
A Trusted Communication Unit for
Secure Tiled Hardware Architectures

Sebastian Haas, Nils Asmussen
Barkhausen Institut, Dresden, Germany

forename.surname@barkhauseninstitut.org

Abstract—Modern hardware and software in smart systems
and devices need to provide high performance and energy
efficiency and, at the same time, properly address security and
privacy goals. M3 proposed a system architecture that integrates
cores and accelerators within a tiled hardware architecture using
a security-by-design approach. Each tile includes a hardware
component called trusted communication unit (TCU), which
isolates all tiles from each other so that no communication is
possible by default.

In this paper, we designed, developed, and synthesized the
hardware components of the M3 system architecture comprising
a network-on-chip, RISC-V cores, and TCUs. Latency measure-
ments show that the timing overhead introduced by the data
transfer and security features of the TCU is not significant
compared to other latencies like cache accesses or software
routines. Synthesis results reveal that the area overhead of the
trusted system components is only 11 % when the system is scaled
to a high number of processing tiles.

I. INTRODUCTION

Multiprocessor system-on-chips (MPSoCs) are the founda-
tion of today’s smart systems such as Internet of Things or
mobile devices. Emerging technology trends such as 5G/6G
communication, machine learning, and augmented reality pose
big challenges to these MPSoCs in terms of data rates and
power consumption [1]. While current implementations can
already achieve performance and energy targets [2], properly
addressing security and privacy goals is still a challenging task.
Security is particularly important for these MPSoCs, because
an attacker could exploit vulnerabilities in the system and
cause harm, e.g., to the environment, infrastructure, or even
human life. As the attacker model, we assume that the attacker
gained control over a subset of the MPSoC hardware including
software running on programmable processing cores (e.g., via
hardware trojans or malicious software). The goal is to isolate
hardware and software components from each other to increase
the difficulty for attackers to spread out in the system and
actually cause damage.

Naturally, some components need to work correctly to
place trust in a specific system function. These hardware and
software components are called trusted computing base (TCB).
The goal is to minimize the TCB and thus reduce the prob-
ability that an attacker can compromise the entire system.
Furthermore, to preserve performance and energy goals of the
MPSoC, the TCB should not significantly increase latencies
and should consume minimal resources such as chip area.

The M3 system [3] has been proposed to address the
aforementioned security challenges. It is a hardware/software

co-design that is based on a tiled architecture. Physically
separated tiles are connected by a network-on-chip (NoC) and
contain computational logic (processing cores, accelerators),
memory, or interfaces to external resources. Furthermore,
each tile includes a hardware component called trusted com-
munication unit (TCU)1, which isolates all tiles from each
other so that no communication is possible by default. A
microkernel-based operating system (OS) runs on dedicated
tiles and configures the TCUs. The OS manages communica-
tion channels between the tiles while the TCUs enforce them
in hardware. Hence in this concept, the TCU is the main
part of the hardware TCB. Besides general direct memory
access (DMA) features, the TCU provides further support
for OS-specific functionalities like message passing, virtual
memory, and context switching.

In this paper, we took the M3 approach and designed
and implemented the hardware components of the system
architecture comprising the NoC, processing cores, and TCUs.
We simulated and synthesized the hardware to quantitatively
evaluate the TCU and to analyze the overhead introduced by
its security features.

In summary, the contributions of this paper are as fol-
lows: 1) We present a hardware component called trusted
communication unit (TCU) to enable secure communication
in tiled architectures. 2) We developed and synthesized a
system architecture that integrates a NoC, TCUs, and multiple
processing cores to run the OS. 3) We evaluate latency and area
consumption of the hardware components to show the practical
feasibility of the M3 approach and to analyze the impact of the
TCB on the MPSoC. Furthermore, the M3 software as well as
the complete hardware implementation used in this paper are
available as open source2.

II. RELATED WORK

In current MPSoCs, enforcing isolation between applica-
tions and controlling access to other resources (e.g., memory,
accelerators, I/O devices) is mainly achieved with security fea-
tures integrated in general-purpose processors. For example,
memory management units (MMUs) and IOMMUs are used
to securely share memory of general-purpose processors and
I/O devices, respectively. This approach assumes that the cores
and their isolation features are working correctly, which is not

1In M3 [3], this component was originally called data transfer unit (DTU).
We changed the name to better reflect its security properties.

