Trustworthy Computing for O-RAN:
Security 1in a Latency-Sensitive Environment

Sebastian Haas, Mattis Hasler, Friedrich Pauls,
Stefan Kopsell, Nils Asmussen, Michael Roitzsch, Gerhard Fettweis
Barkhausen Institut, Dresden, Germany
forename.surname @barkhauseninstitut.org

Abstract—New 5G/6G mobile networks will allow to run
distributed multi-tenancy workloads with high requirements on
latency, throughput, and energy efficiency. This also demands a
transformation of the underlying radio access networks (RANs)
towards an architecture with open-source software, heteroge-
neous hardware, and interoperable interfaces as already de-
scribed by the O-RAN ALLIANCE. In principle, virtualization
of the RAN allows for defining additional interfaces which
can be used for system verification and therefore can increase
the trustworthiness of implementations. However, due to many
security risks induced by the current O-RAN specification, it
requires to rethink the overall security architecture from the
ground up to establish trustworthy mobile networks in general.

In this paper, we discuss hardware-enforced capabilities as a
structuring principle for future O-RAN architectures. We present
our approach of a hardware/operating system co-design to im-
plement these principles. The evaluation results of architectural
components demonstrate the technical feasibility of our approach
and illustrate that security and low latency can be achieved
simultaneously.

Index Terms—QO-RAN, Operating System, Tiled Architecture,
Security, Latency

I. INTRODUCTION

Our digital world is driven by highly distributed systems.
Current (5G) and future (6G) mobile networks are prime ex-
amples. Such systems consist of a multitude of heterogeneous
components — and not all of them can be considered trustwor-
thy. Upcoming radio access network (RAN) architectures like
O-RAN as specified by the O-RAN ALLIANCE [1] start to
address this issue by making the RAN more independent from
proprietary components. This means to define open protocols
and interfaces as well as to abstract network elements and
functions. The goal is a modularized design to establish a
multi-vendor, interoperable, and trustworthy architecture. In
fact, the integration of possibly untrusted components is not
limited to software but will extend to hardware components,
e.g., Al accelerators, necessary to power the highly Al-driven
O-RAN architecture. Bringing computation into the network
and to the edge, a 6G network has to run distributed multi-
tenancy workloads with high requirements on latency, through-
put, and energy efficiency.

At the same time, future networks must meet the highest
security and safety requirements, since they are part of the
critical infrastructure supporting many use cases from the
domain of cyber-physical systems like the Internet of Things.

978-1-6654-5975-4/22/$31.00 © 2022 IEEE

As these systems can directly influence the physical world,
there is a high risk of directly harming people in case of
malfunction. Therefore, future networks must embed effective
security controls to implement the required protection goals
such as confidentiality, integrity, and availability. They also
have to be resilient and preserve the privacy of their users [2].

Designing a trustworthy system which balances the require-
ments from the domains of utility as well as security and safety
in a meaningful way is a challenging task. Energy efficiency
and low latency require close interaction of the heterogeneous
components, whereas safety and security demand for strong
isolation of them. The necessary security controls often induce
costs in terms of increased latency or higher power consump-
tion due to cryptographic operations.

Although the current specifications of O-RAN induce many
security risks [3], the openness of the overall architecture
and the ongoing work with respect to security — e.g. within
the O-RAN Security Focus Group (SFG) and the related
next Generation Research Groups — allow to rethink the
overall security architecture from the ground up. In particular,
this includes a suitable hardware architecture that supports a
secure integration of potentially untrusted components while
maintaining energy efficiency, low latency, and scalability.

The main contributions of this paper are:

o We discuss hardware-enforced capabilities as a structur-
ing principle for a future O-RAN architecture. We claim
that capabilities unify the design goals of security and
low latency.

o We present our approach of a hardware/operating-system
co-design to implement these principles. The resulting
platform combines the performance of hardware-rooted
security primitives with the upgradeability and flexibility
of software-implemented policy decisions.

o We point out existing evaluation results for architectural
components to demonstrate the technical feasibility of our
architecture. We illustrate that security and low latency
can be achieved simultaneously.

In the next section, we explain our notion of trustworthiness,
the guiding principles for its implementation, and derive
open research questions. Section III details our approach
for a secure hardware/operating system co-design, for which
Section IV presents a proof-of-concept evaluation. Afterwards,
we discuss related work and conclude.

