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Pilot Randomization to Protect MIMO Secret Key
Generation Systems Against Injection Attacks

Thuy M. Pham, Miroslav Mitev, Arsenia Chorti, and Gerhard P. Fettweis

Abstract—In this paper, we investigate the problem of secret
key generation under an injection attack, which refers to tam-
pering of pilot signals over the air so that part of the shared
randomness observed at the legitimate parties is controlled by
the adversary. It has been shown that to launch such an attack,
an adversary only needs one extra antenna, compared to the
legitimate parties, in a single input single output (SISO) network.
In this work, we generalize this result for the multiple input
multiple output (MIMO) case. Furthermore, we propose pilot
randomization as a means to protect against injection attacks by
reducing them to jamming attacks that constitute a less serious
threat. Finally, we derive a closed-form expression for the secret
key rate of the investigated MIMO setting.

Index Terms—secret key generation, jamming attack, injection
attack, randomization, MIMO.

I. INTRODUCTION
Physical layer security (PLS) covers a multitude of tech-

nologies ranging from the keyless transmission of confidential
messages, to secret key generation (SKG) / distribution and
authentication using physical unclonable functions and RF
fingerprints, among others [1], [2]. The key premise of PLS
is to exploit specific properties of wireless channels to build
adaptive, low latency and low footprint security controls
for sixth generation (6G) systems. However, in addition to
studying performance bounds, proper threat models need to
be investigated before PLS can be incorporated in 6G security
standards.

In this paper, we focus on injection attacks against SKG
systems, which fall in the general category of man-in-the-
middle attack. An injection attack takes place during the pilot
exchange phase [3]–[5] of SKG, i.e., advantage distillation.
As shown for single input single output systems (SISO), an
attacker can under certain conditions inject the same signal
to both legitimate parties, and thus partially control their
observations. The impact of such an attack can be detrimental
as the adversary can control part of the observed shared
randomness and therefore be able to launch a brute force attack
at the input of the privacy amplification stage. An injection
attack in essence reduces the effective size of the key space;
note that such attacks have been experimentally demonstrated
[6].

Previous studies of injection attacks either consider SISO
settings for the legitimate users or reduce the multiple input
multiple output (MIMO) case to multiple single cases [7]. In
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this work, we study a general MIMO setting, and propose a
pilot randomization scheme to alleviate this attack and derive
the achievable secret key rate. Additionally, we investigate the
impact of the number of antennas and the power of the injected
signals on the system performance. Our results show that a
MIMO setting under an injection attack can still provide high
key rates by exploiting MIMO diversity.

The rest of the paper is organized as follows: Section II
introduces the system model and explains the attack, Section
III presents the proposed countermeasures and performance
analysis along with numerical results, while Section IV dis-
cusses the paper’s findings and conclusions.

Notation: Bold lower and upper case letters represent vec-
tors and matrices, respectively. I and 0 denote an identity
matrix and null matrix, respectively; GT and GH denote
the transpose and transpose conjugate of G; E(·) denotes the
expectation of a random variable, ⊗ denotes the Kronecker
product and C stands for the set of complex numbers, |G|
stands for the determinant of G, while all logarithms are
assumed base 2; tr(G) denotes the trace of G.

II. SYSTEM AND THREAT MODEL
A. System Model

We follow the convention in which the system consists
of two legitimate users – referred to as Alice and Bob –
and a malicious node, referred to as Mallory (man-in-the-
middle). We assume Alice and Bob, each has N antennas,
while Mallory has M > N antennas. In the following, we
use the superscript (·)A and (·)B to relate a quantity to that
of Alice and Bob, respectively. The legitimate users transmit
pilot signals QA and QB , respectively, to enact advantage
distillation for SKG. If no active attacks are considered, the
estimated channel matrices at Alice and Bob are given by:

YB = HQA + ZB , (1)