2https://github.com/Barkhausen-Institut/M3



necessarily true as recent attacks have shown [4]. In our work,
we do not trust these cores, but introduce a separate hardware
unit that enforces isolation between tiles.

Similar to our approach, memory protection units (MPUs),
also called hardware firewalls, have been proposed for tiled
architectures, that only forward allowed memory accesses
from the tile to external memory. For example, Fiorin et al. [5]
propose a data protection unit (DPU) as a firewall together
with a dedicated hardware component called network security
manager which configures the access rights of the DPUs.
Further, Tan et al. [6] present a per-tile hardware firewall called
isolation unit that is not configured by a centralized authority.
Instead, each application on a tile has base permissions and
can transfer some of them to other tiles. In contrast to the
firewalls in NoC interfaces, Sepulveda et al. [7] extend the
NoC with security mechanisms. Customized routers guarantee
that sensitive traffic communicates only through trusted nodes.

The aforementioned approaches are hardware-only solutions
that provide the isolation features but, in contrast to our TCU,
are not co-designed with the OS that inherently provides
application loading and scheduling. There are other security
architectures like TrustLite [8] and TyTan [9] that take the
MPU hardware approach and involve the OS which configures
the MPUs at runtime and allows to isolate software applica-
tions. However, these are processor-centric solutions that do
not consider tiled architectures with heterogeneous hardware
components. In contrast, there are NoC-centric approaches like
NoC-MPU [10] and SiFive Shield [11]. They combine the
extended MPU approach with the management capabilities of
the OS to build a tiled security architecture.

In this paper, we present the M3 approach based on TCUs,
that further extends the NoC-centric MPU approaches by
adding OS-specific functionalities like message passing, which
is used to communicate between applications and OS services.
Furthermore, the TCU implements MMU features like virtual
memory and context switching in a lightweight manner to
share tile-internal resources.

III. HARDWARE DESIGN

M3 [3] is the operating system (OS) for a new system archi-
tecture that considers heterogeneous compute units (general-
purpose cores with different instruction sets, DSPs, FPGAs,
fixed-function accelerators, etc.) from the beginning. The sys-
tem builds upon a tiled architecture where multiple physically
separated tiles are connected by a NoC. Furthermore, each
tile includes a TCU, which isolates all tiles from each other
so that no communication is possible by default. One tile must
include a general-purpose processor that runs the OS kernel
which configures the TCUs and hence manages communica-
tion between tiles. For that purpose, we implemented a tile
with a RISC-V Rocket core [12] as general-purpose processor
with caches, which is available as open-source and can be
configured (e.g., instruction set, cache sizes, debug features).
For comparison, we also implemented a tile with a BOOM
core, which is the out-of-order variant of Rocket, to further
evaluate the area overhead of the TCB.

Register File

Controller

CMD 
CTRL

NoC
CTRL

TCU

NoC

TCU to
Cache

Unpriv. Cmds

Unpriv. Regs
EndpointsMemory

Mapper

Priv. Cmds

Priv. Regs

I/O 
FIFOs

MMIO

PMP
Ext. Regs

Ext. Cmds

RISC-V
Rocket

L2 Cache
CPU

System Bus

L1 Cache

Processing Tile

Cache to ext. 
memory

Fig. 1. Processing tile with TCU and RISC-V Rocket core

Figure 1 shows a tile that integrates the TCU and the Rocket
core. The core communicates with the TCU via memory-
mapped I/O (MMIO). The TCU has a tightly-coupled memory
interface to access the internal caches of the core via its bus
system. Other cores without caches or simple processing units
with only scratch-pad memory can be connected in the same
way. Interrupt signals of the core (not shown in Figure 1) are
also connected to the TCU. Hence, the TCU can trigger the
core at certain events such as message reception. Since the
TCU interconnects the NoC and the logic within the tile, it
provides a uniform interface to other tiles that simplifies the
management and collaboration of heterogeneous tiles.

