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Abstract—The continuously growing importance of today’s
technology paradigms such as the Internet of Things (IoT) and
the new 5G/6G standard open up unique features and oppor-
tunities for smart systems and communication devices. Famous
examples are edge computing and network slicing. Generational
technology upgrades provide unprecedented data rates and
processing power. At the same time, these new platforms must
address the growing security and privacy requirements of future
smart systems. This poses two main challenges concerning the
digital processing hardware. First, we need to provide integrated
trustworthiness covering hardware, runtime, and the operating
system. Whereas integrated means that the hardware must be
the basis to support secure runtime and operating system needs
under very strict latency constraints. Second, applications of
smart systems cover a wide range of requirements where “one-
chip-fits-all” cannot be the cost and energy effective way forward.
Therefore, we need to be able to provide a scalable hardware
solution to cover differing needs in terms of processing resource
requirements.

In this paper, we discuss our research on an integrated
design of a secure and scalable hardware platform including
a runtime and an operating system. The architecture is built
out of composable and preferably simple components that are
isolated by default. This allows for the integration of third-party
hardware/software without compromising the trusted computing
base. The platform approach improves system security and
provides a viable basis for trustworthy communication devices.

Keywords—Composable systems, Hardware/software co-
design, Isolation, Microkernel, Operating system, Privacy,
Security, Tiled architecture

I. INTRODUCTION

Smart systems and devices have become an integral part
of our lives that we rely on daily. Logistics, healthcare, and
the automotive industry are only some examples where smart
digital functionalities are key enablers to deploy intelligent
systems. Mostly, devices communicate via wireless connec-
tions. Especially, 5G/6G mobile networks may provide the
required data rate and latency at the same time. Furthermore,
these technologies bring many new features such as network
slicing and edge computing to the design and implementation
of the networks. However, these enhancements also introduce
new security and privacy risks.

For example, network slicing is a new 5G feature which
provides different logical mobile networks on top of the same
physical hardware. The concept allows to provision different
network slices with different quality of service guarantees in
terms of latency, throughput, or reliability without the need

to provide dedicated hardware for every network. But it also
introduces the risk, that one slice interferes with another slice
in an unwanted way if there is no secure and reliable separation
of these slices.

Another new feature is edge computing. Here the main idea
is that the mobile network will not only provide communica-
tion capabilities but also computational resources. Moreover,
these computational resources will be located close to the user
equipment. A dependable separation between user applications
is important here as well to prevent data privacy issues.

In order to realize such features, new architectural and
implementation paradigms and concepts need to be applied.
One of the related 5G pillars is the so-called softwarization [1].
The basic idea is to realize functionality in software, which
traditionally was implemented in hardware. Softwarization is
accompanied by concepts like disaggregation of hardware and
software and decomposition of functions into small compo-
nents with well-defined interfaces [2]. In fact, the idea of
softwarization is not specific to mobile networks. Non-mobile
networks have already adopted concepts like software-defined
networks (SDN) or network function virtualization (NFV).
SDN refers to the idea of splitting traditional, monolithic
network elements like routers or bridges into a rather dumb
data plane which only handles the packet forwarding itself and
a more “intelligent” control plane which executes all routing
decisions. Thereby, the latter is often implemented in software
only. NFV is a concept which uses virtualization to execute the
whole (dedicated) functionality of a network node in software.

The 5G mobile network extends these concepts by also
softwarizing the radio access network (RAN) as much as
possible. This is done with the help of so-called software-
defined radios (SDRs), where, in the extreme case, most
of the signal processing happens in software on general-
purpose processors. Specialized hardware is only required
for analog-to-digital converters, digital-to-analog converters,
power amplifiers, and antennas.

Although softwarization promises great benefits in terms of
flexibility and cost reduction, it comes at the price of a larger
attack surface. Therefore, IT security related risks increase
tremendously [3]. The attack surface includes all interaction
points an unauthorized entity (“attacker”) can reach. It covers
interfaces, protocols, and services as well as software and
hardware.

In order to mitigate these security risks, we propose an



integrated hardware/software co-design for building custom
compute hardware from pluggable components and modular
system software that is specifically tailored to the aforemen-
tioned smart systems and applications. The core of our concept
is the decomposition of the overall system into trusted com-
ponents, which we must rely on to enforce a specific security
policy, as well as untrusted components which are not part of
the attack surface anymore because they are isolated. While
this concept is already well understood in the context of soft-
ware, we extend it to cover also the hardware. We believe that
this is important because recently discovered vulnerabilities in
conventional processors have shown that hardware insecurities
are not only theoretic [4]. Furthermore, the modular hardware
design allows to provide a scalable solution to cover differing
needs in terms of processing resource requirements.