YA = (QB)TH+ ZA, (2)

where QA,QB ∈ CN×N are pilots transmitted by Alice and
Bob, respectively, ZA,ZB ∈ CN×N denote noise matrices at
the corresponding users and H ∈ CN×N is the channel matrix
between Alice and Bob. In the following, we assume that H is
a full-rank channel matrix following complex standard normal
distribution, i.e., H ∼ CN (0, I), thus the marginal distribution
of each element is fX(h) = 1√

π
e−|h|2 . Note that the secret

key rate for this scenario has been investigated in [8]. In this
paper, we focus on the case in which Mallory injects the same
signal in the links to Alice and Bob as depicted in Fig. 1; the
conditions that render this attack feasible are discussed in the
following subsection. In the presence of an injection attack, the
observed channel matrices at Alice and Bob can be expressed
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Fig. 1: System model.

as follows

YB = HQA +W + ZB , (3)

YA = (QB)TH+W + ZA, (4)

where W is the injected signal.
B. Feasibility of Injection Attack

Considering the severity of this type of attack, we prove its
feasibility in the following lemma.
Lemma 1. If Mallory has M > N antennas and can estimate
the channel state information in the links Mallory – Alice and
Mallory – Bob, she can always design a proper precoding
matrix so that

W = HAF = HBF, (5)

where HA,HB ∈ CN×M are the channel matrices between
Mallory and Alice and Bob, respectively, and F ∈ CM×N is
Mallory’s precoding matrix. For the proof of this lemma, we
refer the reader to Appendix A.

The key in the proof of this lemma, is to express the
precoding matrix as F = [F̄T F̂T ] where F̂ ∈ C(M−N)×N

is fixed and F̄ is a function of F̂, i.e., F̄ = f(F̂) which leads
to the remark below.
Remark 1. Mallory needs at least N + 1 antennas to perform
an injection attack.

From the above remark, we conclude that the feasibility
of injection attacks is trivial (one extra antenna). Note that
a similar observation was also reported in [5]. It could be
straightforward for legitimate users to deploy more antennas
than Mallory to shield the system from injection attacks.
However, information on the number of the malicious nodes’
antennas cannot be considered known in general, and more
importantly, PLS cannot rely on placing hardware constraints
on adversarial nodes. In the following, we investigate a pilot
randomization approach to minimize the impact of such an
attack and derive the achievable secret key rates in this
scenario.
III. COUNTERMEASURES AND PERFORMANCE ANALYSIS

In this section, we will describe the method to counter an
injection attack and derive the corresponding secret key rate.
A. Pilot Randomization

SKG exploits the fact that Alice and Bob observations are
correlated. With the injection of W, the same is true for the
adversary who now controls part of the shared randomness.
As a countermeasure, we generalize the pilot randomization
approach that was proposed in [3], [5], relying on pre-
and post-multiplication with locally generated random pilot
matrices QA and QB at Alice and Bob, respectively. This
method will thus reduce an injection attack to a jamming attack

and common signals used for SKG are legitimate-user-based
signals. More specifically, we premultiply (3) by a random
matrix QT

B to obtain an observation

ỸB = (QB)TYB = (QB)THQA +(QB)TW+(QB)TZB .
(6)

By postmultiplying (4) by QA, we also achieve

ỸA = YAQA = (QB)THQA +WQA + ZAQA. (7)

The elements of the randomized pilots QA and QB are
chosen to be zero-mean so that (QB)TW,WQA,W are
uncorrelated. More specifically, we can draw the real and
complex parts of the matrices’s elements from a Rademacher
distribution [9], with probability mass function given by

fQ(q) =
1

2
δ(q + 1) +

1

2
δ(q − 1). (8)

In the following, we also suppose that the elements of
the channels, noise, and pilot randomization matrices are
independent. It is worth noting that the precoding matrix F in
the preceding section is not unique. Thus, we can consider the
worst-case scenario that a sophisticated adversary can design
its precoding so that W follows a zero-mean complex normal
distribution with variance σ2

W , i.e., W ∼ CN (0, σ2
W I).