In our system architecture, the NoC, the processor that runs
the OS kernel, and the TCUs make up the TCB. Due to their
central tasks of configuring and setting up communication
channels between tiles, the TCUs and the OS kernel with its
underlying processor have to be trusted. The NoC must be
also part of the TCB since its current implementation cannot
guarantee that an eavesdropper might leak data on the network.
For example, eavesdropping could be prevented via encryption
of the NoC packets.

Trusted Communication Unit

The TCU builds an important part of the hardware TCB
in our tiled architecture, i.e. it has to enable the necessary
isolation features while still allowing communication between
the tiles via the NoC. The TCU requires an interface to the
NoC as well as an interface to local resources of the tile. As
depicted in Figure 1, our hardware implementation of the TCU
contains three main blocks which cover the main functional-
ities: controller, register file, and memory mapper. The TCU
controller implements finite state machines to executes com-
mands as requested by the core or from the NoC. The register
file includes registers such as endpoint registers (briefly called
endpoints) to store access permissions. The memory mapper
can multiplex accesses from the core to the local memory and
to the register file (MMIO). Additionally, the physical memory
protection (PMP) block forwards memory requests of the core
to the NoC. These requests are validated according to access
permissions stored in dedicated endpoints.

To enable usage and configuration of the endpoints, the TCU
commands and registers can be accessed by three interfaces:



unprivileged, privileged, and external interface. The unprivi-
leged interface enables commands for DMA transfers (read,
write) and message passing (send, receive, reply). During
command execution, the TCU checks the related endpoints
and, if allowed, performs the data transfer to the target tile.
A command is finished when a read response or a message
acknowledgment was received. The privileged interface is only
accessible by privileged software running on the core and
enables support for virtual memory and context-switching in
general-purpose cores. These features were introduced in the
M3 extension called M3v [13]. The privileged software uses
the MMU of the core to ensure that unprivileged software can
only access MMIO addresses of the unprivileged interface.
To support virtual addressing, the TCU holds a software-
loaded translation lookaside buffer (TLB) to store recent
address translations. The external interface is only used by
external tiles (e.g., the tile running the OS kernel) to configure
endpoints and to enable features of the privileged interface.

In a typical scenario, the OS kernel configures the endpoints
of all tiles in the system via the external interface of the TCU.
The core in the tile uses the unprivileged interface to access
these endpoints and to establish communication channels to
other tiles. If virtual addressing is used, the privileged software
of the core can load address translations to the TLB via the
privileged interface of the TCU. General-purpose cores with
cache require access to shared external memory. The PMP of
the TCU is used to connect the last-level cache to the external
memory via NoC.

IV. EVALUATION RESULTS

In this section, we show and evaluate the experimental
results of our implemented system architecture, which consists
of processing tiles, each including a TCU and a RISC-V core,
as well as the NoC routers. By default, the TCU includes
all interfaces and features as presented in Section II. We
integrated the generated Verilog code of the RISC-V cores
into our design, which was generated by using the open-source
Chisel generator [12]. The design is simulated and synthesized
with Cadence tools by using a 22 nm FDSOI process from
Globalfoundries under typical conditions (25 ◦C, 0.5V). We
observed the critical path of the processing tile between the
RISC-V core and the SRAM of the caches. To meet all timing
requirements under the selected conditions, we used 100MHz
as the maximum clock frequency in our design.

A. Latency

In the first set of experiments, we measure the latency
of the TCU to evaluate its timing overhead when executing
commands initiated by the core. Throughput is limited by
the bandwidth of the NoC (16 bytes/cycle) since the current
TCU implementation supports the full NoC bandwidth. For
these experiments, we use two identical processing tiles each
including a TCU and a RISC-V core. The tile which initiates
commands contains the so-called local TCU, while the receiv-
ing tile contains the remote TCU. The tiles are connected to a
single NoC router to minimize the delay induced by the NoC.

19 25 26
6 6

2515 15

1540 40

40

0

20

40

60

80

100

120

Write Read Send
message

La
te
nc
y 
in
 c
yc
le
s local TCU

remote TCU
memory access
NoC transfer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

128 512 1024 2048

Ar
ea
 in

 m
m
²

Number of endpoints

Register file
Mem. mapper + PMP
I/O FIFOs
Controller

13% 22%
36%

53%

(a) (b)

Fig. 2. (a) Latency of TCU commands, (b) Area consumption for different
number of endpoint. The percentages denote the portion of the register file to
the total TCU area.