II. TRUSTWORTHINESS ON THE HARDWARE INTERFACE

A key requirement for O-RAN deployments is their ability
to serve both the primary functionality of the mobile network
as well as host applications from third-party vendors. Hence,
the O-RAN infrastructure now shares its internal resources,
e.g., compute resources (CPUs, GPUs, accelerators), memo-
ries, and interfaces with third-party code. This resource sharing
introduces new obligations to protect against attacks on the
software and hardware levels in addition to the existing attack
surface at the network-interface level.

A. Attack Surfaces and Resulting System Requirements

These new attack scenarios include software-level attacks
on application programming interfaces of the local operating-
system (OS), like an application exploiting a vulnerability in
the OS kernel to elevate itself to a higher privilege level.
Similarly, applications in a virtualized environment can attack
the hypervisor to escape from their virtual machine. Attacks
can also be mounted on shared hardware resources to extract
secrets from co-running applications. The Spectre [4] and
Meltdown [5] attacks have proven that vulnerabilities in the
underlying processors can nullify any OS protection and en-
able cross-application attacks by directly exploiting hardware-
design problems. In addition, supply-chain attacks can intro-
duce hard-to-detect deliberate backdoors into manufactured
hardware components. Current system architectures typically
assume that hardware is fully trusted and consequently do not
protect against such scenarios.

We therefore define a notion of trustworthiness, which
includes secure and reliable operation anchored within the
hardware. Upper layers can use these hardware-anchored
security primitives to implement their security boundaries.
A trustworthy hardware design must not assume that all
processors are secure but must tolerate accidentally or ma-
liciously broken compute resources. On the chip level, a
tiled hardware architecture [6] allows to integrate resources
into different compartments, connected via a network-on-chip.
Security is achieved by isolating the hardware tiles from each
other, resulting in a distributed system of mutually distrusting
participants.

However, these isolated resources need to collaborate in
order to work on a common task. Therefore, the system must
offer primitives to break the isolation in a controlled way to
allow collaboration between tiles. These control mechanisms
however must not be at the discretion of the resources we
want to isolate but must be enforced upon them from the
outside. The system’s trusted computing base (TCB) is the
set of all components in the system we must rely upon for
correct operation. We postulate that it is beneficial for security
if this reliance set is of minimal complexity. We therefore
propose a system design with a minimal TCB, which includes
only the hardware mechanism for communication control and
the components programming this mechanism. The resulting
system can securely integrate untrusted third-party hardware
components and third-party software applications, because the
TCB enforces isolation and controlled communication for

these components. The enforcement is situated at the hard-
ware level, thus protecting against hardware-level attacks and
providing the necessary foundation for higher-level protection
at the software level. By protecting against malicious behavior,
the system also protects against accidental misbehavior, so
the same architecture principle also improves the structural
reliability and safety of the system.

Two questions remain to be discussed: How can such a
minimal communication control mechanism look like and how
can it be programmed? Considering that an O-RAN system
needs to dynamically adapt to changing load requirements
and application configurations, our system must be able to
dynamically reprogram the hardware communication control
from software. This requirement raises the question of how the
interface between hardware and software should be designed.

B. Capabilities as a Common Hardware Interface

Today, isolation mechanisms in hardware/software systems
are often based on virtualization, with communication control
being implemented by network-level routing. This is a disad-
vantage because they are very complex mechanisms. The TCB
contains the complete processors because they isolate different
virtual machines from each other, the network interface cards
because they enforce communication control, and the hypervi-
sor software layer for programming everything. The interfaces
between these components are unnecessarily broad, resulting
in such a complex TCB.

We propose to rethink this interface and offer hardware-
enforced capabilities as its central primitive. A capability is
a secure reference to a resource. In a capability system, all
resource accesses are governed by capabilities. Participants in
such a system own a set of capabilities, which has been given
to them. They are unable to forge capabilities or to create
them from thin air. When communicating with another entity
in the system, communication is only allowed when the sender
possesses a capability to communicate with that entity.

We propose to implement capabilities in hardware: all
communication initiated by a compute resource on one tile
and directed to another tile is policed by an independent guard
component, which always checks the sender for the presence
of a valid capability to the target tile. This capability-based
communication control has three advantages:

Deny by default: Without a valid capability, no commu-
nication is allowed. Thus, a system initially offers complete
isolation, similar to a firewall based on an allow list.

