
A Random Linear Network Coding Platform
MPSoC Designed in 22nm FDSOI

Mattis Hasler† , Sebastian Haas† , Robert Wittig‡ , Stefan Scholze§,
Andreas Dixius§ , Sebastian Höppner§ , Gerhard Fettweis†‡ , Christian Mayr§

†Barkhauseninstitut gGmbH Dresden, Germany, Email: name.surname@barkhauseninstitut.org
‡Vodafone Chair Mobile Communications Systems TU Dresden, Germany, Email: name.surname@tu-dresden.de

§Chair of Highly-Parallel VLSI Systems and Neuro-Microelectronics TU Dresden, Email: name.surname@tu-dresden.de

Abstract—Random linear network coding (RLNC) has great
potential to improve security, reliability, energy efficiency and
throughput of many applications in networking and storage
applications. The high computation costs and power consumption
caused a reduction of interest in RLNC research more than
ten years ago. We present a distributed parallel computation
platform aiming at making RLNC affordable and scalable enough
to be deployed in real-life-sized applications. As key component of
this platform, an MPSoC was developed, produced and measured
in our lab. The design aims at high energy efficiency and utilizes
a hierarchical communication system for scalability to reach
data rates needed by real-life applications with a reasonable
power budget. For example, our platform would suffice to equip
a 36 Gb/s backplane, 20 W Ethernet switch with an RLNC
accelerator on a power budget of 2.4 W, showing an energy
efficiency of 37 pJ/b.

Index Terms—MPSoC, RLNC, NoC, memory management,
low power, network coding

I. INTRODUCTION

Random linear network coding (RLNC) is a powerful tool
with a diverse set of applications. It can be used to improve
security, reliability, energy efficiency or throughput of digital
networks as well as storage systems [1]–[4]. For example,
gains on throughput of 50% [5] or buffer size reduction of 40%
[6] are possible in certain real-life Ethernet applications. In
RLNC, randomly combining (i.e. encoding) data into arbitrary
many variants can be used to synthesize reliability or security
properties of the encoded data. Definitely, encoding, decoding,
and recoding has to be done extensively. For networking
applications, for example, each data stream has to be recoded
in each networking node (i.e. switch). Unfortunately, the
(en/de/re)coding is expensive, consuming a lot of computing
time and energy. So, although being a promising technology,
research in this direction started declining almost ten years
ago. We propose an RLNC platform with an energy efficiency
that makes the development of RLNC enabled real-life appli-
cations feasible, by taking on the two main problems of RLNC
implementation.

The first problem is that a general-purpose CPU does not
reach sufficient data rates in RLNC coding. In 2014 RLNC
was optimized on a, for that time, recent CPU, reaching
around 9.5 Gb/s on a 1.7 GHz x86 CPU utilizing different

This research is co-financed by public funding of the state of Sax-
ony/Germany.

SSE extensions [7]. Using this solution for RLNC-enabled
applications would require a great amount of additional hard-
ware. For example, an application that stores encoded data on
hard drives, would constantly require around 50 % of CPU
to cope with each 4.8 Gib/s SATA3 data stream. Similarly, a
10 Gib/s Ethernet port would require a full CPU. This does
not only increase product costs extremely but also leads to
the second problem: high energy consumption. The desktop
CPU used in [7] has a thermal design power (TDP) of 15 W
[8], so that it runs RLNC at a power efficiency of 1.63 nJ/b.
Based on this power consumption an estimate can be made for
the costs of equipping a simple 36 Gib/s backplane Ethernet
switch [9] with RLNC. To match the transfer rate of the switch
1.6 nJ/b× 36 Gib/s = 57 W would be consumed for RLNC,
an increase of almost 300 % compared to the switches basic
20 W TDP. It becomes obvious that using a desktop x86 CPU
is not the right approach when integrating RLNC into an
Ethernet switch.

However, the research conducted on RLNC ten years ago
was mainly done on general-purpose hardware. This seems
unproblematic at first, because although there is no hardware
specifically designed for RLNC in an x86 CPU, with the use
of SSE extensions the computation can be done at astonishing
data rates, performing multiple operations per clock cycle on
average. However, the high power consumption of an x86
CPU results in very poor energy efficiency. This is partly
because of the immense functional range of x86 causing a
large chip area, of which only a fraction is used for RLNC,
and partly by the high clock frequency of desktop CPUs.
While the clock frequency naturally relates proportionally to
the data rate, it overproportionally relates to power. Increasing
the clock frequency will, despite increasing the data rate, lower
the energy efficiency.