B. Secret Key Rate in Multiple Input Single Output (MISO)
system

It is worth noting that the majority of existing studies such
as [3], [5] consider single antenna setting for legitimate users.
Surprisingly, the secret key rate under the injection attack with
this simple setting is still missing. For this special case, we
can derive the secret key rate as follows.

Lemma 2. Utilizing the pilot randomization method, the secret
key rate of the MISO system under an injection attack is given
by

IK = log

(
1 +

1

2σ2
IN + σ4

IN

)
, (9)

where σ2
IN = σ2

W + σ2
Z is the interference-plus-noise power.

Interested readers can refer to Appendix B for the details of
the lemma. The formulation for the general case, i.e., MIMO
is derived in the following.
C. Secret Key Rate in MIMO System

In order to derive the achievable secret key rate, we need
to investigate the common properties of the channel matrices.
More specifically, we first consider the left product of the first
terms of both equivalent channel matrices ỸA and ỸB , which
can be described as

H̃ = HQA =


h̃11 h̃12 · · · h̃1N

h̃21 h̃22 · · · h̃2N

...
...

. . .
...

h̃N1 h̃N2 · · · h̃NN

 , (10)

whose individual elements can be expressed as

h̃jk = hj1q
A
1k + hj1q

A
2k + . . .+ hjNqANk (11)

=

N∑
l=1

hjlq
A
lk, j = 1 . . . N, k = 1 . . . N. (12)

Building on this remark, we obtain the following lemma.



Lemma 3. Each element of the sum (12) is a zero-mean
Gaussian variable.

The proof is given in Appendix C. Based on Lemma 3, we
can derive the following.

Proposition 1. A vector h̃ = vec(H̃) forms a Gaussian vector.

The proof of Proposition 1 can be found in Appendix D.
Similarly, we can prove that a vector of (QB)THQA can also
form a Gaussian vector.

By exploiting the results of zero-mean Gaussian vectors
[10], we can express the secret key rate as

IK = log
|Ka||Kb|
|KAB |

, (13)

where

KAB =

[
Ka Kab

Kba Kb

]
, (14)

and Ka and Kb are the covariance matrices of the corre-
sponding channels. Note that Ka = E(a,a), Kb = E(b,b),
Kab = E(a,b) where a and b are the vectors of interest.
In our case, a and b are vectors of length N2 obtained by
stacking the corresponding channel matrices of size N ×N at
Alice and Bob, respectively. As a result, we can express the
secret key rate as follows.

Theorem 1. The secret key rate of the considered system can
be expressed as

IK = N2 log

(
1 +

N2

2Nσ2
IN + σ4

IN

)
, (15)

where σ2
IN = σ2

W + σ2
Z is the interference-plus-noise power.

The detailed proof can be found in Appendix E. We note that
we obtain the term of N2 outside the log as a result of using
the channel matrix N ×N in the SKG [11].
Remark 2. Having equipped with multiple antennas, we can

retain a gain of g = log

(
(σ2

IN+N)2N
2
(2σ2

IN+σ4
IN )

(2Nσ2
IN+σ4

IN )N2 (σ2
IN+1)2

)
in com-

parison with single antenna configuration. In case of single
antenna at legitimate users, i.e., N = 1, the expression in
Theorem 1 reduces to that of Lemma 2.
Remark 3. Denote ξ = N

σ2
IN

the signal-to-interference-plus-
noise (SINR), the secret key rate can be written in an equiv-
alent form as

IK = N2 log

(
1 +

ξ2

1 + 2ξ

)
. (16)

In the following simulations, we can observe the behavior
of the secret key rate following the derived expression. In
the first experiment, we study the advantages of the multiple
antenna technology. In particular, the number of antennas is
varied from 1 to 32, whereas the interference-plus-noise power
changes from −30 to 30 dBW. As expected, MIMO setting
helps to enhance the secret key rate significantly as shown
in Fig. 2. However, when the interference-plus-noise power
increases, the useful signal becomes less dominant and thus
the secret key rate will decrease drastically.

