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Abstract—This work proposes an architecture and platform
for researching and demonstrating use-cases for connected cars
based on small-scale vehicles. The proposal bridges the gap
between a lab setup to test individual algorithms and deployments
on real cars. It allows researchers to communicate their results
with a small-scale indoor demonstrator. The platform employs
ROS2 and MicroROS to allow for a modular and scalable
hardware and software setup. Moreover, it allows running all
control algorithms in a graphical simulation to ease development
of complex scenarios. We successfully apply the platform to build
a demonstrator for a platooning use-case and point out limitations
such as lacking photorealism of the simulation and limited
processing power of the platform. Our results indicate that using
a well-designed platform and architecture can significantly reduce
required effort for implementing connected cars use-cases.

Index Terms—science communication, demonstrator, platform,
CPS, ROS2, CCAM, LGSVL, real-time, V2X, V2V, DDS, micro-
ROS, DDS-XRCE, simulation, digital twin

I. INTRODUCTION

Connected cooperative and automated mobility (CCAM) al-
gorithms and applications for improving efficiency and safety
of future mobility are currently being abundantly researched
[1]–[3]. Despite having used accurate vehicle and traffic mod-
els, all research results need to be verified and tested in reality.
However, today’s modern vehicles are a complex collection
of software as well as electrical and mechanical components,
tightly integrated against each other [4]. Therefore, after
building a first functional proof of concept in a research lab,
it is often far too early for integration with real cars, as their
interfaces are strict, complex and have to comply with safety
requirements [5]. The same problem arises when building
demonstrators for fairs or public science communication. A
real car is impractical to be used on fairs or similar events
due to cost, weight, size and safety. Simply relying on the
proof of concept however, researchers can only analyze the
newly developed concept or algorithm isolated but ignore its
interactions to system boundaries. Therefore, we identified the
need for an intermediate step in research result verification and
demonstration. Such solution shall be cost-effective, mobile,
safe and enable fast development while still being realistic
enough to provide valuable data for research result verification.

To address this need, the contribution of the present work
is two-fold. First, we propose an architecture and evaluate
a platform for small scale autonomous cars for testbeds and
demonstrators in research. The proposed architecture supports

simultaneous development within both a computer simulation
and the real world without requiring adaptions to the developed
control algorithms. Second, we use the proposed platform to
develop a demonstrator for the CCAM use-case platooning
and point out advantages and drawbacks of our proposal.

The remainder of this paper is organized as follows: In
the following section we refine our desired framework with
a set of requirements. Current and past studies regarding
similar research platforms for CCAM will be reviewed in
section III. We explain our suggested solution in section IV
where we also discuss tooling for development and testing.
The proposed architecture has been implemented and will be
evaluated in section V followed by a discussion about the
limitations in section VI. Finally, we present possible future
work and improvements in section VII.

II. REQUIREMENTS

To fulfill its purpose, we formulated the following qualita-
tive requirements for a platform or framework, which enables
verification and demonstration of research results in the field
of connected driving or CCAM:
R1 Modularity: The architecture should allow re-use and re-

arrangement of existing parts and seamless integration of
new parts.

R2 Scalability: CCAM scenarios are usually complex, e.g.
platooning on highways or smart crossings. The archi-
tecture should hence scale to support numerous instances
like cars and road side units but also allow a detailed
study of driving behaviours of a single unit.

R3 Transportability: Platform dimensions shall be small
enough for easy transportation to fairs or indoor events.

R4 Extendability: The architecture shall allow to include new
functionality without interfering with existing modules.
New functionality includes both hardware like sensors or
actuators and software like different control algorithms
or user interfaces.

R5 Time saving: The platform shall be easy to integrate and
reduce required development effort and time compared to
implementing a demonstrator from scratch.

R6 Vehicle-to-Vehicle (V2V) communication: The platform
shall enable message exchange between vehicles.

R7 Link-quality control: Provide a way to control the link-
quality of the Vehicle-to-Everything (V2X) communica-
tion link for controlled experiments.
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R8 Computer Vision: The platform shall integrate at least one
camera module and enable computer vision for navigation
and localization purposes which is required by many self
driving algorithms.