Resource agnostic: Because the capability checks are im-
plemented at the hardware level external to the resource being
controlled, the mechanism is independent of the resource. The
same mechanism can be used for application software running
on a general-purpose processor but also for programmable
accelerators like GPUs as well as fixed-function accelerators
not running any software at all.

Pass by reference: Capabilities can be passed as payload
when communicating with another entity in the system. As the
capability is a resource reference, this transfer can securely
pass access to a resource between communication partners

without transferring the resource itself. This can help to reduce
unnecessary data copies by passing a capability to the data
between partners, without compromising security.

These benefits are a perfect fit for our design goals of
security and efficiency. Security is achieved through a small-
TCB design and the deny-by-default behavior of capabilities.
Efficiency is enabled by the transparent use of energy-saving
accelerators for specific workloads and the elision of un-
necessary data copies through the pass-by-reference property
of capabilities. However, it remains to be demonstrated, that
permanent checking of capabilities on heavily used communi-
cation paths does not unduly impede communication latency.
Also, the right separation of concerns must be explored
between capability enforcement in hardware, which is fast but
immutable, and the programming of communication control
from software, which is slow but upgradeable and flexible.

III. OUR APPROACH: SECURE HARDWARE/OPERATING
SYSTEM PLATFORM

To address the aforementioned requirements of O-RAN
architectures, we propose a scalable system platform that
provides the necessary security features including hardware-
enforced capabilities. The system is organized hierarchically
with comparable building blocks at each level of the hier-
archy (see Figure 1). At each level, different resources are
isolated by guard components to selectively allow commu-
nication. Besides these similarities between layers, end-to-
end latencies for data processing and communication scale
from microseconds on tile-level, milliseconds between tiles
and chips, towards multiple seconds in a distributed system.
This induces the need to investigate different approaches to
interface hardware and software, e.g., to check capabilities
on the communication path, or to efficiently distribute the
workload of the applications.

A. M3: A Secure Tiled Chip Architecture

On tile- and chip-level, the compute resources are made up
of processors and application-specific accelerators. Typically,
both are third-party hardware blocks and should therefore
not be trusted. For this hierarchy level, we propose the M3
system [7], an integrated hardware/OS platform that supports
the secure integration of untrusted components. M3 is based
on a tiled hardware architecture and a network-on-chip (NoC)
for communication between the tiles (see Figure 1b). As the
guard component, M3 introduced a new hardware component
into each tile called trusted communication unit (TCU)!. Each
TCU contains a set of capabilities, which is initially empty,
and defines which tile-external resources a tile can access.
Therefore, tiles are isolated by default, but if the corresponding
capability is available, the TCU can be used to perform DMA-
like memory transfers and message passing.

On the software side, M3 provides a microkernel-based OS.
The kernel runs on a dedicated tile with a general-purpose
processor and is the only master which is responsible to

'In M3 [7], this component was originally called data transfer unit (DTU).
We changed the name to better reflect its security properties.

configure the capability sets in the TCUs of the remaining tiles.
The M3 kernel also supports exchanging capabilities, allowing
to pass data by reference between applications. As each tile
contains a TCU, the TCUs provide a uniform interface for the
heterogeneous tiles with potentially different general-purpose
cores, accelerators, and memory. This simplifies both the
management of such an heterogeneous system for the M3
kernel and also the usage of the system by applications.

The proposed TCB in M3 consists of the NoC, the processor
that runs the M3 kernel, and the TCUs. The NoC must be
part of the TCB to ensure that packets reach their destination
without being manipulated. Since the kernel can configure the
capability sets in all TCUs, the kernel including its underlying
processor also must be trusted. The TCUs need to be trusted
as well to ensure that tiles are isolated from each other and
access to tile-external resources is only granted as permitted by
the capability set. The trust into the TCU can be strengthened
by formal verification.

B. FractOS: A Distributed Operating System

FractOS [8] takes many of the M3 concepts and lifts them
from chip-level to distributed-system-level. Instead of tiles be-
ing separated by a NoC, we are looking at individual machines
separated by a data-center network. The machines can house
a general-purpose processor, but they can also contain other
resources, for example, accelerators like GPUs or TPUs/NPUs,
but also DRAM or SSD storage (see Figure 1a). Thus, FractOS
features similar support for system heterogeneity as M3.

