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Smart Link Adaptation and Scheduling for IIoT
Miroslav Mitev, M. Majid Butt, Philippe Sehier, Arsenia Chorti, Luca Rose, Arto Lehti

Abstract—A machine learning enabled link adaption (LA)
and scheduling framework is presented for industrial Internet
of things (IIoT), leveraging quasi-periodicity of traffic in IIoT.
The following steps are introduced: i) a reduced complexity
link establishment accounting jointly for beamforming and load
management; ii) interference prediction using long short-term
memory neural networks; iii) semi-coordinated scheduling based
on node grouping for interference avoidance. Through numerical
evaluation it is demonstrated that the proposed approach can
substantially improve average spectral efficiency by as much as
62% in a realistic IIoT scenario at negligible overhead.

Index Terms—Industrial IoT, link adaptation, scheduling, ML

I. INTRODUCTION

While industrial Internet of things (IIoT) is a key vertical in
fifth generation systems and beyond (B5G), increased traffic
in such environments poses challenges in terms of interfer-
ence management and efficient spectrum usage [1]. Existing
IIoT interference mitigation solutions, such as periodic and
pseudo-random channel hopping [2], leverage the use of
link adaptation (LA) techniques based on sounding reference
signals in the uplink. This allows next generation Nodes
B (gNBs) to periodically obtain channel state information
(CSI) and update their modulation and coding scheme (MCS)
in the downlink [3]. However, existing LA and scheduling
approaches do not account for quasi-periodicity of traffic in
IIoT environments [4], rendering it partially predictable [5],
[6]. Incorporating interference prediction within the scheduling
process can naturally improve the spectral efficiency (SE) [7].

In earlier works [7], centralized interference prediction and
scheduling was proposed with coordination achieved at the
cost of increased communication overhead. Alternatively, in
the present work, traffic patterns are learned using distributed
interference prediction using long short-term memory (LSTM)
neural networks. The acquired knowledge is then used to drive
a smart LA and scheduling framework that increases both
fairness and SE, without extra communication overhead.

The proposed approach is evaluated in a realistic scenario
that incorporates statistical traffic modelling, beamforming,
3GPP IIoT propagation models and user equipment (UE)
attachment optimization. Our contributions are listed below:

• A UE attachment algorithm that increases the number of
UEs served within the network.

• Machine learning (ML) based interference prediction
which allows gNBs to adaptively adjust their MCS.
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a) System model.

b) Generated traffic for 15 UEs, each shown in different color.

Fig. 1: Traffic model.

• Semi-coordinated scheduling approach that substantially
increases the average SE compared to standard practises.

To the best of our knowledge, this is the first work that pro-
poses to combine interference prediction and semi-coordinated
scheduling in a LA approach. The paper is organized as
follows: the system model is presented in Section II. The
proposed smart LA and interference aware semi-coordinated
scheduling is presented in Section III, numerical results in
Section IV and conclusions in Section V.

II. SYSTEM MODEL

IIoT traffic patterns used in this study follow 3GPP specifi-
cations [4]. In detail, 10-20 UEs are simulated with message
sizes of 20 Bytes, transfer intervals in the range of 10 msec
(with variation upper bounded by ±5%) and a service area
less than 100m × 100m × 50m.1 As illustrated in Fig. 1(a),
in this work an IIoT setting with multiple gNBs generating
downlink traffic flows is considered. The generated traffic is
characterized by homogeneous asynchronous periodicity, i.e.,
the transfer intervals Tj for j ∈ J with J = {1, . . . , J},
defined here as the number of time slots between consecutive
transmissions for each UE, are independent and identically
distributed; the UEs received transmissions at independent
start times sj ; the activation probability and transmission
duration for each UE are denoted by βj ∈ [0, 1] and dj ,
respectively, where dj denotes number of time slots required
for the transmission. In the above setting, messages to a single
UE j are transmitted in slots m = 1, 2, . . . , each with duration
[τj,m, τj,m + dj ], where:

τj,m = Bj (sj + (m− 1)Tj) , (1)

1While these parameters are used in the simulations in Section IV, the
proposed approach can be applied to any scenario with quasi-periodic traffic.
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Fig. 2: BLER - CQI mapping defined as “Table-1”.

where Bj ∼ Bernoulli(βj). Fig. 1(b) illustrates generated
traffic for J = 15 UEs. It is observed that different UEs
have packets of different length and further, due to unequal
probabilities of activation, some of them receive traffic in a
periodic manner while others are rarely active.

