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Abstract—We propose a semi-closed-form solution to the prob-
lem of computing the capacity and optimal signaling for a Gaus-
sian MIMO channel under a joint sum power constraint (SPC)
and per-antenna power constraint (PAPC). Existing efficient
solutions to this fundamental problem are only applicable to some
special cases: multiple-input single-output (MISO) systems, or
full column rank MIMO channels with sufficiently high transmit
power, or full-rank optimal signaling. For the general case, we
present an efficient numerical method to solve the considered
problem which does not make any assumptions on the rank of
the channel matrix or the maximum transmit power. To achieve
this, the considered problem is transformed into an equivalent
minimax problem. We then exploit the special structure of
the minimax problem to derive a closed-form solution based
on a concave-convex procedure (CCP)-like algorithm. Extensive
simulation results show that our proposed algorithm outperforms
the existing solutions in terms of complexity and generality.

Index Terms—MIMO, sum power constraint, per-antenna
power constraint, minimax, concave-convex procedure.

I. INTRODUCTION

The capacity of a Gaussian multiple-input multiple-output
(MIMO) channel under a sum power constraint (SPC) or per-
antenna power constraint (PAPC) has been studied extensively
[1]–[7]. While the former can be due to power budget or
regulations, the latter, which is more realistic, is considered
to avoid/mitigate nonlinear distortion caused by the power
amplifier associated with each transmit antenna. Efficient
solutions to the computation of MIMO capacity with either
SPC or PAPC have been well-studied [1]–[3], [6]–[8].

In practice, other types of power constraint can also be
imposed on a MIMO system, not necessarily limited to an
individual SPC and/or PAPC. For example, in the context of
cognitive radio networks, interference temperature constraints
can be imposed on a secondary user (SU) to limit the in-
terference generated at a primary user (PU) [9]–[11]. All of
these constraints, including SPC and PAPC, can be generally
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modeled as linear transmit covariance constraints (cf. [9], [12],
[13] for further details), for which several numerical methods
were proposed [9], [12]–[14].

A. Related Work

In this paper, we consider the capacity of Gaussian MIMO
systems for the specific case of joint SPC and PAPC, which
was previously studied in [13]–[18]. Here we provide an
overview of these related papers. The work of [15] is only
applicable to multiple-input single-output (MISO) systems,
while that of [18] only partially addresses the general MIMO
case. For the case of MIMO, Cao et al. presented in [16]
an iterative solution, solving a sequence of MIMO capacity
problems with PAPC. The main idea of this method is to make
use of the closed-form solution for MIMO capacity with PAPC
proposed in [19]. However, the closed-form solution in [19] is
suboptimal for the MIMO capacity problem with PAPC, unless
the channel has full column rank and the system operates in
the high signal-to-noise ratio (SNR) regime. In [17], Loyka
proposed a closed-form solution, which is, unfortunately, only
applicable to full column rank channels, operation in the high-
SNR regime, and an equal power constraint on all transmit an-
tennas. Under these conditions, a closed-form solution for the
optimal covariance matrix is possible by solving the KKT con-
ditions of their considered problem [17]. In [13], we presented
an iterative method based on the Gauss-Seidel method to solve
the considered problem. More recently, in [14], Chaluvadi et
al. proposed a closed-form solution for MIMO channels with
per-group power constraints which include PAPC as a special
case by treating each antenna as a separate group. However,
this closed-form solution is only applicable when the channel
is of full column rank and the optimal signaling also needs to
be full rank. For the case when the MIMO channel is not of full
column rank, a projected factored gradient descent algorithm
(PFGD) was also presented in [14]. The main drawback of the
PFGD algorithm is that it only guarantees local convergence
under some conditions on the SPC and PAPC since it is based
on a non-convex formulation, which is also verified by our
numerical experiments to be presented in Section IV.