The role of the guard component is implemented by
SmartNICs, which are placed in front of every compute re-
source. A SmartNIC is a network interface card (NIC), which
can run software independently from the connected machines
to inspect the passing network traffic. Like the NoC in M3,
the data-center infrastructure in terms of cables and switches
must be trusted, but the hardware and software connected
to it remains untrusted, because the SmartNIC acts as a
trusted guard component. Due to different message delivery
time scales on a data-center network compared to a NoC,
the capability checks are implemented on the SmartNIC in
software.

FractOS uses a capability system similar to M3 but does
not employ a single or a few instances of a kernel component
as this would quickly become a bottleneck in large-scale
deployments. Instead, the kernel’s responsibilities are fully
distributed across all participating SmartNICs, each of them in-
dependently managing capabilities for the resources connected
to it. Capability invocation and delegation, which are critical
operations, do not require any interaction with centralized
services. With these implementation choices, FractOS allows
secure capability-based communication with low latency and
high scalability in a distributed data-center-scale setup.

C. Trading Security Against Latency

The two presented hardware/OS platforms, M3 and FractOS,
enable secure communication based on capabilities, either
checked in hardware or in software. However, some use

& S ms hs
| — — Smart [Guard Component
Gate [Smart EEVE Smart NIC o [Resource (Compute Unit,
way NIC NIC Gate Memory, Interface)
I way Mem
S S TCU ;,
SSD [Smart|_| Gpu | Smart o |
Node| NIC NIC RISC 2 Kernel | !} (@ PE PE
TCU i— == == =
] =T
Smart| | SSD |Smart B ‘ ‘
|| i PE PE PE
PU 1 "Nic [Node| “Nic i TeotICIE | |
(a) FractOS (b) M3 (c) App-specific tile within M3

Fig. 1: Our approach on a secure hardware/OS platform. Multiple resources are organized hierarchically. Guard components
enforce security policies and gateways enable communication across layers. FractOS may enclose one or more M3 systems,
which in turn may enclose application-specific tiles with a CoreManager (CM) for low-latency data processing.

cases in 5G/6G networks even require end-to-end latencies
of below 1 ms [6]. This means that the latency of the actual
baseband processing and the data flow between the chip’s
compute resources should be in the range of microseconds
or even nanoseconds. For this purpose, capability checks
can be skipped to reduce the overall processing delay to a
minimum. For example, we could add another level within
the M3 hierarchy by creating an application-specific tile (for
short app-tile). As depicted in Figure lc, this app-tile may
include multiple processing elements (PEs) with application-
specific accelerators (e.g., DSPs) and its own on-chip network.
While the TCU of this app-tile still checks its capabilities,
all components within the tile are not isolated by TCUs.
This allows to achieve even lower latencies compared to the
standard M3 approach. Due to the lack of isolation within the
app-tile, we trade security against latency.

As a consequence, the hard- and software components in
the app-tile are not managed by the M3 kernel anymore. We
think it requires a dedicated scheduling unit, which we call
CoreManager (CM), to distribute application-specific work-
loads within the app-tile. The CM may be implemented as
a simple hardware component that applies a given data-flow
graph configured by the M3 OS. Hence, latency is reduced
again: while a distinct workload is processed, any dynamic
configuration to set up communication is directly forwarded
to the CM without involving the OS.

IV. EVALUATION

In the evaluation, we strive to answer the questions of
whether security and low latency are a contradiction and how
beneficial the ability to pass data by reference is. We start with
a study of M3, followed by an evaluation of FractOS.

A. Communication Latency vs. Isolation with M3

The M3 hardware/software platform targets the chip level in
the described hierarchy and uses TCUs as guard components
to control each tile’s communication.To evaluate the costs
of this additional isolation, we perform a comparison with
Linux, a widespread and well-optimized OS. As M3 is a
hardware/OS co-design, we use a custom FPGA platform to

M3 RPC
Linux syscall

+

750

-
500
Duration (cycles)

0 250 1000
Fig. 2: Latency of TCU-based communication on M3 and a
Linux system call as a reference.

perform the comparison. The FPGA platform consists of a
tiled architecture with multiple compute tiles, each containing
a RISC-V BOOM core and a TCU. The BOOM core is clocked
with 80 MHz to fully meet timing requirements during FPGA
synthesis and place-and-route.