Because increasing clock frequency or per-cycle data rate
of a single processor are not viable options, our approach is to
increase energy efficiency by keeping frequency and processor
complexity low and instead parallelize computation at the
thread level. This of course means, that multiple threads are
running in parallel on physically different processors. Follow-
ing the well-known idea of the application-specific instruction-
set processor (ASIP), a small RISC processor is extended to
match the per cycle throughput of the x86-SSE approach but
with much less overhead of area and power consumption.

https://orcid.org/0001-7979-674X
https://orcid.org/0002-1869-0826
https://orcid.org/0002-6710-6948
https://orcid.org/0002-0812-576X
https://orcid.org/0002-9938-2736
https://orcid.org/0003-4622-1311


Additionally, the design is targeted at a lower clock frequency
to improve efficiency. To compensate for the reduced data rate,
multiple processors are coupled to a distributed computation
platform. Its communication framework makes it scalable
enough to easily reach rate rates in the above 10 Gib/s.

Although not commonly used ten years ago, nowadays
specialized hardware blocks are more common. Advancements
in tooling allow exploring different solutions. ASIPs are often
based on very small and efficient processors making them the
perfect target for power-efficient implementations of specific
algorithms. The ASIP approach maintains the flexibility of the
processor it is based on while reaching per-cycle performance
close to an ASIC implementation, or the SSE approach in this
case. The hardware (i.e. chip area) and power consumption
costs, however, are similarly low to an ASIC implementation.
We present a hierarchical parallel computations platform, that
includes multiple layers of parallel computation. At the lowest
level, the ASIP uses its ISA extensions to perform SIMD style
operations on multiple words in parallel. Multiple processors
working in parallel on one chip are the next layer, which
extends to a third, consisting of chips coupled with direct
chip-to-chip links. We present an MPSoC that implements this
platform, showing superior energy efficiency and the ability to
scale throughput to double-digit gigabit per second data rates.
As an example application, we estimate the feasibility to use
our platform as an RLNC accelerator for an Ethernet switch.

The remainder of this work briefly examines previous
RLNC hardware implementations in Section II, then cover the
basics of RLNC and its computation hotspots in Section III. In
Section IV the MPSoC is presented, especially the components
crucial for efficiency. The lab measurement, comparison with
other works and the evaluation of a potential Ethernet switch
RLNC accelerator are addressed in Section V.

II. STATE OF THE ART

A data rate of RLNC computation of at least single-digit
Gb/s, coupled with a power consumption of a microcontroller,
is a gap that has not been filled until now, best to our
knowledge. The use cases would be manifold, reaching every
corner of consumer electronics processing data, like network
interfaces, network switches, storage controllers, DMA con-
trollers, etc.

When the research on RLNC peaked out, mainly general-
purpose hardware was used [10]–[12]. As already mentioned,
these approaches are limited in energy efficiency. However,
the idea of accelerating RLNC in hardware has hardly been
picked up. In 2014 an implementation [7] on a general purpose
CPU did make use of the available vector extension (e.g.
SSE2, etc.). Although this was not hardware developed for
the specific case, the per-cycle performance is close to a
theoretical bound. A full custom design was presented in [13].
The implementation is part of an IoT chip and focuses on very
efficient computation and a data rate around 1 Mb/s. Another
work implementing RLNC in hardware is [14] and does so
using FPGAs. It reaches data rates of 65 Mb/s. An ASIP
implementation has been done in [15], reaching 1.2 Gib/s on

Fig. 1. RLNC example in butterfly network. Two sources transmit data A
and B to two sinks with the help of an encoded packet in the middle link.

a small Cadence Tensilica LX5 RISC processor in simulation,
assuming a clock frequency of 300 MHz. None of the found
hardware implementations say anything about scalability. So,
although one may be superior in energy efficiency and another
outperforms our ASIP in pure data rate, none of these works
can truly be compared to our platform, merely serving as
reference points.