In the following sections, we present our approach on a
composable architecture at both the software (Section II) and
hardware level (Section III). Based on that, in Section IV
we describe how pluggable components at both levels can be
combined to build customized and secure platforms for smart
systems. In Section V, we present related work, and finally
in Section VI, we discuss open research topics where our
approach may already provide the basis for practical solutions.

II. SOFTWARE COMPONENTS

Attacks on software are commonplace today. Data breaches,
machine takeovers for cryptocurrency mining, and ransomware
attacks are constantly in the news. Whenever software handles
input that an attacker can control, the software processing
this data constitutes an attack surface. This situation naturally
occurs, when devices are connected and handle input from
the Internet. An attacker can maliciously craft an input and
thereby exploit a programming error in the software to gain
control over it. However, the severity of such a programming
error and the resulting leverage of the attacker depends on the
software architecture in place. Many of the security problems
we see in practice are caused by a lack of isolation between
individual components of a software system.

For systems based on a microcontroller, all code on the
platform runs in the same isolation domain. Microcontrollers
lack the architectural features to run an operating system (OS)
kernel, because they do not support the division into kernel
mode and user mode in which applications are executed.
With one globally available memory space, any code in the
system can modify any piece of data. Therefore, separation
of the system into multiple components is purely a software
engineering tool, but not a security barrier. An attacker is just
one vulnerability away from full control over the platform.

Monolithic systems improve this situation because they run
on hardware featuring an isolated kernel environment. Using
memory separation by the memory management unit (MMU),
multiple address spaces are implemented, which can only
access the memory assigned to them by the kernel. This
construction yields much stronger isolation because different
concerns of the software system can run in separate processes
which are unable to manipulate each other’s data. However,

the kernel itself still constitutes a single point of failure. Any
piece of code in the kernel has full access to the entire system.
The huge number of lines of kernel code unintentionally
introduce complex bugs into components like file systems,
device drivers, and network stacks. One exploit in a network
protocol implementation still gains the attacker full control
and these exploits are real in monolithic systems.

Microkernel-based systems (e.g. L4 [5]) try to remedy this
unfortunate situation by decomposing the kernel itself into
multiple, isolated pieces. Drivers, file systems, and protocols
no longer run as part of the kernel, but as unprivileged
service processes within their own address space. Exploiting
a vulnerability in a single component is not sufficient to
compromise the whole system. An attacker has to find a chain
of exploits spread over multiple components. This inherently
increases the security of the system.

Microkernel-based systems are not a panacea. Feature-rich
applications and technology stacks still introduce a signifi-
cant portion of complexity. However, the microkernel-based
approach enables to compartmentalize the complexity, such
that only a subset of components needs to be relied upon to
maintain a specific security objective like confidentiality or
integrity. This reliance set of components is called the trusted
computing base (TCB).

We take the example of the gateway in a virtual private
network (VPN) which is implemented with three components
on top of a microkernel [6]: one component includes the
TCP/IP network stack for the Internet-facing network adapter,
a second component provides the same stack for the intranet-
facing network adapter, and a third component implements
the VPN cryptography layer between the intranet and the
Internet. Regarding confidentiality and integrity of the VPN
traffic, only the latter two components have access to plaintext
and are therefore part of the TCB. Attacks from the Internet
on the VPN device would be absorbed by the Internet-facing
component, which never has access to plaintext within the
confines of its address space. Thus, microkernel-based systems
help to reduce the size of the TCB and put up additional
isolation barriers to contain attacks. In contrast, in a monolithic
system both network interfaces would be driven by the kernel,
leaving all components in the TCB without isolation barriers
between them.

III. HARDWARE COMPONENTS

The software is only as secure as the hardware it runs on.
Thus, hardware is always part of the TCB. Our approach tries
to minimize the extent to which we need to trust a hardware
platform. We see two opposing challenges: From a security
perspective, different systems and applications shall be isolated
as much as possible, for example, by physically separating
them on different servers, so that no interaction is possible in
the first place. On the other hand, from a performance, energy,
and latency perspective, it is beneficial to integrate systems
very closely together. This is especially important in future
5G/6G networks which promise to provide network slicing
or mobile edge computing capabilities. These applications
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Fig. 1. Our system architecture with multiple tiles isolated by trusted communication units (TCUs)

combine requirements like high-throughput, low-latency, low-
power, resiliency, and ultimately the ability to flexibly choose
between them depending on the set of applications currently
running.