Applications on M3 use remote procedure calls (RPCs), con-
sisting of a request and a response, to access system services
or the M3 kernel. Therefore, we measured the performance of
no-op RPCs (i.e., only showing the costs of the RPC itself)
between tiles on M3 and show the performance of no-op
system calls on Linux as a reference. Both M3 and Linux run
on our FPGA platform. M3 runs the communication partners
on two BOOM cores, whereas Linux uses a single BOOM
core. We performed 1000 runs with a warm system.

The results in Figure 2 show that cross-tile communication
is with 698 cycles only slightly slower than a system call
on Linux with 534 cycles. Note that 698 cycles translate
into 8.7 us with the 80 MHz core but would translate into
0.7 us with a more realistic clock of 1GHz. On M3, the
RPC requires multiple interactions with the TCU to send the
message, fetch the message on the receiver side, reply on the
received message, fetch the reply on the sender side, and mark
the message as read. For all these TCU interactions, the TCU
verifies their validity based on the available capabilities.

B. Communication Latency vs. Isolation with FractOS

FractOS is designed for the distributed-system level and can
be deployed within a data center. The guard component is
implemented based on SmartNICs, with one SmartNIC per
node to control the resource access of every node. Experiments
are performed on a 3-node cluster with the characteristics
listed in Table 1.

Similar to the experiment with M3, we evaluate the latency
of invoking a no-op syscall in FractOS. The results shown in

Host CPU
Host memory

Intel Xeon E5-2620 v2
64 GB, DDR3 @ 1333 MHz

SSD Samsung 970evo Plus (500GB)

GPU NVIDIA Tesla K80

Smart NIC Mellanox BlueField MT416842, RoCEv2
Network 10 Gbps fabric and switch (split cables)

Table 1: FractOS evaluation environment.

Raw loopback |
FractOS syscall =+

0 1 2 3 4 5
Duration (us)

Fig. 3: Latency of a no-op FractOS syscall, compared to raw
loopback latency.

Figure 3 compare the raw loopback latency (measured with
the ibv_rc_pingpong benchmark) with the latency for
FractOS syscalls. As with M3, FractOS adds some overhead
to verify the validity of the operations based on capabilities,
which results in the additional 0.8 us latency for FractOS. Note
that these measurements show the latency of a syscall within
a single node. RPC operations between different nodes in the
same data center or across data centers can easily result in
latencies in the millisecond range.

C. Reducing Data Transfers with FractOS

Finally, we evaluate the benefit of being able to pass data
around by reference via capabilities. To that end, we use
the storage stack and GPU service of FractOS in a face-
verification service and compare it to the conventional solution
in disaggregated data centers. The face-verification service
verifies the identity of a person by matching the photo and
the ID in the input with the photo corresponding to that ID
from a database. The database is stored on a storage device
and the match algorithm runs on the GPU. When receiving a
face-verification request from a client, the benchmark builds a
pipeline of requests to (1) open and read the files from storage
into the GPU, (2) execute the face-verification GPU kernel,
(3) copy the results from the GPU into the application memory,
and (4) send a response to the client.

As the conventional solution, we use a frontend node that
fetches files from a remote ext4 file system via NFS. The file
system is backed by NVMe-over-Fabrics storage. Both NFS
and NVMe-oF use in-kernel drivers in Linux. The image data
is then copied to and processed by a remote GPU via rCUDA.
On FractOS, both the GPU service and the storage stack use
capabilities as their interface. Namely, the GPU service expects
a capability to the memory the GPU should compute on and an
RPC capability to inform another party about the completion
of the execution. The storage stack of FractOS consists of
a simple file system and an NVMe driver for the storage
device. In contrast to conventional file systems, FractOS’ file
system provides the calling application with an RPC capability
directly to the NVMe driver. In other words, the application
can bypass the file system during data access and directly
request the data from the NVMe driver. FractOS’ capability

. i] [] System & FS
& 4
E 34 [] Data transfers
£ 27 — O GPU
=1
0 I]] SSD
£ 8 £ 8§ £ 8
2 8 & 8 & =@
[a1] ' o L m L
256 512 1024

Fig. 4: End-to-end latency of a face verification request for
different image batch sizes (256, 512, and 1024 images).

system and the involved services make sure that the direct
access to the NVMe driver is secure.