III. NETWORK CODING

RLNC originates from a work conducted in 1978 [16] on
satellite broadcasting the combination of two data streams,
which could be decoded by the receivers with the knowledge
about the respective other stream. Modern RLNC extends
this idea to the point that a sender can generate an arbitrary
number of random linear combinations of source data blocks.
The receiver can recover the original data if —and only if—
it can gather a minimum number of any of those encoded
blocks, given they are linear independent. This does not only
have use cases connected to transmission but also storage and
distribution of data. On the one hand, the loss of any encoded
block can be coped with by producing an additional encoded
block, probably in advance. On the other hand, distributing
encoded blocks to multiple potentially untrusted data handlers
(i.e. network infrastructure or storage providers) prevents each
handler to decode the data on its own, thus securing the data’s
secrecy.

RLNC has the potential to improve the costs for resilience,
increase bandwidth and reduce transmission delays in com-
plex, chaotic, or lossy communication networks. In Fig. 1 a
networking example shows two senders injecting the data A
and B into the network. Both receivers at the bottom want
to receive both A and B. Without RLNC this would only be
possible by sending A and B sequentially over the middle
link. But with RLNC a combination of both is transmitted
allowing both receivers to recover the missing datum with the
help of the respective other datum. Notably, it is assumed that
the network nodes can combine packets by encoding them on
the fly.



RR

MPSoC

cluster
til
e

CPU NIU

arbiter

st
re
ammemory

banks

Fig. 2. Hierarchical overview of the proposed MPSoC with the levels: cluster
of chips; chip of tiles; computing tile

The coding technic needed by the nodes depends on the
multiplication and inversion of matrices with values from
Galois Fields (GF (q)). To generate a number of coded packets
into a matrix X a random coefficient matrix C is multiplied
with a source matrix M containing a set of source packets.

X = C ×M

Similarly, recoding (re)encodes already coded packets with-
out decoding them first, by combining data and coefficients of
the source packets. For decoding, the receiver gathers coded
packets filling the receiving coefficient matrix C̄ and the data
matrix X̄ . When a sufficient number of packets are available
the original packets are recovered by solving [17]:

M = C̄−1 × X̄

As described in [17] a network router (packet forwarder)
mostly has to perform packet coding or recoding. Thus, the
acceleration technics presented in this work focus on the
expensive matrix multiplication in GF (q). When targeting
Ethernet, a packet size of 1500 bytes, 16 coefficients and a
Galois Field size of GF (28) are a reasonable parameters set
[15].

IV. MPSOC ARCHITECTURE

In Fig. 2 a flexible distributed computation architecture
is shown, that implements the hierarchical communication
structure mentioned in the Introduction (Section I). Similar
to [18], the platform is a cluster of MPSoCs connected by
chip-to-chip links. Inside each MPSoC a network-on-chip
(NoC) implements the connectivity of an arbitrary number of
computing tiles. Each tile represents a dedicated computation
unit featuring a processor with local memory, a data streaming
controller, and a network interface.

Following the defined architecture in this work, an MPSoC
is proposed that has been successfully designed manufactured,
and measured in the lab. It uses four application-specific
processors (ASIP), with an extended instruction set, each being

able to process 645 Mb/s of data. The data management is
implemented by a closely coupled memory management of 15
4 KiB memory banks, a shared memory streaming controller,
a network on chip (NoC) with 64 Gb/s links, and six 6 Gb/s
chip-to-chip LVDS links.

A. RLNC Accelerator

As examined in [19] an application-specific instruction-set
processor (ASIP) yields a good balance between the power ef-
ficiency of an ASIC implementation of a certain algorithm and
the flexibility of a general-purpose CPU. When implementing
an algorithm with the ASIP approach, the most demanding
operations are fixed and optimized in hardware while the
majority of the algorithm —representing only a fraction of
computation effort— can be written in software, allowing for
run-time adaptation. For RLNC Galois Field multiplication has
been identified as the single most important hotspot. Within a
tile, a configurable and extendable Tensilica LX6 RISC core
is used as the main processor. Similar to the solution of [15]
the LX6 is extended by Galois Field (GF (28)) multiplication
instructions.

Custom instructions are available to perform 16x 8-bit
GF (28) —or 8x 16-bit GF (216)— multiplications at once. In
the processor, the VLIW support option is selected to allow
the folding of load/store and multiplication instructions. Fully
utilized, the processor pipeline can process 128-bit data each
cycle. In a single cycle, it loads 16 new source values (128-
bit) into the register file, multiplies another set with an internal
coefficient, and stores 128-bit data over the other memory port.
The flow is occasionally disturbed by the necessity to load new
coefficients which harms the throughput. Still, the availability
of input data to the processor is crucial when maximizing
throughput. This is why the memory subsystem is the first
thing to be designed to serve these data rates.