One possible solution which can cope with these require-
ments are tightly integrated heterogeneous processing plat-
forms, for example, as proposed in Arnold et al. [7]. These
architectures offer high-performance and low-power general-
purpose and digital signal processors together with specialized
hardware accelerators which provide the necessary perfor-
mance and power efficiency. The hardware components can be
flexibly composed into larger applications while the software
configures and controls the system.

The envisioned application scenarios do not only require
high-performance processing platforms, but also the possibility
to run various applications of multiple users in parallel.
Multiple network operators might share the same base-station
hardware to provide low-latency network services, network-
slicing operation, or edge computing. Such an integrated
system with multiple users creates safety, security, and privacy
problems; two important ones are explained in the following.

One security problem arises from the fact that high-
performance general-purpose cores require out-of-order exe-
cution and speculative execution to deliver the expected per-
formance. With the discovery of vulnerabilities like Spectre [8]
or Meltdown [9], it has been shown that data leaks are possible
even across the boundaries of traditional isolation mechanisms.
The complexity of these features and their complex interplay
are likely the reasons that those vulnerabilities exist in the first
place, and that they could be lurking unnoticed in CPUs for
many years. While mitigations have been proposed [10, 11],
they match the complexity of the features they are trying to
secure, and thus make it likely that new security gaps are found
in the future. Later, more recent attacks have emerged which
are termed microarchitectural data-sampling (MDS) [12]. In
conventional monolithic operating systems and microkernel-
based OSes, the kernel utilizes different privilege levels of the
processor hardware to isolate itself from applications and the
applications from each other. MDS attacks use these shared
processor-intern resources to break the necessary isolation.

Another security issue is a consequence of the complexity
of hardware design. System designers often rely on third-party
hardware components which are designed by others, but still
integrated into their systems. These so-called IP blocks enable
the integration of a variety of processors, accelerators, and
interfaces, which are needed to meet the functionality, cost,
and time-to-market requirements. However, IP blocks may be
part of the TCB although their real content is not known. A
single malicious or faulty component may compromise the
whole hardware platform, and as a result, all the software
running on it.

Both issues mentioned above justify the fact that the soft-
ware is only as trustworthy as the hardware it runs on. Thus,
we must be able to trust the hardware as it is always part of
the TCB and plays a key role in the security of the system.
A complex hardware design leads to a large TCB which must
include different processors, interfaces, and IP blocks from a
variety of suppliers. In contrast, our goal is to minimize the
TCB. In the next section we describe our proposed hardware
architecture and the mechanisms we developed to ensure
isolation between different system components. Before, we
describe state-of-the-art hardware techniques we build upon
to address efficiency requirements.

Modern multiprocessor system-on-chips (MPSoCs) [13]
provide the basic architectural framework to design systems
which can tackle the processing and power demands of today’s
applications. MPSoCs integrate multiple, usually heteroge-
neous, processing elements, a memory hierarchy, an on-chip
communication infrastructure, and I/O components into a
single chip. Processing elements (PEs) are general purpose
processors, digital signal processors, or specialized hardware
components tailored to a specific application-domain, e.g.,
baseband processors for different wireless standards, or cryp-
tography accelerators. One or more PEs have access to local
scratchpad memory or cache, which together form a unit called
processing module (PM). PMs need to communicate with other
PMs, with off-chip memory, or with I/O peripherals such as
Ethernet network interfaces. In our design, shown in Figure 1,
a network-on-chip (NoC) facilitates the communication be-
tween all the components on the chip. A NoC comprises



several routers, physical links between them, and links to
NoC interfaces (NoCIFs). The hardware design ensures that
no other recipient can access sent messages. Authentication or
encryption techniques are needless at the NoC level. A NoCIF
provides a component with means to send and receive packets
to and from other components. Along with its payload, a
packet contains metadata such as receiver and sender address,
which allows the routers to establish a dedicated channel
directly between two participants.

The described MPSoC paradigm is already used today and
allows for a modular system design and an easy integration
of different heterogeneous components into one system. How-
ever, it does not solve the problem of isolating potentially
untrusted components from each other. Every component can
communicate with others via the NoC without restrictions. A
malicious component could utilize I/O devices, network inter-
faces, or memory accesses to interfere with other applications
or to leak information to other components.