Quantitative performance requirements depend on the actual
algorithms used to implement a specific use-case on the plat-
form. Therefore we chose performannce values most likely to
support a wide range of possible CCAM-scenarios. Details on
mechanical and electrical requirements of the vehicle housing
the platforms components are omitted on purpose.
Q1 End-to-End (E2E) latency for communication within a

single car shall be equal or <1ms to support a wide range
of CCAM control algorithms. The value is inspired by
latencies entailed by the CAN bus [6].

Q2 E2E latency for V2X communication shall be <10ms to
support a wide range of CCAM control algorithms. [7]

Q3 The physical dimensions of computation and communica-
tion components should not exceed 14x20x6cm (WxLxH)
to fit a car of scale 1:10. This scale is suitable for
demonstration purposes on fairs or exhibitions.

III. STATE OF THE ART

Numerous small-scale cars have already been built with
varying purposes. La et al. built a small-scale research platform
in [8], but being only equipped with a small microcontroller
and a scale of 1:14 it is too small with insufficient processing
power. Its architecture was not devised to be extended by
other sensors or software components on the vehicle. Wireless
communication was realized using XBee which does not meet
the latency or bandwidth requirements of CCAM applications.

In [9], Pandi et al. use miniature vehicles to demonstrate
the behavior of 5G connected cars at an intersection. The
vehicles are small and can follow a line autonomously but the
architecture also doesn’t provide any ways to extend or adapt
the vehicles to other use-cases. It is also not open-source and
not available for further use.

Valtl et al. presented a data collection platform for au-
tonomous cars in [10]. It integrates common sensors like a
LiDAR, but has no concept for V2V communication. All sen-
sors are connected through interfaces provided by a Raspberry
Pi (RPi) 3 which limits extendability and real-time capabilities.

An affordable and modular platform was proposed by
Quartey and Korsah [11]. It has a modular software ar-
chitecutre relying on MQTT as a publish/subscribe communi-
cation bus. As MQTT requires a broker and is not designed for
low-latency, high-bandwith applications [12], it doesn’t scale
as required. Further, no simulation or other debugging tools
were considered to aid development.

Finally, the open-source project DonkeyCar [13] is an
affordable, small-scale car with a modular, Python-based soft-
ware framework. A simulator for development is available.
However, the platform is not designed with V2X communi-
cations in mind and hence does not scale well when multiple
vehicles are involved.

Therefore, we propose a cost-effective architecture and
platform which is extendable, scalable, modular and supports

V2X by design adhering to the aspects of development effort
and tooling.

IV. ARCHITECTURE AND DESIGN

In this section, we will briefly elaborate on different aspects
of our architecture and on design decisions. We will start
by outlining the communication bus in the first subsection,
followed by a detailed description of the hardware platform
and the required changes. We will conclude our description
by pointing out our modularity approach and the benefits of
using a simulation to further ease the development process.

A. Communication Bus

To achieve modularity, scalability and extendability while
maintaining real-time capability we decided to employ a
publish-subscribe communication bus. Known options, which
provide low-latency real-time publish-subscribe connectivity
are ZeroMQ [14] and Data Distribution Service (DDS) [15].
Within the context of CCAM we found several vendors
[16] [17], which work on a certified DDS software stack
for autonomous vehicles. We couldn’t identify comparable
efforts on the market for ZeroMQ. DDS realizes low-latency
communication using UDP, TCP or shared memory. It can
automatically discover participants on the network, allows
for complex role definitions, provides type safe interface
definitions and is an international standard with multiple
commercial and open source implementations. Although it
is a non-trivial protocol, it can be performant [12]. Further,
the Robot Operating System (ROS) [18] project decided to
use DDS as a middleware in version 2 of the framework.
This led to the conclusion that we satisfy the requirements
R1, R4, Q1 and also remain close to real autonomous car
architectures if we choose DDS as our communication bus.
Complete and good documentation as well as available tools
are an important factor to reduce development time. The
aforementioned framework ROS 2 provides tools to inspect
the bus, manage software launching and interface libraries.
However, being a wrapper around DDS it introduces overhead
into the system, increasing latency [19] and reducing flexibility
by abstracting away vendor specific behavior. Nonetheless, our
architecture employs ROS 2 to ease the transition to DDS
if necessary and reduce development time by profiting from
compatible open-source software developed by the community
(see R5). Fig. 1 shows an overview of the layers contained in
the used communication bus.