With respect to the propagation model, the considered path-
loss and shadowing models are as defined in the 3GPP TS
38.901 [8], Tables 7.2-4, 7.4.1-1 and 7.4.2-1. The model
accounts for line of sight (LoS) and non-LoS, LoS proba-
bility, clutter density and size, antenna height, path-loss and
shadowing. While a gNB serves a particular UE, it causes
interference to other active UEs in the area. In this work, it
is assumed that gNBs transmit with constant power P , as is
common in literature. It is important to note that while power
control can be employed to increase performance [9], such
schemes are not part of relevant standards [10] and are not
considered in this work. The signal to interference plus noise
ratio (SINR) at the j-th UE attached to the i-th gNB, j ∈ J
and i ∈ I with I = {1, . . . , I}, can be expressed as

SINR
(i)
j =

PGi,j,θjLi,j∑
i∗ ̸=i

∑
j∗ ̸=j

PGi∗,j,θj∗Li∗,j + σ2
. (2)

Note that the denominator represents the interference gener-
ated by gNBs serving other UEs, while Gi,j,θj is the antenna
gain for the link gNB i - UE j when the tilt angle θj is pointing
towards UE j; Li,j denotes path-loss for the link gNB i in
the direction of UE j, respectively. Similarly, Gi∗,j,θj∗ is the
antenna gain for the link gNB i∗ - UE j when the tilt angle
θj∗ is pointing towards UE j∗ and Li∗,j denotes the path-loss
for the link gNB i∗ - UE j, finally, σ2 denotes the variance
of additive Gaussian noise.

Finally, a standard proportional fair scheduler is assumed, as
described in [3], with the following parameters: i) Rj,t - past
average rate for UE j at scheduling interval t; ii) Rj,t estimated
achievable rate for UE j, at current scheduling interval t.
Priority is given to the UE with the highest fairness metric,
given by Rj,t

Rj,t
; Rj,t is updated using a moving average filter:

Rj,t =

(
1− 1

NTTI

)
Rj,t−1 +

1

NTTI
Rj,t, (3)

where NTTI defines the length of the filter. It is assumed that
each gNB has a single antenna panel and due to low power
capabilities only one beam can be generated at a time. For
simplicity, the system model considered in this study does not
allow for frequency multiplexing and therefore, each AP can
serve only a single UE at a time. Finally, all UEs are assumed

Algorithm 1: Heuristic Algorithm - UE attachment

1 For all UEs, identify attachment candidates from I
gNBs within θ ∈ [−γ◦, γ◦];

2 Attach UEs to the gNB with smallest path-loss;
3 if Loadi < 1∀i satisfied then
4 Keep attachment;
5 else
6 for For gNBs i ∈ I where Loadi > 1 do
7 Sort attached UEs based on path-loss in

descending order in a queue Q;
8 for HOL UE q ∈ Q do
9 if There exists at least one gNB ∈ I with

Load < 1 (including load from UE q) and
θ ∈ [−γ◦, γ◦] then

10 Attach HOL UE with the gNB with
smallest load and remove UE from Q;

11 end
12 if Loadi < 1 for gNB i then
13 Break;
14 end
15 end
16 while Loadi > 1 do
17 Remove UEs from Q starting from HOL
18 end
19 end
20 end

to have the same delay constraints. In practice IIoT applica-
tions are heterogeneous with different delay requirements [11],
which will be addressed in future work.

Finally, the block error rate (BLER) curves are generated
based on MCS as defined in the 3GPP TS 38.214 [10]. The
channel quality indicator (CQI) is reported by the UE to the
gNB, as a part of the CSI; the CQI index takes values from 0
to 15, where higher values represent higher MCS. Depending
on the BLER target and maximum modulation order, different
mapping tables are used to transform CQI to MCS. This is
defined by the higher layer parameter CQI-Table. In Fig. 2 the
CQI mapping is illustrated for BLER= 10−1 when selecting
Table 1 parameters in [10].

III. SMART LINK ADAPTATION AND SCHEDULING

To optimally determine MCSs, continuous, real-time report-
ing of SINR levels from the UEs to gNBs would have been
required (at unsustainably high communication overhead). In
practise (baseline approach), gNBs periodically choose MCSs
using only average SINR reports from the UEs. To fill this gap,
a combination of smart LA and semi-coordinated scheduling
is proposed, to boost the achievable SE while keeping the
communication overhead low, leveraging the fact that IIoT
traffic patterns can be used for interference prediction.