B. Contributions

It is obvious from the above discussions that a closed-
form solution for MIMO capacity with joint SPC and PAPC
is only possible for some special cases. In this paper, we
propose an efficient semi-closed-form approach to computing
the capacity and optimal signaling of a Gaussian MIMO
channel under joint SPC and PAPC, where no assumptions
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are made regarding the rank of the underlying channel or on
the SPC and PAPC. To the best of the authors’ knowledge, no
closed-form solution for this general case has been reported
in previous publications including [14], [16], [17], and thus
an efficient numerical method is still desired. To this end, our
contributions are summarized as follows:
• Different from existing methods, we first invoke an equiv-

alent minimax problem of the MIMO capacity problem
with joint SPC and PAPC and exploit the special structure
of the resulting minimax problem.

• We then combine AO and CCP to derive a semi-closed-
form solution to the general case where no assumptions
on the rank of the underlying channel or on SPC and
PAPC are made. In particular, we provide a closed-form
solution for the minimization step by considering an
upper bound of the objective.

• We provide numerical results on the capacity of MIMO
systems in comparison with existing methods under joint
SPC and PAPC which have not been reported previously.

Compared to the numerical methods presented in our previous
works of [12], [13] which are also derived based on the
equivalent minimax formulation, the differences between them
and the one proposed in this paper are clarified as follows. In
[12], we simply treat SPC and PAPC as general linear transmit
covariance constraints and thus the special underlying structure
of the considered problem is not exploited. Then a gradient-
projection-based method is adopted to solve the minimization
step. In [13], we presented a nonlinear Gauss–Seidel method
in combination with the method of Lagrange multipliers to
solve the minimization step. More precisely, when the La-
grange multiplier is fixed, the Gauss-Seidel iteration is used
to compute the Lagrangian dual function, and then a bisection
or Newton step is carried out to find the optimal Lagrange
multiplier. Thus, the method presented in [13] is essentially
a double-loop iterative method. In contrast, in this paper, we
tackle the MIMO capacity problem with joint SPC and PAPC
from the view of solving the KKT conditions directly, which
results in a method based on semi-closed-form expressions.
Further details on the differences are provided in Section III.

Notation: Standard notations are used in this paper. Bold
lower and upper case letters represent vectors and matrices,
respectively. I and 0 define identity and zero matrices re-
spectively, of which the size can be easily inferred from the
context. CM×N denotes the space of M×N complex matrices;
H† and HT denote the Hermitian and ordinary transpose of
H, respectively; diag(x) denotes the diagonal matrix having
diagonal entries matching the vector x; tr(H) denotes the trace
of H. Furthermore, we denote the expected value of a random
variable by E[.], the determinant by |·|, and [x]+ = max(x, 0).

II. SYSTEM MODEL

We consider a Gaussian MIMO channel, where the trans-
mitter and the receiver are equipped with N and M antennas,
respectively. The channel state information is assumed to
be perfectly known at the transmitter and the receiver. The
received signal is given by

y = Hx + z (1)

where H ∈ CM×N is the channel matrix, x ∈ CN×1 is the
vector of transmitted symbols, and z ∈ CM×1 is the additive
noise with distribution CN (0, IM ). Let X = E[xx†] be the
input covariance matrix for the transmitted signal. We are
interested in finding the capacity and optimal signaling of the
above channel with joint SPC and PAPC, which is formulated
as1

maximize
X�0

log |I + HXH†| (2a)

subject to tr(X) ≤ P0 (2b)
[X]i,i ≤ Pi, i = 1, 2, . . . , N (2c)

where P0 is the maximum total power budget, and Pi is the
maximum allowable power at the ith transmit antenna. Thus,
the constraints (2b) and (2c) are called the SPC and PAPC,
respectively.
Remark 1. We can reformulate (2) as a standard semidefinite
program (SDP) and then use an off-the-shelf SDP optimization
software to find the optimal transmit covariance matrix. How-
ever, the complexity of such a method, which is usually based
on interior-point algorithms, increases dramatically with the
problem size, and thus is not suitable for large-scale MIMO
systems.