B. V2X communication

The choice for a DDS based framework enables native
V2X communication as demanded by R6. Since publishers
and subscribers are location transparent, they only require a
working IP connection. This posed the challenge to separate
communication on each car instance from V2V traffic to avoid
collisions. We solved this problem using different DDS do-
mains for each traffic type. Gateway nodes were programmed,
which can be configured to forward any topic to the V2X
domain and vice versa. The same approach was used to
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Fig. 1. Layers involved in a ROS2 setup.

establish a domain for control and management data of the
system. This logical seperation is highlighted in Fig. 7.

With total control of message forwarding between domains,
we implemented link-quality control for packet drops and
latency (R7).

C. Hardware platform

a) Processing: Spare processing resources for additional
software increase the flexibility of the platform. Especially the
camera sensor requires considerable CPU power. Therefore,
we decided to select suitable hardware small enough to remain
transportable and battery-powered (see R3). The RPi 4 is a
single board computer (SBC) with 8GB RAM, a Quad core
Cortex-A72 (ARM v8) processor and built-in 802.11 WLAN
chip. Any other SBC can be chosen, as long as it supports
Linux and provides a UART connection to interface with the
ESP32 on the sensor aggregation board (SAB). For example,
the NVIDIA Jetson SBC family can be a viable alternative
when more processing power is needed.

b) Sensor and Actuator Connectivity: A custom designed
PCB was used as a sensor aggregation board (SAB) which
provided connectivity to all sensors and actuators. An ESP32
microcontroller is mounted to act as a proxy, providing
timing sensitive communication required by some sensors or
actuators. Data is exchanged using a client-server extension
to ROS 2 called Micro-ROS [20]. It is based on an official
DDS extension for extremly resource constrained environ-
ments (XRCE), called DDS-XRCE. The ESP32 acts as a client
to transmit sensor data over UART to the SBC, using the same
data types and topics as the normal ROS 2 communication
bus. No custom translators or gateways are required, therefore
eliminating error sources and reducing development time (see

Fig. 2. The base platform containing PDB, camera and RPi.

R5). Further, peripherals can be relocated to other hardware
components without any interface changes, since data consum-
ing nodes have no concept of data origin. The combination of
ROS 2 and Micro-ROS makes this architecture truly scalable
(see R2), only limited by the number of available UART
interfaces on the main SBC. Separating software processing on
the RPi and the hardware connectivity on the custom designed
PCB for sensor connectivity reduces project specific hardware
and code. As a result, we expect shorter development times
and easier re-use of existing components (see R1).

c) Chassis: A radio controlled model car with a 1:10
scale was used as a basis. It houses a 6:1 transmission and
a brushless motor. The model can reach speeds of up to 25
km/h. A power distribution board (PDB) provides power to all
chassis and platform components. Fig. 2 shows a picture of
the chassis containing the PDB and the RPi and the contained
hardware components are illustrated in Fig. 3.
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Fig. 3. Hardware components contained in the base platform.

D. Modularity & Simulation

Developing a complex cyber-physical system (CPS) like
an autonomous, connected car - even a scaled down, sim-
plified version - requires system integration tests to catch
errors early, improve quality and enable early verification of
system components, e.g. control algorithms. While unit tests



verify components behave as intended, system integration tests
verify that components are modelled correctly and interfaces
match. Further, system level tests verify and reveal emerging
characteristics of the system as a whole like E2E latency.
Manual tests with the physical car are too time consuming
and not deterministic enough to fulfill the requirement of
fast development (R5). Manually measuring system behavior
is error-prone and expensive, since appropiate measurement
equipment has to be used. As a result, a 3D simulation was
introduced into the architecture. LGSVL [21] is an open
source simulation based on Unity3D, specifically developed
to develop and test autonomous cars. We chose LGSVL
over other simulations like Gazebo, which is directly targeted
towards ROS, because of the underlying engine and therefore,
achievable graphics. This was considered to be important for
two reasons.

1) Computer vision algorithms require the most realistic
visual model of reality to be tested properly.