A. Attachment and ML based interference prediction

The first step in the smart LA is the attachment of UEs
to gNBs. This is a combinatorial search problem and in
order to reduce complexity a heuristic is proposed, given in
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Algorithm 1. The algorithm accounts for path-loss, steering
angle and sum load of gNBs. With respect to the steering
angle, the number of antennas at the gNBs determines the
shape and power concentration of interference patterns due to
beamforming side and grating lobes. Grating lobes appear as
a consequence of antenna spacing and steering angle.

Furthermore, in order to avoid buffer overflows, the queue
lengths at each gNB should not be overloaded. Consequently,
a condition captured in the i-th gNB’s load as follows:

Loadi =
∑
j∈J

1{Ai,j}βjdjT
−1 ≤ 1, i ∈ I, (4)

where Ai,j represents the logical proposition that UE j is
attached to gNB i and 1{x} is the indicator function while all
other quantities are defined in Section II.

Initially, the gNB candidates satisfying the steering angle
requirement for each UE are identified (line 1 in Algorithm
1). Next, path loss based attachment is performed (lines 2-
4); however, if the load condition for a particular gNB is not
satisfied, some of the UEs are offloaded to other gNBs based
on load and angle conditions (lines 5-15). Finally, line 17 in
Algorithm 1 captures buffer overflows (by dropping head of
line (HOL) packets) in scenarios where the sum traffic exceeds
the sum load capacity of the gNB and attachment to other gNB
is not possible. Compared to traditional attachment algorithms,
where UEs attach to the gNB with the highest received
power [12], Algorithm 1 introduces a trade-off as a larger
number of UEs can be served with negligible loss in terms of
average throughput. As will be shown in the next section, if
Algorithm 1 is employed in combination with the interference
aware scheduler, throughput losses can be compensated while
reducing the number of packets dropped. The complexity of
Algorithm 1 is upper bounded by O(I log I), because of the
sorting operation.

Following the initial attachment, interference prediction
and CQI correction is executed. Interference prediction is
performed using LSTM neural networks while a simple de-
terministic mapping is proposed for CQI correction, given in
Algorithm 2. Note that Algorithm 2 is performed offline and
outputs a mapping function which is used online to improve
performance. In step 1, a LSTM neural network is used to
predict the SINR experienced at different UEs over time.
Then, using the BLER curves from Fig. 2, the predicted
values are converted to their corresponding CQI index. The
use of LSTM in this work is motivated by their ability to
capture temporal dynamics, e.g., for traffic prediction [13].
Depending on the system model different LSTM architectures
may perform differently, the architecture of LSTM network
employed for the current work is discussed in the Section
IV. Next, in step 2-3, the predicted indices are compared
to the real ones through the observation of probability mass
functions (PMFs) and histograms as illustrated in Fig. 3. In
step 4, a penalty function is defined to account for the error
probability of each mapping combination. Finally, in step 5,
a mapping function is defined based on upper bounding the
sum probability of exceeding a given target BLER.

Algorithm 2: Definition of CQI corrections Algorithm

1 Perform SINR prediction on a historical data set and
convert the predicted and real SINR values to the
corresponding CQI index as in Fig. 2;

2 Evaluate the empirical PMFs for each CQI index
within the prediction pCQIp(x) = Pr(CQIp = x),
where x = {0, 1, . . . , 15};

3 Evaluate the empirical conditional PMFs of the real
CQI indices y given the corresponding CQI indices
x as pCQIr (y|x) = Pr(CQIr = y|x);

4 Evaluate the penalty for each possible correction:
Penalty= Pr(CQIp = xi)×

∑y−1
i=1 Pr(CQIr = i|x);

5 Define a mapping function given that the sum penalty
is upper bounded by the target BLER;

Fig. 3: Actual CQI when LSTM prediction corresponds to
CQI= 6, i.e., Pr(CQIr = y|x = 6) for y = 0, . . . , 15.

B. Interference aware semi-coordinated scheduling

As discussed earlier, the baseline scheduling approach as-
sumes uncoordinated gNBs. In contrast, perfect coordination
is possible only when all available information is exchanged
between gNBs or a centralised scheduler takes global deci-
sions. To reduce the overhead of the optimal fully coordinated
scheduling, a semi-coordinated scheduler is proposed in this
section. It runs independently on each gNB, but still leverages
interference awareness by scheduling UEs in groups of low
cross-interference. In detail, the proposed scheduling approach
creates groups of UEs attached to different gNBs based on the
average SINR measured during concurrent transmissions, i.e.,
the learned cross-interference patterns. The semi-coordinated
scheduler boils down to a simple rule: gNBs will transmit to
UEs from a single group at any given time slot.