III. PROPOSED CCP-LIKE ALGORITHM

In this section, we present an efficient numerical method to
find the capacity and optimal signaling for a MIMO channel
subject to joint SPC and PAPC. We remark that previous
research has aimed to solve this problem by working directly
on (2) [14]–[18]. In contrast, our proposed solution is derived
based on a minimax reformulation of (2).

A. Proposed Approach

Let us denote by λ0 the Lagrange multiplier for the
SPC (2b) and λ̂ = [λ1, λ2, . . . , λN ]T the vector of the
Lagrange multipliers for the constraints (2c). Furthermore, let
p = [P0, P1, P2, . . . , PN ]T be the vector stacking the power
thresholds corresponding to the SPC and PAPC. Following the
duality transformation in [4], [7], [13], (2) can be transformed
into the following equivalent minimax problem:

min
Λ�0

max
X̄�0

log |Λ+H†X̄H|
|Λ| , f(Λ, X̄)

subject to tr(X̄) = P,pTλ = P
(3)

where P =
∑N
i=0 Pi, λ = [λ0, λ̂

T
]T ≥ 0 , and Λ is a diagonal

matrix defined as

Λ , diag
(
λ0 + λ1, λ0 + λ2, . . . , λ0 + λN

)
. (4)

To describe the proposed iterative algorithm, we denote by
Λn the value of Λ achieved at iteration n. The proposed CCP-
like algorithm alternately optimizes Λ and X̄ as follows:
• For a given Λn, we solve the maximization with respect

to X̄ to find X̄n:

X̄n = arg max
X̄�0;tr(X̄)=P

log
∣∣I + Λ−1/2

n H†X̄HΛ−1/2
n

∣∣. (5)

1Note that we normalize the actual channel matrix with respect to the noise
power, and thus the noise power is absorbed in H.
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The above problem admits a water-filling solution [1],
[7], [8]. We skip the details for the sake of brevity.

• For a given X̄n, we consider the minimization over Λ
to find Λn+1. If exact minimization for the Λ update is
used, the ping-pong effect can occur. The reason is that
the maximization over X̄ can increase the objective to an
extreme point (can be thought of as a maximum), while
the minimization over Λ will decrease the objective to
another extreme point (can be thought of as a minimum).
Thus, after some iterations, this alternating optimization
process may fluctuate between two extreme points, and
thus never converges (cf. [4], [7, Fig. 2]). To avoid
the ping-pong effect, we consider the upper bound of
f(Λ, X̄) obtained by applying CCP to the log |·| function
in f(Λ, X̄) [13], [20] for the Λ-minimization, and thus
Λn+1 is found to be the optimal solution to the following
problem

minimize
Λ�0

tr
(
Φ−1
n Λ

)
− log |Λ|

subject to pTλ = P
(6)

where Φn = Λn + H†X̄nH. It is worth noting that a
CCP-based method generates a local optimum in general.
Since our original objective is convex with respect to Λ,
thus the local minimum is also the global minimum [7].
Recall that Λ is diagonal and is defined in (4), and thus
(6) is reduced to

minimize
λ≥0

∑N
i=1

(
λ0 + λi

)
φn,i −

∑N
i=1 log(λ0 + λi)

subject to
∑N
i=0 λiPi = P

(7)
where φn,i =

[
Φ−1
n

]
i,i

.
The idea of using the upper bound when minimizing over Λ
is to make sure that the maximization over X̄, which will be
performed in the next step, cannot bring the objective back
to the previous value. In this way, the monotonic decrease
of the objective sequence is always achieved, leading to the
convergence of the proposed algorithm. The following two
remarks are in order.
Remark 2. Before proceeding further we now elaborate why
considering joint SPC and PAPC is much more challenging,
compared to the PAPC only, from the perspective of finding
an analytical solution to (7). Indeed, problem (7) looks very
similar to [7, Eqn. (26)] and thus a question arising naturally
is if the method presented in [7], which is dedicated to the
PAPC only, is applicable to solving (7). To appreciate the
challenges, let us now consider the partial Lagrangian function
of (7) which is given by