2) When used for demonstrating purposes, aesthetics of the
presentation are valued by the visitors.

In the simulator, vehicle models, physical properties and
environments can be modelled within the Unity3D editor. The
sophistication of the models depend on the project require-
ments and testing scope. Testing the major part of our software
required minimization of hardware dependant code. Therefore
we realized the sensor interfacing nodes as a thin hardware
abstraction layer which we called ultra thin layer (UTL). In
this layer each node only reads and publishes raw sensor
values without any processing. The same principle applies to
motor and steering control. Their behavior has to be cloned
in the simulation. This UTL concept was only possible due to
the modularization enabled by ROS 2. For all other software
components outside this abstraction layer, the source of sensor
values and destination of actuator data was transparent.

V. EVALUATION

Here, we briefly describe a use-case for our platform, elab-
orate on implementation details and conclude by pointing out
some lessons learned during the deployment of our platform.

a) Concept: We verified our proposed platform and
architecture by implementing a CCAM use-case. A suitable
scenario covering most of the formulated requirements is
platooning, where autonomous vehicles coordinate their ma-
neuvers through wireless communication to achieve a stable
convoi in close distance to each other.

In our scenario, 3 cars drive on a lane on a track at varying
speed. They can be instructed to drive freely, control distance
and speed using the ultra sonic distance sensor only (ACC)
or use communication to coordinate their maneuvers (CACC).
Controlling and monitoring the demonstrator was done with a
touch interface next to the track. Successful implementation of
this concept depends on the low-latency communication bus
for a stable control algorithm (Q1, Q2). Usage as an indoor
demonstrator requires small scale cars (R3). Highlighting the
effects of an unreliable V2X link required R7. A photo of the
track and touch control unit is shown in Fig. 4.

Fig. 4. A one-lane track was setup for the 3 vehicles of the platoon. Users can
interact with the installation using a dashboard which directly sends control
commands on the ROS 2 DDS bus.

Fig. 5. The platform was extended with the SAB mounted on top the RPi, a
line sensor and an ultra sonic distance sensor.

b) Implementation: Four sensors were attached to the
chassis:

1) Wide-angle camera module
2) Motor encoder Hall sensor
3) Ultra sonic distance sensor
4) Line array sensor
Camera and line array sensor work in conjunction to im-

plement a stable line following. The motor encoder sensor is
required for speed control and the ultra sonic sensor measures
the distance to the preceding vehicle. Except for the camera,
which requires a high bandwidth connection directly to the
processing unit (RPi), all sensors are connected to the adapted
SAB. Fig. 5 shows a picture of all components of the chassis
for the platooning use-case, and the hardware components and
connections are illustrated in Fig. 6. After these modifications
the car weighs 1700g without the decorative case mounted and
measures 34x16cm (LxW).

A digital twin of the target environment and models of
the used sensors were implemented into LGSVL to speed up
development and tests. LGSVL already had a camera sensor
built-in. A configurable, ideal ultra sonic sensor and motor
encoder were developed for the digital twin to mimic the
behaviour of the UTL sensor nodes of the real chassis. The
communication architecture of the system is shown in Fig. 7.

For presentation purposes, a LED strip and a speaker were
attached to the RPi. Their integration followed the same
principle as any other component with a ROS node responsible
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controlling them. Although the LED strip protocol requires
correct timing and therefore should be added as an ESP32
peripheral we broke the consistency of this architecture for
the sake of using spare GPIOs on the RPi.

The track was 4m wide and 4m long with 50cm wide lanes.
The corners have a radius of 75cm.

Fig. 8. Difference between reality and simulated camera images. Such
inhomogeneous lighting was not modelled in the simulation and hence the
image processing algorithm needed to be adjusted in the field tests.

c) Evaluation Results: Besides system integration tests
of all nodes, especially the lane detection and distance control
algorithm relied on the simulation for testing and develop-
ment. Labour-intensive manual resets of the car to test the
basic functionality of these functions were eliminated. The
simulation was also integrated in our continuous integration
pipeline, which automatically tested for a working, driving
car whenever a new software version was commited.