IV. OUR VISION: A TRUSTWORTHY
HARDWARE/SOFTWARE PLATFORM DESIGN

Our approach is based on the M3 microkernel [14] and
strives to isolate applications from one another. The isolation
is achieved by placing software components on separate hard-
ware “islands”. This separation impedes uncontrolled informa-
tion leakage. Furthermore, isolated applications cannot easily
interfere with each other intentionally or unintentionally.

Figure 1 shows our system architecture. Isolation between
components is enforced by a system component called trusted
communication unit (TCU)1. It regulates all communication
with the NoC and is placed between each NoCIF and its
client unit, called tile. Typically, a tile hosts a single hardware
component, such as a PM, a DRAM interface, or other
peripherals. We follow the isolation-by-default approach: No
communication channels exist unless explicitly allowed and set
up by the M3 microkernel. This kernel runs on a dedicated tile
with a general-purpose processor and it is the only entity that
is privileged to configure communication channels between
the TCUs of all other tiles.

Furthermore, the TCU implements a set of commonly
used communication primitives such as message passing and
remote direct memory access (RDMA). Source and destination
address for such primitives are set by the kernel and strictly
enforced by the TCU. If permitted by the kernel, an applica-
tion can span over multiple different processors, accelerators,
and interfaces without putting unrelated applications running
on other tiles at risk. Applications form isolated islands of
different processing resources. The TCU interfaces with the
local NoCIF, the memory, and the PEs of its PM. The NoCIF
provides access to the NoC which allows communication with
other system components on the chip. The kernel sets up
and releases communication channels with other components
via the NoCIF by configuring the TCU’s internal registers.

1In M3 [14], this component was originally called data transfer unit (DTU).
We changed the name to better reflect its purpose.
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Fig. 2. VPN example implementation on our architecture

The TCU ensures that no data can be sent or received that
is not associated with an active channel. A flow-control
mechanism prevents applications from performing denial-of-
service attacks. The TCU uses the local memory interface to
read or write data that is associated with a specific channel
within the appropriate local memory address window. This
enables the TCU to provide direct memory access (DMA)
features.

From a hardware perspective, the TCB of a conventional
system contains all components of the MPSoC (IP blocks,
processors, accelerators, NoC, and interfaces). If any compo-
nent is compromised, the security of the system cannot be
guaranteed. In contrast, the minimal TCB of our architecture
contains only the processor running the OS kernel, the TCU,
and the NoC. Besides this small TCB, each application running
on the proposed platform has to trust all additional components
it uses, for example, a general-purpose processor, a hardware
accelerator, and an interface component. Usually, applications
only use a certain subset of components within the MPSoC.
Hence, the TCB remains as small as possible.

Let us follow up on the VPN example introduced previously.
The microkernel approach enables to separate the Internet-
facing network adapter, the intranet-facing network interface,
and the cryptography layer into separate logical islands. As
depicted in Figure 2, each software component is also placed
to dedicated physical tiles which are strictly isolated by the
TCU. The Internet-facing Ethernet PHY has an associated on-
chip I/O peripheral tile (Ethernet MAC), and is isolated by a
TCU from other chip components. The kernel establishes a
channel from this TCU to the TCU at the tile which runs
the Internet-facing network stack. The intranet-facing side
is handled in the same way. Now, both tiles running the
network stack obtain a dedicated communication channel to
the tile which processes the core cryptography algorithms of
the VPN service. Every component is now isolated from each
other and can communicate only within the bounds imposed
by the kernel. Furthermore, attacks like MDS are effectively
prevented because trusted and untrusted software no longer
share the same processing hardware.



In summary, high-performance, low-latency, energy-
efficient, reliable, and secure processing platforms are key
to meet the demands of future smart systems. Physical
power and latency limitations demand for tightly integrated
platforms. Design complexity, cost, and time-to-market
constraints require the use of potentially untrusted third-party
components. In addition, multiple users and their applications
share the same hardware leading to a large TCB. In our
approach, the TCU enforces the security policies which are
set by the M3 microkernel. The design of the NoC guarantees
that packets are solely routed to the appropriate recipient to
eliminate man-in-the-middle attacks. Security-critical software
components like the kernel run on dedicated and physically
separated tiles to prevent an attacker from compromising
the whole system by exploiting software vulnerabilities. Our
approach allows applications to only rely on a minimal set of
trusted components.