Figure 4 shows the latency for different image batch sizes of
a single client. In the baseline, data is transferred over network
three times: over NVMe-oF, NFS, and rCUDA. FractOS
can optimize the data path down to a single transfer: from
NVMe directly to GPU. This benefit manifests in lower per-
request latencies for FractOS. Additionally, FractOS reduces
the number of messages on the control path. For the conven-
tional solution, all requests travel from the frontend to one
component (e.g., NVMe) and back to the frontend, resulting
in a total of eight control messages (two for open, four for
reading, two for GPU). FractOS reduces this to five messages.

In summary, capabilities have a small overhead during
communication but allow to reduce the number of control
messages and to pass data by reference in a secure manner.
This reduction can even result in significant speedups as shown
with FractOS. Note that M3 achieves the same benefits via its
capability system as FractOS, but we do not show it in the
evaluation for brevity.

V. RELATED WORK

Security in O-RAN architectures: Since O-RAN is a
comparatively new concept which is still under development,
not many solutions addressing the security issues can be
found in the literature. In fact, papers and reports are mainly
concerned with the emerging security risks [9]. The O-RAN
ALLIANCE has established a working group focusing on
security. Although their work has led to many security im-
provements, the currently published security specifications are
still lacking a comprehensive solution, as recently revealed by
a study [3]. The proposed security measures [10] especially
assume a trustworthy execution environment (covering hard-
ware, virtualization platform and the operation of it) and do not
adequately address the supply chain risks nor the possibility
of compromised components (insider attacks) we address.

Isolation of applications and compute resources: Strong
isolation between applications is a prerequisite to host multiple
applications from third-party vendors on a shared O-RAN
infrastructure. For that purpose, commercially available solu-
tions in CPUs such as Intel SGX, TDX, or Arm TrustZone
are deployed to create trusted execution environments (TEEs).
The code in a TEE runs in a secure domain isolated from
other applications running on the same processor. However, the

concept fell victim to successful attacks [4, 5] due to its imple-
mentation complexity. As a result, low-complexity hardware
solutions have been developed, for example, to protect TEEs
against cache-timing attacks [11]. Nevertheless, side-channel
attacks are still discovered on a regular basis, which exploit
caches and other shared states of the CPU [12]. Mitigations
are typically complex as well and lead to performance losses,
hence strong isolation of processes sharing a core remains
challenging. Our proposed concept on a hardware/OS plat-
form can treat entire compute resources as untrusted building
blocks, i.e. they are excluded from the TCB because they
are isolated by guard components. Since different compute
resources do not share micro-architectural states, these attacks
cannot be mounted on other compute resources.

Capability systems: Capability systems have already been
introduced some time ago [13]. Similarly to M3 and FractOS,
other works utilize or design a specific capability system to
manage communication permissions between resources. For
example in SemperOS [14], capabilities are designed and
adapted to a microkernel-based OS in a distributed setting.
CapNet [15] is a capability-based architecture for large-scale
distributed systems like a cloud network. Barrelfish [16] also
employs a capability system and spreads it over a distributed
system of processes. In contrast to FractOS, the mentioned
approaches disregard reliability, which is a drawback when
scaling the system over a network. Furthermore, our hard-
ware/OS platform concept considers enforcing capabilities in
a separate hardware guard component to place trustworthiness
into the system.

VI. CONCLUSION AND FUTURE WORK

We presented our approach for a hardware/operating sys-
tem co-design to implement hardware-enforced capabilities
as a structuring principle for future O-RAN architectures.
On tile- and chip-level, we proposed the M3 system that
enables the secure integration of untrusted hard- and software
components. This modularized design may allow to build a
multi-vendor and trustworthy architecture as required by the
O-RAN specification. Furthermore, the components of M3 are
released as open source” to support the O-RAN’s idea of an
open ecosystem. FractOS takes many of the M3 concepts and
applies them on a distributed-system level in data centers.
Measurement results of both approaches show that capabilities
lead to a small latency overhead during communication but
allow to reduce the number of control messages and to pass
data by reference in a secure manner. In M3, capability checks
are implemented in hardware by TCUs to benefit from a
deterministic and low-latency communication control as well
as to meet the tight limitations on energy consumption and
chip size. In contrast, FractOS performs the capability checks
in software on the SmartNIC. The flexibility of a software
implementation is essential, e.g., to handle node crashes, which
are common in data centers with many nodes.

