key sequence is
uniformly distributed and unpredictable by an adversary [12].

As noted above, during the “advantage distillation® phase
Alice and Bob extract entropy from the wireless channel, i.e.,
the nature and the stochastic properties of the link between
them strongly impact the SKG rates. In this sense, “channel
awareness” is a vital ingredient for the success of the SKG
process. It would allow the adaptation of SKG parameters and
provide upper layers with information on the available key
bits. Hence, it is important to understand: How the channel
properties affect the number of available secret bits and how
many can be extracted in different channel conditions?

To answer the above question, we focus on the estimation of
the achievable SKG rates during the “advantage distillation*
phase. The investigation of the second and third phases of
the process falls out of the scope of this paper and will be
considered as a future work.

III. SYSTEM MODEL

A. Channel model

In this work, we consider a multi-path channel model with
additive white Gaussian noise (AWGN). The analyses assumes
complex baseband signal and a low-pass filter applied by each
party. Based on that, the observations at Alice and Bob are:

ya(t) = f(t) * [z(t) = h(t) + wa(t)], (1)
yp(t) = f(t) * [x(t) * h(t) + wp(t)], 2)

where f(t) is the filter impulse response, x(t) represents
the transmitted signal, h(¢) denotes the channel response and
wa(t) ~ N(0,0%), wg(t) ~ N(0,0%) are the independent
noise variables at Alice and Bob, respectively. The channel
impulse response (CIR) is defined using the 3GPP TDL
channel model [9]. The TDL model has 5 different modes,
(from A to E), all with the same root mean square delay spread
of 1 ns, but with different power delay profiles. One advantage
of this model is that, it allows the delays to be scaled to obtain
different delay spreads, i.e., by making 7; = D7; tp, where
7;, 7oL 1s the propagation delay for the i-th MPC, as defined
in [9] and D is the desired delay spread in ns. Based on that
the CIR is modelled in the time domain as:

L—-1
h(t) = Z Oéi(S(t — Ti7), (3)
=0

where L is the number of MPCs, 4(t) is the Dirac delta func-
tion and «; is the complex amplitude for the i-th component,
respectively. Furthermore, as noted in [9], a;, 2 = 0,...,L—1
are circularly symmetric complex Gaussian variables. Their
magnitudes |a;| could follow either Rayleigh or Rician dis-
tribution. This paper focuses on the Rayleigh scenario, and
assumes that MPCs are independently distributed.
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Fig. 1: Different cases for MPCs addition: a) all MPCs add non-coherently;
b) all MPCs add coherently; c) general case.

B. Power distribution

As mentioned above, the source of common randomness
between Alice and Bob is the RSS, which can be expressed
as the average of the squared magnitudes of (1), (2) over
a frame interval, i.e., Py = |yal? and Py = lys|?, where
(-) and (-) denote the time average and estimate of a given
value, respectively. In this work, we assume that f (), the filter
applied at both receivers, is an ideal low-pass filter with unity
gain and cut-off frequency B/2. The transmitted signal is
assumed to be a complex chirp with constant modulation. The
chirp waveform has a nearly-flat and well-contained power
spectral density which allows us to better illustrate the changes
in the power distribution, i.e., the distribution will depend only
on the magnitude variation of the channel in the frequency
domain and on the noise within the considered bandwidth.
Next, due to the independence between channel and noise
realizations we first treat both processes independently and
then we consider their combined effect.

1) Channel power distribution: As noted earlier, it is
assumed that the magnitude of the MPCs are independent
Rayleigh distributed variables. Depending on the considered
bandwidth B and delay spread D, three cases can be dif-
ferentiated: i) all MPCs are non-resolvable and they add non-
coherently (i.e., complex sum); ii) all MPCs are resolvable and
they add coherently (i.e., power sum); iii) a general case where
we have a mixture of non-coherent and coherent addition,
which depends on the number of MPCs that fall in each delay
bin. The three cases are illustrated in Fig. 1. The width of
the delay bins 7T is proportional to the filter’s bandwidth at
the receiver and is given as Ty = 1/f,, where the sampling
frequency is given as f; = B. The two extremes, illustrated in
Fig. 1a) and b), represent cases i) and ii) where B is small and
large, respectively. The channel distribution in these two cases
is known; if all L MPCs add up non-coherently, the resulting
distribution is exponential; if all MPCs add up coherently the
resulting power sum has non-standard chi-square with degrees




of freedom equal to x = 2L [8]. It is important to note that
both exponential and chi-square distributions are particular
cases of the gamma distribution and are related as follows:
Zf:o Exp(v) ~ T'(L,v) where v is scale parameter, and
X2 ~ I'(%,2), considering gamma distribution with shape and
scale parameterization. Therefore, in the case where different
number of MPCs may fall in each delay bin, Fig. lc, the
distribution of the squared magnitude of the channel can be
represented as a sum of gamma-distributed random variables:
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where the indices 4i,...,%57, correspond to a particular
delay bin, i.e., M = [7max/Ts], where [-] is the ceiling
operator and Tp.,x the maximum delay spread. As noted
earlier, the distribution of (4) can be represented as a sum
of gamma-distributed random variables, where each of the
inner sums follows I'(k;, ,6; ), m =1,..., M. To evaluate
the resulting probability density function (PDF) we use the
Welch-Satterthwaite approximation [13], which states that the
sum of gamma variables is also a gamma variable and (4)
follows a gamma distribution with parameters as:

(ZJM:1 kjej)2 _ E?; k;0; (5)
Z;Vil ijJQ» o k .

2) Noise distribution: Similarly to the channel, the distri-
bution of the measured noise power is strongly dependent on
the number of samples, which depends on the frame length
and bandwidth. For Alice, it is given as Py = ||wl|*/N,
where w4 is a the measurement noise vector composed of
N elements and || - || is the norm operator. Note that the
analysis for Bob is identical and is, therefore, omitted here.
It can be seen that the distribution of the measured noise
power varies with the number of noise samples within the
considered bandwidth, i.e., as the legitimate users sample
at the Nyquist rate a wider bandwidth will correspond to a
higher number of noise samples. We note that the distribution
of ||[wal|?> can be derived as x3s?, where s? denotes the
sample variance. To derive the distribution of the sample
variance, we use Cochran’s theorem [14], which states that the
quantity (N;l)s

[h(t)[* ~T (k =

5 follows X?\/—l distribution. Based on that, it

can be concluded that the sample variance is distributed as:
2 XNo1%h (N1 20

s N1 ~5—, v~ )- Finally, we can estimate the
distribution of PN as follows:
o wal? (N -1 40}
Pn = ~T . 6
N N 5 N1 (6)

It is important to note that the variance of the measured noise
power is inversely proportional to the number of samples:

A N—-1/ 403 8o
Var(PN): 2 (N—Al> N o1

(7

3) Received power distribution: Next, the distribution of
the measured power is evaluated. As noted earlier, the dis-
tributions of P4 and Pp depend on the channel and noise
realizations, on the measurement period (i.e., number of
observed samples) and on the considered bandwidth. Due
to the fact that the three variables h(t),wa(t),wp(t) are
independent and zero mean and that noise always adds non-
coherently, the measured power at Alice and Bob can be
represented as |h(t)|2+|wa|? and |h(t)|?+|wp|?, respectively,
(this can be applied only if multiple samples are considered,
i.e., the measured power is obtained through averaging). Using
the results in (5) and (6), once again, we can apply the
Welch—Satterthwaite approximation to obtain:

M M
(o k0 +20%)7 3T k4207
PANF k_ M 854 76_ k 9 (8)
Zj:l kj9?+Nf1

The distribution for Pg is derived similarly. The findings
above are demonstrated through numerical simulations in
Fig. 2. The simulations assume a fixed number of MPCs,
L = 30, all with equal power, and received SNR approx-
imately equal to 10 dB. Each MPC is assumed to be a
circularly symmetric Gaussian random variable. All figures
assume the same channel realizations, however, depending on
the considered bandwidth, different number of MPCs will be
resolved, i.e., different values and distributions are observed
for the measured power. For each scenario the noise variance
is set in accordance with the SNR.

C. Theoretical limits

The upper bound on the SKG rate has been derived in [4]
as I (Pa; Pg|Pg), where I denotes mutual information (MI)
and Pg denotes the observations at Eve. In this work, we
assume that Eve is few wavelengths away from both Alice
and Bob. Therefore, due to the decorelative properties of the
wireless channel, in rich multi-path fading scenarios, it can
be assumed that Eve’s observations are independent from the
observations at Alice and Bob. Hence, the upper bound for
the SKG rate reduces to I (Pa; Pg), which is calculated as:

p(Pa, Pp)

/m /7, PUPa Po)log g s gy AP )
where p(Pa, Pg) is the joint PDF of P4 and Pp and
p(Pa),p(Pp) are the marginal PDFs of P4 and Pg, re-
spectively. As showed in the previous section, p(Pa),p(Pg)
are gamma PDFs with parameters as in (8). Regarding the
joint PDF p(Py, Pg), [15] demonstrated that if two gamma
variables have the same scale or shape parameter their joint
PDF is also gamma. These parameters could be equal only if
the noise observations at Alice and Bob are the same. For the
general case, a closed-form solution for p(P4, Pg) is not yet
found. However, even for the case when p(P4, Pg) is known,
the integral will be hard to solve and its calculation is left for
future work.