Figure 2a shows the measurement results of a DMA-write
and read as well as for sending and receiving a message (with
8-byte payload data each). For each transfer, the local TCU
requires 11 cycles to initiate the command by reading the
corresponding endpoint and validating the access permissions.
The TCU also performs a TLB lookup which requires at least
4 cycles if the associated TLB entry is found immediately.
If more TLB entries have to be scanned, a higher number of
cycles is needed. If the privileged interface (virtual memory
support) of the TCU is disabled, the TLB access is skipped
and the latency of the command is reduced accordingly. The
remaining cycles of the local TCU are spent to prepare the
access to the RISC-V cache and to finish the command as
soon the response/acknowledgment packet has been received.
The time of a memory access of the RISC-V is specific to
this core and depends on its internal cache access times.
For the write and read commands, the remote TCU requires
6 cycles to forward the requests to the memory. For message
passing, the remote TCU takes about 25 cycles on average.
This includes finding a free slot in the memory-mapped receive
buffer, setting up an endpoint for a reply, and informing the
software in case the received message belongs to a currently
paused application on the core (only if the privileged interface
is enabled). The NoC transfer delay is about 20 cycles per
packet via the single router, which is mainly caused by the
synchronization registers in the NoC interface. Asynchronous
transitions enable to set different clock frequencies of the NoC
and the tile. Since each command consists of a data and a
response/acknowledgment packet, we measured 40 cycles for
the total transfer.

In summary, the latency introduced by the TCU function-
alities and security features is not significant. Memory read
delays to the RISC-V caches and packet transmission times via
NoC are in the same range or higher. Furthermore, processor-
intern routines of the RISC-V (e.g., interrupt handling) typi-
cally show up to two magnitudes higher latencies [14].

B. Area consumption

In the next set of experiments, we evaluate the area con-
sumption of the synthesized hardware components. Table I
lists the area of the two RISC-V variants, a single NoC router,
and the full-featured TCU. Compared to the in-order Rocket
core, the higher complexity of the out-of-order BOOM core
leads to the 1.7× area increase. The TCU takes 11% and



TABLE I
AREA CONSUMPTION OF HARDWARE COMPONENTS

Total (mm2) SRAM (mm2)

BOOM 2.499 1.716
Rocket 1.454 1.280
NoC router 0.022 0
TCU 0.154 0.120

Controller 0.044 0.017
NoC CTRL 0.012 0
CMD CTRL 0.032 0.017

Unpriv. cmds. 0.012 0
Priv. cmds. 0.019 0.017
Ext. cmds. 0.001 0

Register file 0.021 0.017
Memory mapper + PMP 0.003 0
I/O FIFOs 0.086 0.086

6% of the area of the Rocket and BOOM core, respectively,
and thus only adds a small area overhead to the processing
tile. In the TCU, the register file, the TLB, and the I/O FIFOs
are implemented in SRAM since we obtained a slightly higher
area consumption for an implementation in hardware registers.
For example, the register file holds 128 24-byte endpoints
and ten 8-byte registers for all commands, which fit into
one 4 kB SRAM block. I/O FIFOs take a large portion of
the TCU area because they implement in total five SRAM
blocks for send and receive direction each to hold at least
one complete NoC packet with up to 2 kB payload data. This
is important to allow a deadlock-free data transfer. The TCU
can be configured individually, e.g., if a tile only contains
the interface to external memory, there are no I/O FIFOs, no
register file, but only the NoC controller required. In this case,
the total TCU area is reduced by 92% to 0.012mm2.

Endpoints are used for exchanging data between applica-
tions, accessing files, or for socket-based communications over
the network. Therefore, applications that work with many
files or sockets simultaneously require many endpoints and
in particular, sharing a tile among multiple applications may
increase the number of required endpoints significantly. In
Figure 2b, we evaluate the area consumption of the TCU
with an increasing number of endpoints. Compared to the
total TCU area, the percentage of the register file increases
from 13% at 128 endpoints to 53% at 2048 endpoints. This
shows that scaling the number of endpoints by increasing the
number of SRAM blocks is unacceptable with the current
design. In future work, we plan to outsource endpoints to
external memory and prevent unauthorized access by applying
encryption mechanisms.