The group membership is defined such that the average
SINR of all groups is maximized. Assuming K subgroups for
the set of UEs J , denoted by J1, . . . ,JK with ∪K

k=1Jk = J ,
memberships are defined as j ∈ Jk, k = 1 . . . ,K by solving
the following optimization problem

max
k∈{1,...,K},j∈Jk

∑
i∈I

∑
k∈{1,...,K}

∑
j∈Jk

SINR
(i)
j (5)

s.t. (3), (4),∪K
k=1Jk = J , ⌊Jk⌋ ≤ J/K ≤ ⌈Jk⌉,

where the last constraint ensures that the sizes of the subgroups
are roughly equal to reduce queue lengths. For each possible
grouping, there will be M = K − J + K⌊J/K⌋ subgroups
of ⌊J/K⌋ elements and L = J − M subgroups of ⌈J/K⌉
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Fig. 4: Scheduling scenarios.

TABLE I: Architecture of the LSTM predictor.

Number of hidden layers 2
Neurons per layer 64 and 32
Optimizer Adam
Regularizer L2
Learning rate 0.0001

elements, with ⌊·⌋ and ⌈·⌉ denoting the floor and ceiling
functions respectively. It can be deduced that the search space
size for the grouping optimization problem is given by the
multinomial coefficient J!

(⌊J/K⌋!)M (⌈J/K⌉!)LM !L!
. With respect

to determining K, it can be found by sequential search and set
to the maximum value that generates non-empty subgroups.
Once the group memberships have been found, the gNBs
coordinate transmissions to a single group at a time. The
proposed approach is evaluated in Section IV.

IV. NUMERICAL EVALUATION

To illustrate the performance gains of the proposed ap-
proach, the achievable SE of the semi-coordinated scheduling
with smart LA is compared to a benchmark uncoordinated
scheduler (with or without LA). Fig. 4 illustrates both un-
coordinated and interference aware scheduling. In the former
each gNB takes independent scheduling decisions as dictated
by proportional fairness, discussed in Section II; in the latter
scheduling is performed on a group membership basis as
discussed in Section III-B.

In the simulated scenario, a network consisting of I = 3
gNBs and J = 15 UEs randomly located in a factory hall of
size 50m × 30m with gNBs attached to the walls is considered.
To better evaluate the practicality of the proposed solution it
is assumed that 2 of the UEs are moving on deterministic tra-
jectories within the hall with speed of 5m/s causing additional
variations to the experienced SINR. It is considered that the
transmit power of the gNBs is fixed to 24dBm and each has
a uniform linear array of N = 8 uniformly spaced identical
antenna elements of equal magnitude and linearly progressive
phase from element to element. Finally, the gNBs are assumed
to be equipped with single antenna panels (this study does not
consider multi-user MIMO transmissions).

The LSTM predictor was trained using a dataset of 8×104

SINR measurements at each UE. The architecture of the
predictor is summarized in Table I. Due to low number of
features in the dataset, the number of hidden layers and
neurons per layer are equal to 2 and (64, 32), respectively;
it was observed that larger architectures did not improve the
accuracy. Furthermore, an L2 regularizer is used to avoid
overfitting. The LSTM output is subsequently converted to
CQI indices using the CQI mapping described in the previous
section; finally the MCSs are adjusted accordingly.

TABLE II: SINR level in dB measured at UEs attached to
gNB2, while gNB1 (yellow) and gNB3 (blue) are active.
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a) Average throughput vs different cases of buffer overflow.

b) Average number of unserved UEs vs different cases of buffer overflow.

Fig. 5: Evaluation of the proposed smart LA.

To provide an example for the proposed interference aware
semi-coordinated scheduling, average SINR values experi-
enced at UEs attached to gNB 2 (shown on the vertical axis), is
depicted in Table II. In each column the UEs attached to gNB
1 (shown in yellow) and gNB 3 (shown in blue) are depicted.
It is observed that the link gNB 3 - UE 4 highly impacts
the SINR at UE 11 with the average SINR level of the latter
decreasing to approximately 1dB. Similar cross-interference
tables can be generated for gNB 1 and gNB 3. Note that, due
to the assumption that a particular gNB can serve only one UE
at a time, there is no cross-interference between UEs attached
to the same gNB. Finally, UEs are divided into groups by
solving problem (5).