L̃(λ, γ) =
∑N

i=1

(
λ0 + λi

)
φn,i −

∑N

i=1
log(λ0 + λi)

+ γ
(∑N

i=0
λiPi − P

)
. (8)

It is easy to see that if the SPC is not present, we can omit λ0

in (8) and L̃(λ, γ) becomes separable in terms of λi. Thus, the
solution to computing the dual function g(γ) = min

λ
L̃(λ, γ)

is λi = 1
φn,i+γPi

and the optimal γ for the dual problem can
be found by a bisection search or Newton’s method. This is
indeed the algorithm presented in [7].

However, for the joint SPC and PAPC, a closed-form
expression for each λi cannot be achieved for solving the dual
problem due to the coupling of λ0 and other λi’s, i ≥ 1. To
deal with this, we presented in [13] a double-loop iterative
method to solve the dual problem. More specifically, for a
given γ, we apply the Gauss-Seidel iteration where each λi
is sequentially optimized while the others are fixed. Note
that this step admits a closed-form solution (cf. [13, (15)-
(16)]). After the Gauss-Seidel iteration converges, we then
use a bisection search or Newton’s method to solve the dual
problem, similarly as done in [7].

Remark 3. In this paper, we only consider the non-trivial case
where min{Pi} < P0 < P̂ =

∑N
i=1 Pi. As a result, the SPC

must be binding as proved in Proposition 1 below. In this re-
gard the proposed method in this paper will be only applicable
to this non-trivial case. We note that if P0 ≤ min

1≤i≤N
{Pi}, it is

easy to see that the PAPC is inactive for all antennas and (2)
reduces to the MIMO capacity with a single SPC. Similarly,
if P0 ≥ P̂ , the SPC can be omitted and thus (2) becomes the
MIMO capacity with PAPC [7].

In this paper we propose an efficient numerical method to
solve (7) by manipulating its KKT conditions directly, rather
than using the Lagrangian duality method as done previously
in [7], [13]. To lighten the notation, the subscript n is to be
dropped in the sequel. Let us define λi + λ0 = wi for i =
1, 2, . . . , N . Then the above problem is equivalent to

minimize
wi,λ0≥0

∑N
i=1 (φiwi − logwi) (9a)

subject to
∑N
i=1 Piwi + P̃0λ0 = P (9b)

wi − λ0 ≥ 0, i = 1, 2, . . . , N (9c)

where P̃0 = P0 − P̂ < 0. The optimal solution for the above
problem can be found by solving the KKT conditions which
are given by

µi(wi − λ0) = 0 (10a)
µ0λ0 = 0 (10b)

φi − 1/wi + γPi − µi = 0, i = 1, 2, . . . , N (10c)

γP̃0 − µ0 +
∑N

i=1
µi = 0 (10d)

where µi ≥ 0 and γ are the KKT multipliers for the constraints
wi − λ0 ≥ 0 and

∑N
i=1 Piwi + P̃0λ0 = P , respectively. Note

that µ0 is the Lagrangian multiplier associated with λ0. We
have the following proposition.

Proposition 1. The solution to the KKT conditions in (10)
satisfies λ0 > 0.

Proof. See Appendix A.

Intuitively, the above proposition implies that the SPC is
active, which is not surprising. Indeed, the same observation
was also made in [14], [16], [17]. It is now obvious that µ0 =
0. For a given γ, without loss of generality, we can assume
that 1

φ1+γP1
≥ 1

φ2+γP2
≥ . . . ≥ 1

φN+γPN
. Further, we note

that if µi = 0 then

wi = 1/(φi + γPi) (11)
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Algorithm 1: The Proposed Algorithm for Solving (9).

Input: γmin = 0, γmax, ε > 0. Set n := 0
1 repeat
2 Set γ̄ = γmax−γmin

2 .
3 Rearrange the terms { 1

φi+γ̄Pi
} in decreasing order.