C. Overhead of the TCB

With the help of the area results we can conclude the costs
of the TCB compared to the whole hardware architecture. As
stated in Section II, the NoC, the processor that is running
the OS kernel, and the TCUs make up the TCB. Assuming
a system architecture with n tiles including RISC-V Rocket
cores and TCUs while each tile is connected to a single NoC
router, we can estimate the ratio of the area of the TCB to the
entire area. For example for a system architecture with n=8,
we obtain a TCB overhead of 23%. The overhead decreases
with increasing n and reaches the limit at 11% for n>100.

V. CONCLUSION

We investigated the overhead of the TCB in the M3 system
by designing and developing the required hardware compo-
nents of the underlying tiled architecture. Latency measure-
ments have shown that the timing overhead introduced by the
communication functionalities of the TCU is in the same range
as typical data transfers of the NoC or memory accesses of
the general-purpose RISC-V processor. Synthesis results reveal
that the area overhead of the trusted system components is
only 11% when the system is scaled to a high number of
processing tiles (>100). Hence, the added security properties
in the M3 architecture have only a low impact on the overall
performance and area consumption of the system.

ACKNOWLEDGMENTS

This research received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement No. 957216 (iNGENIOUS). It is also financed on
the basis of the budget passed by the Saxon State Parliament
in Germany.

REFERENCES

[1] IRDS, “International Roadmap for Devices and Systems: 2021
Update - Executive Summary,” 2021. [Online]. Available: https:
//irds.ieee.org/images/files/pdf/2021/2021IRDS ES.pdf

[2] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.Wolf: An
Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge
Processing,” IEEE Journal of Solid-State Circuits, vol. 54, no. 7, 2019.

[3] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. Fettweis,
“M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous
Manycores,” in 21st International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), ser.
ASPLOS’16. ACM, 2016, pp. 189–203.

[4] A. Nilsson, P. N. Bideh, and J. Brorsson, “A Survey of Published Attacks
on Intel SGX,” arXiv preprint arXiv:2006.13598, 2020.

[5] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano, “Se-
cure Memory Accesses on Networks-on-Chip,” IEEE Transactions on
Computers, vol. 57, no. 9, pp. 1216–1229, Sept 2008.

[6] B. Tan et al., “A System-level Security Approach for Heterogeneous
MPSoCs,” in Conference on Design and Architectures for Signal and
Image Processing (DASIP), 2016, pp. 74–81.

[7] J. Sepulveda, R. Fernandes, C. Marcon, D. Florez, and G. Sigl, “A
Security-Aware Routing Implementation for Dynamic Data Protection
in Zone-Based MPSoC,” in 30th Symposium on Integrated Circuits and
Systems Design: Chip on the Sands, ser. SBCCI ’17, 2017.

[8] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A Security Architecture for Tiny Embedded Devices,” in 9th European
Conference on Computer Systems, ser. EuroSys ’14. ACM, 2014.

[9] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny Trust Anchor for Tiny Devices,” in 52nd Annual
Design Automation Conference, ser. DAC ’15, 2015.

[10] J. Porquet, A. Greiner, and C. Schwarz, “NoC-MPU: A secure archi-
tecture for flexible co-hosting on shared memory MPSoCs,” in Design,
Automation & Test in Europe Conference & Exhibition, ser. DATE’11,
March 2011.

[11] J. Prior, “SiFive Shield: An Open, Scalable Platform Architecture
for Security,” 2019. [Online]. Available: https://www.sifive.com/blog/
sifive-shield-an-open-scalable-platform-architecture

[12] K. Asanović et al., “The Rocket Chip Generator,” EECS, University of
California at Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[13] N. Asmussen, S. Haas, C. Weinhold, T. Miemietz, and M. Roitzsch,
“Efficient and Scalable Core Multiplexing with M3v,” in 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2022, p. 452–466.

[14] B. Sa, J. Martins, and S. Pinto, “A First Look at RISC-V Virtualiza-
tion from an Embedded Systems Perspective,” IEEE Transactions on
Computers, no. 01, pp. 1–1, Nov. 2021.