B. Memory System

Each processor is connected to a private closely coupled
memory of 15x 4 KiB memory banks. Because double-port
memory consumes almost twice the power and chip area com-
pared to single-port memory [20]–[22], the latter are used. To
efficiently share the single-port memories, offline arbitration is
used [23]. The memory arbiter connects memory masters (i.e.
processor memory ports) to memory banks. It keeps master-to-
bank assignments in a register set, only reprogramming it when
necessary. A reprogramming happens when a memory master
starts requesting addresses from a different bank than before.
This way the bank selection is cut from the processor–memory
critical path, resulting in fast memory accesses for consecutive
transactions to the same bank while paying/waiting two cycles
when switching the memory bank. Multiple masters accessing
different physical memory banks do not interfere with each
other.

C. Network on Chip

Although the NoC allows arbitrary topologies —especially
enabling the potential for bigger MPSoCs— in this instance,



Fig. 3. Concept of a shared memory-based FIFO controller. Slices of the
FIFO’s ring buffer are mapped to two physically independent memory banks.
Because of that, memory access is evenly distributed between the two banks.

only two routers are present (Fig. 2), because it yields the
best balance of router size and bandwidth. One of the routers
connects the four computation tiles, while the other manages
the chip-to-chip links for communication beyond the chip
boundary. Each on-chip link provides a full-duplex connection
that transports one 131-bit packet each cycle in each direction.
A transfer may be composed of one header packet and multiple
body packets. The capacity of payload data of header and body
packets are 64 and 128 bit. With reasonable sized transfers
the data rate achieved by the NoC gets close to 128 bit per
cycle (64 Gb/s @500 MHz), which is enough to keep the
computation tile busy.

The NIU can handle one NoC packet every cycle, which
may contain up to 128 bit of data and forward it to the memory.
Parallel to that it may load 128 bit from local memory on
the other port and forge NoC packets to be sent. It provides
the often on MPSoCs available RDMA protocol [24]–[27] to
support basic data transfers between local processor memories
and is closely coupled with a custom streaming controller to
implement transparent FIFO channels between processors.

D. FIFO channels

The purpose of the hardware FIFO controller is to relieve its
users from doing buffer management in software. Additionally,
it enables hardware units, like the NIU, to use FIFO channels
without implementing complex ring buffer logic themself.
Similar to the approach in [28] the FIFO channels are im-
plemented using a hardware shared memory FIFO controller.
It allows the definition of FIFO channels using a cyclic ring
buffer and a set of read and write pointers to control the
filling of the buffer. It calculates pointers and enforces the
integrity of the buffers completely in hardware. The pointer
calculation logic distributes the buffer over two memory banks
and interleaves access to it (Fig. 3). This helps to separate
memory transactions of the two users (i.e. reader and writer)
into different physical memory banks. Theoretically, the FIFO
can transfer a full memory word each cycle, because the
reader and writer access different memory banks in parallel.

Fig. 4. Testboard with two BGA400 sockets, JTAG, PMBus connections.

In practice, due to memory bank switch penalties and pointer
calculation, transfer speed reaches around 90 % of the theoretic
boundary. This drawback is, however, overcompensated by the
aforementioned use of single port memories, cutting power
consumption and chip area in half, compared to dual port
memories.

The NIU uses these hardware-guided FIFO buffers to im-
plement streaming channels between processors on different
local tiles or even different chips. To do so, one NIU takes
the role of the FIFO reader, sending the data to an NIU on
another tile. Here, the NIU acts as the FIFO writer streaming
data to the buffer. To prevent buffer overflows in the receiving
tile, the receiver NIU notifies the sender NIU about its local
buffer filling level. The software on both sides only has to
work with the FIFO hardware interface.

V. EVALUATION

GlobalFoundries produced the chip in 22 nm FDSOI, the
die has an area of 9 mm2 and is shown in Fig. 5. The chip
has multiple supply voltages applied to different areas. The
SRAM macros, for example, need a supply of 0.8 V, but the
processors may run between 0.4 V and 0.7 V depending on
the applied clock frequency to save power.

A custom BGA400 package houses the die. It is composed
of two PCB boards, one implementing the 3D connection
network from the bond pads to the balls and the other
providing the frame for the filling. The solution is intended
for low-volume chip production as usually needed by scientific
projects.