4 Find the largest k ≤ N − 1 such that
1

φk+γ̄Pk
≥ N−k∑N

i=k+1 φi+γ̄(P̃0+
∑N

i=k+1 Pi)
.

5 Set wi = 1
φi+γ̄Pi

for i ≤ k and
wi = λ0 = N−k∑N

i=k+1 φi+γ̄(P̃0+
∑N

i=k+1 Pi)
for i > k.

6 If
∑N
i=1 Piwi + P̃0λ0 − P > 0 then set γmin = γ̄,

otherwise set γmax = γ̄.
7 n := n+ 1.
8 until γmax − γmin < ε;

Output: {wi}Ni=1.

which leads to the following proposition.

Proposition 2. If i < j , wi > λ0 and wj > λ0, then wi ≥ wj .

Proof. It can be easily seen that µi = µj = 0; thus wi ≥ wj
follows immediately from (11).

Proposition 3. If wj = λ0 for some j, then wk = λ0 for
k > j.

Proof. Suppose to the contrary that wk > λ0 for a certain
k > j. Then µk = 0 and thus

wk =
1

φk + γPk
≤ 1

φj + γPj
≤ 1

φj + γPj − µj
= wj = λ0 (12)

which contradicts the assumption that wk > λ0.

From the two above propositions, we can conclude that there
exists a number k such that

w1 ≥ w2 ≥ · · · ≥ wk ≥ λ0 (13)
wk+1 = · · · = wN = λ0. (14)

Using (10c) and (10d), we have

γ = −
∑N
i=k+1 µi

P̃0

= −
∑N
i=k+1 φi −

1
λ0

+ γ
∑N
i=k+1 Pi

P̃0

(15)

and thus

λ0 =
N − k∑N

i=k+1 φi + γ(P̃0 +
∑N
i=k+1 Pi)

. (16)

From the above derivations, we propose a bisection method
to solve (9) as described in Algorithm 1. A possible value of
γmax can be chosen as γmax = N

P −
φmin

Pmax
. A proof that this

choice is sufficient to solve (9) is given in Appendix B.

B. Convergence Analysis
First we note that Λn � 0 for all n and thus the proposed

CCP-like algorithm is well defined for all iterations. We
also assume that the norm of each column of H is strictly
positive, which is usually the case in practice. Otherwise, the
corresponding transmit antenna can be removed to obtain a
reduced system. In fact, the convergence proof of the proposed
CCP-like algorithm follows the same arguments used in [7],
and thus we refer the interested reader to [7, Appendix B] for
the details.

C. Complexity Analysis

The main operations significantly contributing to the overall
complexity of the proposed algorithm include: i) The singular
value decomposition (SVD) of Λ−1/2

n H† , i.e., Λ−1/2
n H† =

UnΣnV†n, to find X̄n (cf. (5)). Note that X̄n is expressed
as X̄n = VΣ̃nV† where Σ̃ is diagonal and can be found
using the water-filling algorithm [1]; and ii) The inverse
of Φn to find Λn+1. In fact we can easily write Φ−1

n =(
Λn + H†X̄nH

)−1
= Λ−1/2

n (I + UnΣ̄nU†n)−1Λ−1/2
n =

Λ−1/2
n Un(I + Σ̄n)−1U†nΛ−1/2

n , where Σ̄n = ΣnΣ̃n. Since
I + Σ̄n and Λn are both diagonal, the inverse of Φn is
computed efficiently without incurring significant complexity.
Hence, the overall complexity of the proposed algorithm is
dominated by the complexity of the SVD, which is 4N2M +
8NM2+9M3 [7]. As a result, the complexity of the proposed
algorithm is O(N2M), which is significantly lower than that
of the interior-point solvers i.e., O(N6) [7], [20].