Given the above, to estimate the MI between Alice’s and
Bob’s measurements we use two numerical MI estimators,
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Fig. 2: Measurement noise, channel and signal powers (green histogram) and the derived theoretical PDFs (blue curves) for three cases: a) all MPCs fall into
the same delay bin; b) all MPCs fall into different delay bins; c) different number of MPCs fall into each delay bin. The parameters for all figures are: total

number of MPCs L = 30, received SNR~ 10dB
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Fig. 3: Comparison of LNC and NPEET estimators against the MI upper
bound given in Eq. (10) for Rayleigh fading channels.

non-parametric entropy estimation toolbox (NPEET) [16] and
mutual information estimation with local non-uniformity cor-
rection (LNC) [17]. The estimators allow the estimation of
the MI between P4 and Pp without knowledge of their joint
PDF. First, the performance of both estimators is tested in a
simple scenario, Rayleigh-faded AWGN channel for narrow-
band communication systems (illustrated in Figs. 1a, 2a). The
theoretical upper bound for this scenario is [11]:

SNR

2 bits
1+SNR/ |’

sample’

I(Pa; Pp)=—log, [1— ( (10)
A comparison of the estimated MI with the upper bound in
(10) is given in Fig. 3. As it is observed, the NPEET estimator
requires more samples to converge to the true value. This is

mostly noticeable for highly correlated measurements, i.e., at
high SNR. However, even at low SNR the LNC estimator
shows better performance. Based on this result, in the rest of
this paper only the LNC estimator is used.

IV. NUMERICAL RESULTS

This section presents a numerical evaluation of the MI
between P4 and Pp for different system and channel pa-
rameters. The considered radio channel is the 3GPP TDL-
A model [9]. The TDL-A model assumes non-line-of-sight
communication with a fixed number of MPCs, L = 23. Large-
scale fading (i.e., path-loss and shadowing) is not considered.
The communication waveform x(t) is a complex chirp signal
with constant modulation and bandwidth of 500 MHz. The
power observation at Alice P4 is obtained by convolving
x(t) with the TDL-A CIR h(t) and adding AWGN w4, then
passing the resulting signal through a low-pass filter f(¢) with
cut-off frequency B/2, and, finally, the power is measured
through averaging the square magnitude of the filter’s output.

First, we evaluate the MI w.r.t. different values of the SNR
and B, while D = 100 ns. The resulting estimates of the
MI are illustrated in Fig. 4. Recalling that by increasing B
more and more MPCs are getting resolved, this leads to a
change in the distribution of the measured power, as shown
in Fig. 2. As observed in Fig. 2, resolving more MPCs leads
to a decrease in the variance of the observations, which has a
negative effect on the MI. However, the opposite is observed
here. This is a consequence of (7). Increasing B increases the
number of noise samples /N during the measurement period
and the noise variance decreases. Effectively, this allows Alice
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and Bob to control the measured SNR, which as illustrated in
Fig. 4, directly impacts the MI.

Next, we compute the MI w.r.t. different values for SNR
and delay spread, D, while the filter bandwidth is fixed to
B = 500 MHz. The results are given in Fig 5. In contrast to
Fig. 4, the effect of resolving different number of MPCs is
clearly visible here. For small values of D, when all MPCs fall
into the same delay bin, the MI takes its highest value. Next,
increasing D increases the number of resolvable MPCs and,
as discussed earlier, decreases the randomness. From Fig. 5,
we see that shortly after D = 50 ns all MPCs are resolved
and the MI remains constant. This is expected, as the number
of MPCs in the 3GPP TDL-A model is fixed to N = 23, i.e.,
once all are resolved the sum in (4) will have 23 elements
and will remain constant regardless of . On the other hand,
the measured noise power given in (6) is independent from
the delay spread and does not changes w.r.t. D.

Overall, we see that the MI between Alice and Bob strongly
depends on the scenario. All variables, such as SNR, number
and power of MPCs, delay spread and bandwidth affect the

MI. This leads to a single conclusion: In order to successfully
incorporate SKG in practice, devices need to be channel-
aware and able to adaptively adjust their parameters.

V. CONCLUSIONS

In this work, we provided an estimation of the achievable
SKG rates using RSS in a 3GPP TDL-A channel model.
First, the PDFs of the observations at Alice and Bob were
derived. It was shown that by adjusting the bandwidth Alice
and Bob can manipulate the distribution of both channel and
noise power, which directly impacts the MI. Furthermore,
while delay spread affects the number of resolvable MPCs,
its increment after a certain value will not have impact on
the MI. Based on these results, as a future work, the authors
intend to improve the system model by adding more degrees
of freedom, such as multiple antennas and multiple filters
(in the form of a filterbank) and investigate possible adaptive
solutions to harvest the channel entropy.
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