A test board hosts two BGA400 sockets. The power man-
agement is controllable via a PMBus breakout on the board.
For general debug access, a socket provides a connection to
the chip’s JTAG taps. The two BGA sockets are connected to
each other to allow testing of the chip-to-chip links. A photo
of the test setup in Fig. 4 shows the two BGA sockets, a USB-
converter connected to the JTAG socket, and a Raspberry Pi
connected to the PMBus with its I2C port.

Targeting a network router, the main workload of the pro-
posed system will be data recoding. As already mentioned, the



Fig. 5. Die Photo of the proposed chip. Computation tiles; Network-on-Chip;
Chip-to-Chip links (C2C)

TABLE I
SPLITUP OF THE CHIPS POWER CONSUMPTION AND SUPPLY VOLTAGES

tile power chip power supply
name [mW] [mW] [V]

LX6 RLNC 19 76 0.7
chip-to-chip link 15 90 1.6
PLL and power – 20 0.6

mem idle – 0.3 0.8
mem RLNC 3.1 12 0.8

computational complexity of recoding comes almost entirely
from matrix multiplication in GF (28). Hence, in the evalua-
tion, the matrix multiplication rate is used as the performance
measure. To resemble the computations that appear in RLNC
for Ethernet, the data and coefficient vectors are of length 1500
and 16, respectively.

Using these parameters, a single CPU handles 645 Mb/s of
matrix multiplication with a clock frequency of 500 MHz. To-
gether, the four CPUs on one chip process 2.58 Gb/s. Adding
a certain number of chips to the cluster of chips increases
the possible RLNC data rate and the power consumption
accordingly.

A. Power

The chip runs at a core frequency of 500 MHz @ 0.7 V.
On-chip memory uses a separate power supply of 0.8 V. An
additional power supply provides power for the PLL (0.6 V)
and IO-Pads (1.6 V). Running the GF (28) matrix multiplica-
tion on all four processors draws a power of 111 mW with
one chip-to-chip link enabled. Power consumption in the chip
is split up as displayed in Tab. I. Main power consumers are
the LX6 cores with 19 mW and the chip-to-chip links with
15 mW. On-chip memory consumes 0.3 mW when idle and
increases by 3.1 mW per active processing tile.

B. Scalability

The data computation throughput of one chip with men-
tioned parameters accumulates to 2.58 Gb/s, which is approx-
imately a factor of two smaller than the bandwidth of an off-
chip link. That means that the data processed by a single chip
can comfortably be streamed onto and off the chip over a

Fig. 6. Cluster of 14 chips, each producing a recoded output stream from
mixing multiple input streams. Highlighted is the dataflow of one recoded
stream.

single link. This has a positive effect on the chip’s power
consumption since an off-chip link consumes with 15 mW @
1.6 V almost as much power as a whole tile with 19 mW
@ 0.7 V (cf. Tab. I) due to its higher supply voltage. The
availability of multiple links allows for more complex setups.

In order to suffice as a platform to provide RLNC func-
tionality for an off-the-shelf Ethernet router [9] with 36 Gb/s
backplane, a total of 14 chips would be needed to provide
enough computation power. In Fig. 6 a setup is sketched that
might handle the mentioned data rate. Each of the 14 chips
produces a recoded data stream that leaves the cluster at the
top. The streams can be dynamically mixed from an arbitrary
number of input streams (e.g. 28), that enter the cluster into
the bottom layer of chips. The six chip-to-chip links allow an
efficient data distribution across the whole cluster. Within the
cluster, 60 chip-to-chip links are enabled to provide internal
communication and stream data into and out of the cluster.
These would consume approximately 60×15 mW = 900 mW.
With an additional 14 × 108 mW = 1512 mW for the chips’
number crunching, the whole cluster consumes 2.4 W.

C. Comparison

The measured power consumption and computation
throughput results in an energy demand of 37 pJ/b (Tab. I).
That compares well (Tab. II) against a software implemen-
tation done on a desktop processor in [7], which has an
almost four times higher throughput bought with an increase
in energy consumption by two orders of magnitude. Another
implementation targeting IoT devices [13] achieves energy
efficiency three orders of magnitude lower, but only for
single-digit Mb/s data rates and with no scalability options.
Similarly, the FPGA implementation from [14] beats the
proposed implementation by a factor of two in terms of energy
efficiency, but the data rate of 65 Mb/s lacks the potential to
scale the system to data rates above single-digit Gb/s.