Zhttps://github.com/Barkhausen-Institut

We demonstrated the technical feasibility of our approaches
by only using architectural components of O-RAN infrastruc-
tures. It remains future work on how to implement a fully
trustworthy and low-latency hardware/software platform that
provides the foundation for O-RAN systems. In particular, the
interfaces between FractOS and M3 as well as between the
M3 kernel and CoreManager have to be investigated.

ACKNOWLEDGMENT
This research is financed on the basis of the budget passed
by the Saxon State Parliament in Germany.
REFERENCES

[1] “O-RAN specifications,” O-RAN ALLIANCE. [Online]. Available:
https://www.o-ran.org/specifications

[2] G. P. Fettweis and H. Boche, “On 6G and Trustworthiness,”
Communications of the ACM, vol. 65, no. 4, pp. 48—49, 2022.

[3]1 S. Kopsell, A. Ruzhanskiy, A. Hecker, D. Stachorra,
and N. Franchi, “Open RAN Risk Analysis,” Federal
Office for Information Security, BSI studies, February 2022.

[Online]. Available: https://www.bsi.bund.de/SharedDocs/Downloads/
EN/BSI/Publications/Studies/5G/5GRAN-Risk- Analysis.html

[4] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” meltdownattack.com, 2018. [Online].
Available: https://spectreattack.com/spectre.pdf

[5]1 M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
meltdownattack.com, 2018. [Online]. Available: https://meltdownattack.
com/meltdown.pdf

[6] G. Fettweis, M. Hassler, R. Wittig, E. Matus, S. Damjancevic, S. Haas,
F. Pauls, S. Nam, and N. Grigoryan, “A Low-Power Scalable Signal
Processing Chip Platform for 5G and Beyond - Kachel,” in 53rd
Asilomar Conference on Signals, Systems, and Computers, 2019.

[71 N. Asmussen, S. Haas, C. Weinhold, T. Miemietz, and M. Roitzsch,
“Efficient and Scalable Core Multiplexing with M3v,” in ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Feb. 2022, p. 452-466.

[8] L. Vilanova, L. Maudlej, S. Bergman, T. Miemietz, M. Hille,
N. Asmussen, M. Roitzsch, H. Hirtig, and M. Silberstein, “Slashing the
Disaggregation Tax in Heterogeneous Data Centers with FractOS,” in
European Conference on Computer Systems (EuroSys), Rennes, France,
April 2022, p. 352-367.

[9] O-RAN ALLIANCE e.V., “O-RAN Security Threat Modeling and
Remediation Analysis,” Technical Specification, O-RAN SFG: Security
Focus Group, O-RAN.SFG.Threat-Model-v03.00, April 2022.

[10] , “O-RAN Security Requirements Specifications,” Technical
Specification, O-RAN SFG: Security Focus Group, O-
RAN.SFG.Security-Requirements-Specifications-v03.00, March 2022.

[11] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 857-874.

[12] C. Canella et al., “Fallout: Leaking Data on Meltdown-Resistant CPUs,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS *19, 2019, p. 769-784.

[13] J.S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability sys-
tem,” in Proceedings of the seventeenth ACM symposium on Operating
systems principles, 1999, pp. 170-185.

[14] M. Hille, N. Asmussen, P. Bhatotia, and H. Hartig, “SemperOS: A
Distributed Capability System,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019, pp. 709-722.

[15] A. Burtsev, D. Johnson, J. Kunz, E. Eide, and J. E. van der Merwe,
“CapNet: Security and Least Authority in a Capability-Enabled Cloud,”
in Proceedings of the 2017 Symposium on Cloud Computing (SoCC
2017), Santa Clara, CA, USA, September 2017, pp. 128-141.

[16] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schiipbach, and A. Singhania, “The multikernel: a new
OS architecture for scalable multicore systems,” in Proceedings of the
22nd ACM Symposium on Operating Systems Principles 2009, SOSP
2009, Big Sky, Montana, USA, October 11-14, 2009, 2009, pp. 29-44.