User interaction was realized with a dashboard with a web-
interface to enable demo control. The modular nature of ROS
2 made integration possible without any interface changes,
reducing development time. During the development of the
computer vision lane following algorithm, the RPi reached its
performance limits. We were able to mitigate this problem by
offloading this process to a workstation connected over WLAN
without any software changes, showing again the benefit of
the modular software architecture. Using a feature complete
SBC on the cars with Linux and built-in WLAN showed to be
a valuable advantage during development. Updating code or
configurations could be done using SSH. Moreover, WLAN
connectivity was also used for inter-car communication.

The decision for Micro-ROS made integration of the line
sensor late in the development with minor interface changes
possible. Three steps were required: First, appropiate connec-
tors had to be added to the SAB. Second, the data type for the
ROS 2 bus was to be specified. Last but not least, the firmware
of the ESP32 had to be adapted to read the sensor values.

VI. PLATFORM LIMITATIONS

In section V we verified that the architecture design de-
cisions had the expected effects and benefits. As with any
system, limitations apply, either because certain aspects were
not considered during design or they were not prioritized.

a) Processing Power: Our evaluation use-case relied on
image processing using OpenCV. During development we
discovered that the processing was too slow for our real-time
control loop. The platform’s architecture allowed to offload the
image processing to an edge cloud. However, a more suitable
hardware for image processing with hardware accelerators
should be used. Also, some nodes written in Python were re-
written in C++ to comply with the latency requirements of
our control loop. This increased development time. Although
Python is known to be comparibly slow, more processing
power will help reducing the optimization effort in a project.



b) Simulation: The digital twin in the 3D simulation was
a helpful addition to development. It should be noted that
maintaining a digital twin is time consuming. The environment
has to be kept in sync as well as the physical properties of
the vehicle model. Therefore, a tradeoff analysis should be
made, if a project exhibits a complexity justifying the effort.
In the evaluation use-case, the lane detection algorithm failed
in field tests, whenever sunlight casted harsh shadows on the
track (see Fig. 8). This highlights that the simulation is no
replacement for properly specified system verification tests.

c) Chassis: The chassis, designed as a toy, has an
unfavorable transmission ratio for small speeds, resulting in
unpleasant operation noise levels. We discovered that the
abdundance of brakes do also limit the use-cases which can
be realized, e.g. emergency braking. Fortunately, switching to
another chassis only requires designing a new PDB.

d) Latency: We measured a minimal achievable round-
trip time of 2ms from a sensor attached to the SAB and the
RPi using a simple ping-pong method. This translates to an
E2E latency <1ms which satisfies Q1. The bottleneck of this
communication chain is the maximum UART speed but can
be mitigated by using either multiple microcontrollers as well
as multiple or faster UART connections.

The same measurement method yielded an E2E latency
of <2ms with sporadic jumps to 15 to 20ms which shows
that the V2X communication via WLAN mostly satisfies
Q2, but reveals the typical unreliability of any ISM band
based standard. A dedicated and managed spectrum would be
required to completely fulfill Q2 in any scenario.

VII. OUTLOOK

In future, we plan to improve the platform and verify
architecture design decisions.

a) Chassis: Using a chassis with brakes and a transmis-
sion suitable for low-speeds will contribute to a wider range of
possible CCAM use-cases. Not being a feature of normal RC
cars, this will increase the costs considerably. Another solution
would be to use the braking feature of the motor controller,
which applies negative torque to slow down the car. It has yet
to be determined if the achievable deceleration is sufficient.

b) Sensors: Additional and more sophisticated sensors
would also increase versatility of the platform. For example,
while measuring the distance to the front vehicle in our
demonstrator, one could not differentiate between preceding
cars and the track boundaries, due to the simple ultra sonic
sensor. When equiped with a LiDAR sensor, the platform
could reduce the effort to robustly implement such a use-case.

c) AI capabilities: CCAM is strongly linked to au-
tonomous cars. Hence, better AI/ML capabilties could help
building meaningful demonstrators and tests. Therefore, we
plan to replace the RPi with a suitable SBC with AI/ML
acceleration, like the Nvidia Jetson.

d) Evaluation: We will use the platform for other
demonstrators, proof of concepts and prototypes for CCAM
and other wireless applications. This will further verify if the
chosen technologies and architecture meet our requirements.
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