VI. CONCLUSION

This work presented a distributed computation platform
defining a hierarchical structure as a cluster of chips parti-



TABLE II
DATA RATE AND ENERGY EFFICIENCY COMPARISON

throughput energy consumption
name [Gb/s] [pJ/b]

this work 2.58 37.23
desktop [7] 9.5 3157

IoT [13] 0.001 0.015
FPGA [14] 0.065 19.04
ASIP [15] 1.3a 175a

a results from RTL simulation and power estimation

tioned into computation tiles. The featured MPSoC imple-
ments the platform, targeting an application as an RLNC
accelerator. The computation tiles consist of an ASIP core,
an optimized closely coupled memory system, a specialized
FIFO controller, and an NoC interface. The NoC is extended
across chip boundaries with chip-to-chip links allowing the
connection of multiple chips to a computation cluster. A single
chip handles 2.58 Gb/s of GF (28) matrix multiplication,
which resembles an Ethernet RLNC recoding workload. The
power consumption of a single chip varies between 110 mW
and 170 mW depending on the number of used chip-to-chip
links, which allows the concept of an 2.5 W cluster to equip an
Ethernet router with an RLNC accelerator. In comparison, the
same data rate would need four desktop CPUs [7] consuming
roughly 60 W.

REFERENCES

[1] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive view of
a live network coding p2p system,” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, 2006, pp. 177–188.

[2] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“Xors in the air: practical wireless network coding,” IEEE/ACM Trans-
actions on networking, vol. 16, no. 3, pp. 497–510, 2008.

[3] F. H. Fitzek, T. Toth, A. Szabados, M. V. Pedersen, D. E. Lucani,
M. Sipos, H. Charaf, and M. Medard, “Implementation and performance
evaluation of distributed cloud storage solutions using random linear
network coding,” in 2014 IEEE International Conference on Communi-
cations Workshops (ICC). IEEE, 2014, pp. 249–254.

[4] P. Ostovari, J. Wu, A. Khreishah, and N. B. Shroff, “Scalable video
streaming with helper nodes using random linear network coding,”
IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp. 1574–1587,
2015.

[5] K. Miller, T. Biermann, H. Woesner, and H. Karl, “Network coding in
passive optical networks,” in 2010 IEEE International Symposium on
Network Coding (NetCod). IEEE, 2010, pp. 1–6.

[6] A. Engelmann, W. Bziuk, A. Jukan, and M. Médard, “Exploiting
parallelism with random linear network coding in high-speed ethernet
systems,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp.
2829–2842, 2018.

[7] S. M. Günther, M. Riemensberger, and W. Utschick, “Efficient gf
arithmetic for linear network coding using hardware simd extensions,”
in 2014 International Symposium on Network Coding (NetCod). IEEE,
2014, pp. 1–6.

[8] I. Inc. (2013) Intel core i3-4010u prozessor. [Online].
Available: https://ark.intel.com/content/www/de/de/ark/products/75107/
intel-core-i34010u-processor-3m-cache-1-70-ghz.html

[9] Cisco Business 220 Series Smart Switches, Cisco System, 2021.
[10] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and

B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[11] M. Wang and B. Li, “How practical is network coding?” in 200614th
IEEE International Workshop on Quality of Service. IEEE, 2006, pp.
274–278.

[12] X. Chu, K. Zhao, and M. Wang, “Practical random linear network coding
on gpus,” in International Conference on Research in Networking.
Springer, 2009, pp. 573–585.

[13] G. Angelopoulos, A. Paidimarri, M. Médard, and A. P. Chandrakasan,
“A random linear network coding accelerator in a 2.4 ghz transmitter for
iot applications,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 9, pp. 2582–2590, 2017.

[14] S. Kim, W. S. Jeong, W. W. Ro, and J.-L. Gaudiot, “Design and
evaluation of random linear network coding accelerators on fpgas,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 1,
pp. 1–24, 2013.

[15] J. Acevedo, R. Scheffel, S. Wunderlich, M. Hasler, S. Pandi, J. Cabrera,
F. H. Fitzek, G. Fettweis, and M. Reisslein, “Hardware acceleration
for rlnc: A case study based on the xtensa processor with the tensilica
instruction-set extension,” Electronics, vol. 7, no. 9, p. 180, 2018.

[16] M. Celebiler and G. Stette, “On increasing the down-link capacity
of a regenerative satellite repeater in point-to-point communications,”
Proceedings of the IEEE, vol. 66, no. 1, pp. 98–100, 1978.