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm through numerical experiments. Unless explicitly
stated otherwise, we consider here the most common case en-
countered in practice, where each transmit antenna is subject to
the same power constraint, i.e., Pi = P̂

N , for i = 1, 2, . . . , N .
Other relevant simulation parameters are specified for each
setup. Note that each averaged result is based on Monte Carlo
simulations over 1000 i.i.d. channel realizations. Each entry
of the channel matrix is drawn from a circularly-symmetric
complex Gaussian distribution with unit variance. Note that
we set the initial value of the multiplier λ0 associated with
the SPC of Algorithm 1 to 1 so that Proposition 1 always
holds. The MATLAB code was executed on a 64-bit desktop
that supports 32 GB RAM and Intel Xeon Gold.

In the first experiment, we study the convergence perfor-
mance of the proposed algorithm for different settings of
the power constraints. For the purpose of comparison, we
also include the projected factored gradient descent method
recently proposed in [14], which is a suboptimal iterative
method. The residual error is defined as the absolute difference
between the objective and the channel capacity computed
using CVX [21]. As can be observed in Fig. 1, for the above-
described random channel model our proposed algorithm takes
less than ten iterations to reach an average error of 10−4 and
is less sensitive to different settings of SPC and PAPC. In
contrast, the convergence of the PFGD algorithm in [14] is
very slow and sensitive to different power settings. We also
find that it is very difficult to tune the step size of the PFGD
algorithm to achieve satisfactory convergence performance.

Next, we show that the closed-form solutions in [16], [17]
cannot obtain the optimal solution in general. To this end, let
us consider the MIMO channel given by

H =

 0.1189 + 0.1515i 0.1238 + 0.3326i 0.8572 + 0.1131i
−0.3198 − 0.3663i −0.6491 + 0.2784i 0.3392 − 0.1974i
−0.1019 + 0.6639i 0.3663 − 0.3097i −0.1116 − 0.1101i



and compare its capacity under joint SPC and PAPC using the
proposed approach and that of [16], [17]. Note that each entry
of this MIMO channel was randomly generated following a
circularly-symmetric complex Gaussian distribution with unit
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Fig. 1: Convergence rate of the proposed algorithm compared to that of [14]
under joint SPC and PAPC with N = 4 transmit antennas and M = 2 receive
antennas.

variance. In order to execute the solution in [17], we need to
set the power of of all transmit antennas to be equal. Also,
the closed-form solution in [17] requires that the total transmit
power must be P0 ≥ 8.3137 W and P̂ ≥ 15.3213 W. In
other words, the SNR should be larger than 9.198 dB for this
method to work. In low power scenarios, the approaches in
[16], [17] yield an input covariance matrix that violates the
positive semidefinite constraints. To achieve a fair comparison,
we compensate for negative eigenvalues and scale the resulting
covariance matrix by an appropriate factor so that all power
constraints are met. As can be seen from Fig. 2a, the capacity
generated by our algorithm and that of [17] are the same
in the high power constraint regime, as expected. However,
in the low power regime, our proposed solution outperforms
other methods (c.f. Fig. 2b). More importantly, our solution
is applicable to the general cases of MIMO without imposing
any special conditions either on channels or power constraints.

For the purpose of benchmarking, we report in Table I
the average run time of our approach along with that of
common interior-point solvers i.e., SEDUMI [22], SDPT3 [23]
and MOSEK, which generate the optimal solutions without
imposing stringent conditions on power constraints and/or

TABLE I: Comparison of the average run time (in seconds) of the proposed
algorithm and that of standard solvers, where P0 = 0.8P̂ , M = 2 receive
antennas. The run time is averaged over 1000 channel realizations.