V. RELATED WORK

Building systems in the face of untrustworthy hardware
and software components is a key feature of our approach.
Strong isolation between processing cores is a prerequisite
we share with other works. For example, Intel SGX [15] or
Arm TrustZone [16] are commercially deployed solutions for
trusted execution environments, so-called enclaves, in general-
purpose processors. Enclaves create environments for code
which runs in a secure domain isolated from other applications
running on the same core. However, the concept fell victim to
successful attacks [17] due to their implementation complexity.
As a result, low-complexity hardware solutions have been
developed. For example, Sancus [18] offers enclave isolation
for embedded processors without MMUs or privilege levels.
Sanctum [19] extends RISC-V CPUs with minor hardware
changes to protect enclaves against cache timing attacks.
Nevertheless, CPU side channels were uncovered exploiting
caches [20] and other shared states of the CPU [12, 21, 22].
Mitigations with large performance impact [23] were pro-
posed, but strong isolation of processes sharing a core remains
challenging. Our tiled architecture can treat entire cores as
untrusted building blocks, i.e. they are excluded from the
TCB since they are isolated by TCUs. Hence, only exploiting
attacks via shared micro-architectural states within CPUs is
not sufficient to compromise the whole system.

For compute devices in shared-memory systems, there exist
concepts to strengthen the memory isolation. Examples are
the standardized IOMMUs [24], and other research work like
NoC-MPU [25] or the data protection unit (DPU) [26]. Simi-
larly, SiFive Shield [27] implements an open security architec-
ture for multicore systems with application and memory isola-
tion. The solution also adds cryptographic and entropy-based
features to improve the performance of crypto algorithms. Our
proposed design unites all these access control enforcement
technologies with TCUs which use a hardware-implemented
capability system handling both memory accesses (DMA)
and communication endpoints (message passing). More im-
portantly, in contrast to these single hardware solutions, our

approach improves security by using a hardware/software co-
design, i.e. the operating system manages permissions while
TCUs enforce the isolation in hardware.

VI. OPEN TOPICS

After proposing our solution to improve component isola-
tion using both operating system and hardware innovations,
we now turn to open research issues that need to be addressed
to round off our vision. We will discuss three topics here:
updates, attestation, and supply chain security. However, we
are convinced that there are many more research avenues
available.

Updates have become a necessity to rejuvenate platform
security once a vulnerability has been found. A reactive and
long-term update strategy is needed when devices are in use
for many years. However, these requirements do not often
coincide with market pressure. Our component-based approach
will help here because it reduces the necessary amount of
maintained software to the set of trusted components. More-
over, many of these trusted components are not use-case
specific and will therefore have a larger user base reducing
the individual maintenance costs and in general increasing the
likelihood of long-term support.

Cooperating software components need to trust each other
for certain security goals. When we design our hardware plat-
form as a distributed system of multiple isolated processors,
these trust relationships must span across devices. Attestation
techniques can securely identify remote components using
hardware-based trust anchors and cryptographic protocols. An
interesting research question is how we can minimize the hard-
ware requirements using our composable hardware/software
co-design approach.

Hardware designers nowadays rely on a long and complex
design flow and the trustworthiness of the supply chain.
Once the system is specified using a hardware description
language, it is transformed by synthesis and place-and-route
into a data format which is then passed to the semiconductor
manufacturer. In each of these steps, tools from different
vendors are used, which are typically black boxes to the user.
How can the designer be sure that no malicious code is inserted
into the final design? Moreover, once the design arrives at the
manufacturer, lithography masks are produced by yet another
supplier. Theoretically at both stages, a well-funded malicious
actor could insert hardware trojans or compromise the com-
ponents in any other, which we rely on in our architecture.
Further research is necessary to determine how those issues
can be mitigated.

VII. CONCLUSION

The isolation-by-default approach that is central to our
architecture encourages secure-by-design systems at both the
hardware and the software level. Our approach combines
a componentized, microkernel-based OS with a tile-based
hardware architecture and chip-level communication control to
construct devices for tomorrow’s smart systems. A component-
based system design with strong isolation improves both



security and reusability. Vendors can tailor a use-case specific
scenario from hardware and software building blocks and
reason about the trust relationships between them. The strong
isolation primitives from the microkernel at the software level
and the TCU at the hardware level ensure that only explicitly
allowed communication is possible. Running critical code on
low-complexity processor cores designed for security reduces
the TCB while untrusted code can benefit from a complex
but high-performance processor. This combination reduces the
system’s overall attack surface.
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