A. Evaluation of the proposed UE attachment algorithm

Using the system parameters described above, the advantage
of using the proposed attachment heuristic, given in Algo-
rithm 1, is shown. Figures 5(a) and (b) illustrate the average
throughput and the number of unserved UEs due to buffer
overflows, respectively. Four scenarios are depicted: 1) random
selection, i.e., uncoordinated scheduling where the selection
of unserved UEs is performed in a randomly; 2) Algorithm 1,
i.e., uncoordinated scheduling, however selection of unserved
UEs is performed based on the steps described in Algorithm
1; 3) and 4) Combination between Algorithm 1 and the
proposed interference-aware scheduling with 2 and 3 groups
of UEs, respectively. The figures show the average throughput
assuming perfect knowledge of the SINR experienced at UEs,
i.e., gNBs choose the optimal MCS in every time slot.
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It is observed that by simply employing Algorithm 1 the
number of unserved UEs drops considerably for a small cost
in the throughput as compared to random selection. Examining
the two figures jointly, it is clear that random selection is
suboptimal as more UEs remain unserved (which might be
beneficial when looking only at the throughput because of
reduced cross-interference). This is most noticeable in the
extreme case where random selection outperforms the pro-
posed mechanisms in terms of average throughput, however,
this is at the cost of substantial decrease in the served UEs.
Next, it can be seen that in all other cases the combination
of interference-aware scheduling and Algorithm 1 allows the
system to avoid scheduling UEs with high cross-interference
resulting in an improvement of the average throughput while
keeping the number of unserved UEs small.

B. Evaluation of the proposed smart LA and scheduling

This section demonstrates the gains brought by each element
of the proposed smart LA and scheduling. Fig. 6 shows the
average SE for different levels of coordination and SINR
knowledge at the gNBs. The system model consists of 15
UEs and SE is averaged over 105 time slots. First, in terms
of coordination the following scenarios are differentiated: un-
coordinated, i.e., decisions are entirely based on meeting pro-
portional fairness; interference aware semi-coordinated with 2
or 3 groups, i.e., decisions are based on group membership as
described in Section III-B. Next, in terms of SINR reporting
three cases are distinguished: average SINR, where gNBs
receive only periodic estimates of the SINR levels at UEs;
SINR prediction, where gNBs rely on the proposed smart LA
described in III-A; and perfect SINR, where gNBs have perfect
SINR information.

It can be seen that any of the proposed techniques brings
on its own an improvement to the SE. First, it is observed
that the employment of the interference aware scheduling
(3 groups) with average SINR, gives a 22% increase in the
average SE, as compared to the baseline approach. Next, by
including SINR prediction, a further improvement of 40% is
observed, resulting in cumulative improvement of 62%. Based
on the parameters given in [10], this increase shows that the
average code rate increases from 308/1024 to 602/1024, i.e.,
it is roughly doubled. Finally, Fig. 6 shows that the proposed
interference aware scheduling provides an improvement in the
average SE also in the case of perfect SINR knowledge. While
perfect knowledge of the SINR allows gNBs to optimally
choose their MCS, interference aware scheduling eliminates
high cross interference between UEs and this results in an
additional 7% improvement in the average SE.

The numerical results show that indeed there is room for
improvement in the currently employed baseline LA and
scheduling approaches. The proposed approach provides an
efficient trade-off between increasing the SE while keeping
the overhead low; furthermore it reduces the cross-interference
while increasing the number of served UEs, both of which
play a role in efficient IIoT deployment. As a future work,
we intend to improve the system model by including: UEs
with different delay requirements, gNBs with multiple antenna
panels and allow for frequency multiplexing between UEs.
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Fig. 6: Improvement in average SE by incorporating smart LA
and interference aware scheduling.

V. CONCLUSIONS

In this work, a smart LA and scheduling framework for IIoT
is proposed, including low complexity UE attachment, SINR
prediction, CQI mapping, and UE grouping for interference
avoidance in semi-coordinated scheduling. The gain of each
of these mechanisms were demonstrated though numerical
evaluations in a realistic scenario according to the 3GPP
specs for IIoT networks. It was shown that the proposed
solutions provide a 62% increase in average SE, compared to
the currently used standard approach. Furthermore, employing
the proposed scheme allows deployment of more UEs without
increasing cross-interference levels. In future work, heteroge-
neous traffic and alternative ML tools such as 1D convolutional
neural networks will be explored.
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