P̂ Algorithms/solvers No. of transmit antennas N
16 32 64 128

0 dBW

CCP 0.0607 0.1361 0.4244 2.1313
MOSEK 0.5236 0.5550 1.3228 9.6038
SEDUMI 0.6524 1.1660 3.6720 18.1569
SDPT3 1.0664 2.2465 11.5979 71.8263

10 dBW

CCP 0.0552 0.1322 0.4472 2.2777
MOSEK 0.4428 0.5558 1.3350 9.6343
SEDUMI 0.6702 1.2379 3.8908 19.0718
SDPT3 1.1308 2.4439 11.1359 73.1988

channels as in [16], [17]. The solvers are executed through the
parser CVX [21]. The ratio P0/P̂ and the error tolerance for
the proposed algorithm are set to 0.8 and 10−5, respectively.
Note that the run time accounts for both the number of
iterations and the per-iteration complexity. We recall that the
per-iteration complexity of an interior-point-based method for
this problem is O(N6) [20], compared to O(N2M) for our
proposed algorithm. In addition, as illustrated in Fig. 1, the
proposed algorithm converges very fast. Thanks to these two
properties, the proposed algorithm consistently shows a low
run time, which is relatively independent of P̂ , as can be seen
clearly from Table I. We can also see that interior-point-based
convex solvers are not suitable for large-scale MIMO systems
because their complexity and memory requirements can in-
crease rapidly with the problem size, resulting in prohibitive
computation time.
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Fig. 2: Capacity comparison of the proposed algorithm and existing methods
[16], [17] under joint SPC and PAPC with M = 3 receive antennas and
N = 3 transmit antennas.
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V. CONCLUSION

We have proposed a low-complexity approach to computing
the general case of MIMO capacity with joint SPC and
PAPC. By transforming the original problem to an equivalent
minimax problem, we take advantage of the special structure
of the problem to derive analytical solution to the problem
of interest. Extensive analytical and numerical results have
demonstrated that our solution is not only low-complexity,
fast-converging but also more general than existing methods.

APPENDIX

A. Proof of Proposition 1

Suppose to the contrary that λ0 = 0. Then it immediately
holds that µi = 0 and wi = 1

φi+γPi
for i = 1, 2, . . . , N . From

(10d) we have
γ = µ0/P̃0 ≤ 0. (17)

As a result, the following inequality is obtained:
N∑
i=1

Piwi =

N∑
i=1

Pi
φi + γPi

≥
N∑
i=1

Pi
φi

≥
N∑
i=1

Pi(λn,i + λn,0), (18)

where the superscript denotes the iteration index and the
last inequality is due to the fact that φi =

[(
Λn +

H†X̄nH
)−1]

i,i
≤
(
λn,i + λn,0

)−1
. Note that λn,i and λn,0

are a solution to (7), and thus
N∑
i=1

Pi(λn,i+λn,0) =

N+1∑
i=1

Piλn,i︸ ︷︷ ︸
P

+
( N∑
i=1

Pi − P0︸ ︷︷ ︸
>0

)
λn,0 > P. (19)

It is easy to see that if the initial value λm,0, for m = 0 is
chosen to be strictly positive, then λm,0 > 0 for n ≥ m ≥ 1
by induction. Combining (18) and (19) yields∑N

i=1
Piwi > P (20)

which indicates that wi’s are not feasible to (9) and thus
completes the proof.

B. A Possible Choice of γmax in the Bisection Search

First note that (10c) and (10d) produce

φiwi − 1 + γPiwi − µiwi = 0, i = 1, 2, . . . , N (21)

γP̃0λ0 − µ0λ0︸ ︷︷ ︸
0

+λ0

N∑
i=1

µi = 0, (22)

respectively. From (21), (22), and (10a), we have∑N

i=1
φiwi −N + γ(

∑N

i=1
Piwi + P̃0λ0) = 0, (23)

which is equivalent to∑N

i=1
φiwi −N + γP = 0 (24)

and thus
γP ≤ N − φmin

∑N

i=1
wi (25)

where φmin = min
1≤i≤N

{φi}. It is easy to see that

Pmax

∑N

i=1
wi ≥

∑N

i=1
Piwi = P − P̃0λ0 ≥ P (26)

where Pmax = max
1≤i≤N

{Pi}. Combining (25) and (26) yields

γ ≤ N/P − φmin/Pmax. (27)

Thus it is sufficient to set γmax = N/P − φmin/Pmax for the
bisection method to solve (9).
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