[17] D. Gonçalves, S. Signorello, F. M. Ramos, and M. Médard, “Random
linear network coding on programmable switches,” in 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). IEEE, 2019, pp. 1–6.

[18] G. Fettweis, M. Hassler, R. Wittig, E. Matus, S. Damjancevic, S. Haas,
F. Pauls, S. Nam, and N. Grigoryan, “A low-power scalable signal
processing chip platform for 5g and beyond-kachel,” in 2019 53rd
Asilomar Conference on Signals, Systems, and Computers. IEEE, 2019,
pp. 896–900.

[19] K. Keutzer, S. Malik, and A. R. Newton, “From asic to asip: The next
design discontinuity,” in Proceedings. IEEE International Conference on
Computer Design: VLSI in Computers and Processors. IEEE, 2002,
pp. 84–90.

[20] K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, Y. Oda, K. Usui,
T. Kawamura, N. Tsuboi, T. Iwasaki, K. Hashimoto et al., “A 45-nm
single-port and dual-port sram family with robust read/write stabilizing
circuitry under dvfs environment,” in VLSI Circuits, 2008 IEEE Sympo-
sium on. IEEE, 2008, pp. 212–213.

[21] J. P. Kulkarni, J. Keane, K.-H. Koo, S. Nalam, Z. Guo, E. Karl, and
K. Zhang, “5.6 mb/mm 1r1w 8t sram arrays operating down to 560 mv
utilizing small-signal sensing with charge shared bitline and asymmetric
sense amplifier in 14 nm finfet cmos technology,” IEEE Journal of Solid-
State Circuits, vol. 52, no. 1, pp. 229–239, 2017.

[22] F. Bai, B. Xiong, X. Xue, W. Song, W. Baofeng, N. Fu, B. Yu, H. Duan,
X. Han, A. Minzoni et al., “A two-port sram using a single-port cell array
with a self-timed write-after-read control scheme to save 47% area &
63% standby power,” in ASIC (ASICON), 2017 IEEE 12th International
Conference on. IEEE, 2017, pp. 426–428.

[23] R. Wittig, M. Hasler, E. Matúš, and G. Fettweis, “Queue based memory
management unit for heterogeneous mpsocs,” in Design Automation and
Test in Europe (DATE), Florence, Italy, Mar 2019.

[24] G. Kalokerinos, V. Papaefstathiou, G. Nikiforos, S. Kavadias, M. Kat-
evenis, D. Pnevmatikatos, and X. Yang, “Fpga implementation of a
configurable cache/scratchpad memory with virtualized user-level rdma
capability,” in 2009 International Symposium on Systems, Architectures,
Modeling, and Simulation. IEEE, 2009, pp. 149–156.

[25] G. Kalokerinos, V. Papaefstathiou, G. Nikiforos, S. Kavadias,
X. Yang, D. Pnevmatikatos, and M. Katevenis, Prototyping
a Configurable Cache/Scratchpad Memory with Virtualized
User-Level RDMA Capability. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2019, pp. 100–120. [Online]. Available:
https://doi.org/10.1007/978-3-662-58834-5_6

[26] J. Ambrose, A. Molnos, A. Nelson, S. Cotofana, K. Goossens, and
B. Juurlink, “Composable local memory organisation for streaming
applications on embedded mpsocs,” in Proceedings of the 8th ACM
International Conference on Computing Frontiers, ser. CF ’11. New
York, NY, USA: Association for Computing Machinery, 2011. [Online].
Available: https://doi.org/10.1145/2016604.2016631

[27] A. Secco, I. Uddin, G. P. Pezzi, and M. Torquati, “Message passing on
infiniband rdma for parallel run-time supports,” in 2014 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing. IEEE, 2014, pp. 130–137.

[28] M. Hasler, R. Wittig, E. Matúš, and G. Fettweis, “Slicing fifos for on-
chip memory bandwidth exhaustion,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 67, no. 2, pp. 441–450, 2019.

https://ark.intel.com/content/www/de/de/ark/products/75107/intel-core-i34010u-processor-3m-cache-1-70-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/75107/intel-core-i34010u-processor-3m-cache-1-70-ghz.html
https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1145/2016604.2016631

	Introduction
	State of the Art
	Network Coding
	MPSoC Architecture
	RLNC Accelerator
	Memory System
	Network on Chip
	FIFO channels

	Evaluation
	Power
	Scalability
	Comparison

	Conclusion
	References