In the second example, we study the impact of the signal-
to-interference-plus-noise, i.e., ξ, on the system. In particular,
SINR ranges from −5 to 20 dB and we also vary the number
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Fig. 2: Secret key rate under varying interference-plus-noise
power.
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Fig. 3: Secret key rate under different SINR and number of
antennas setting.

of antennas. As can be seen from Fig. 3, for a fixed injection
signal power, increasing the number of antennas results in
an increase of the secret key rate. If we fix the number of
antennas, we also notice the degradation of the secret key rate
when either interference or noise power becomes significant
and therefore results in higher interference-plus-noise power
as observed in the preceding simulation. Note that both axes
of Fig. 3 are logarithm base 10 and thus the secret key rate
increases linearly with the number of antenna as determined
in Eq. (16).

IV. CONCLUSIONS
We have modelled an injection attack for MIMO secret

key generation systems and have proven that such attacks
are feasible as long as the attacker has one extra antenna
compared to legitimate users. Interestingly, by using a pilot
randomization scheme to counteract the attack, we are able to
take advantage of the special structure of the formulation to
derive a closed-form expression for the secret key rate, which
was missing from literature. Finally, we have evaluated numer-
ically the impact of the injected signal on the performance of a
SKG system using the pilot randomization method in different
MIMO settings.

APPENDIX A
PROOF OF LEMMA 1

Denote

HA −HB = [H̄ Ĥ], (17)



where H̄ ∈ CN×N , and ĤM ∈ CN×(M−N). Similarly, we
can denote F = [F̄T F̂T ] where F̄ ∈ CN×N , and F̂ ∈
C(M−N)×N . Therefore, we can rewrite the condition (5) as

[H̄ Ĥ]

[
F̄

F̂

]
= 0, (18)

or equivalently

H̄F̄ = −ĤF̂. (19)

By fixing the value of F̂ we have

F̄ = −(H̄)−1ĤF̂. (20)

Due to the randomness of the channel, an invertible channel
H̄ can be chosen and thus completes the proof. Note that if
Alice and Bob have single antenna while Mallory has two, the
equation above reduces to [5, Eq. 1].

APPENDIX B
PROOF OF LEMMA 2

Considering the single-antenna case at legitimate users, we
can rewrite the estimated channels at Alice and Bob as follows:

yB = hqA + w + zB , (21)

yA = qBh+ w + zA. (22)

Utilizing randomization method, we can rewrite the aforemen-
tioned equations as

ỹB = qByB = qBhqA + qBw + qBzB , (23)

ỹA = yAqA = qBhqA + wqA + zAqA. (24)

It is worth noting that for two complex i.i.d random variables
X,Y with correlation coefficient ρ, the mutual information is
given by

IK = − log(1− ρ2), (25)

where the correlation coefficient ρ = E(X,Y )√
E(Y,Y )E(X,X)

.

In our case, we can compute

E(ỹB , ỹA) = 1, (26)

E(ỹB , ỹB) = 1 + σ2
W + σ2

Z , (27)

E(ỹA, ỹA) = E(ỹB , ỹB). (28)

Combining these results with (25), we obtain

IK = − log(1− 1

(1 + σ2
W + σ2

Z)
2
), (29)

= log

(
(1 + σ2

W + σ2
Z)

2

2(σ2
W + σ2

Z) + (σ2
W + σ2

Z)
2

)
, (30)

= log

(
1 +

1

2(σ2
W + σ2

Z) + (σ2
W + σ2

Z)
2

)
. (31)

Define σ2
IN = σ2

W +σ2
Z , the secret key rate for the scalar case

can be written as

IK = log

(
1 +

1

2σ2
IN + σ4

IN

)
, (32)

which completes the proof.
APPENDIX C

PROOF OF LEMMA 3
Note that we use conventional notation that h is a realization

and H is a random variable. In the following, we will prove
that each component in the sum of (12) can be derived from
zero-mean independent Gaussian variables. Since H is i.i.d.
and QA has Rademacher distribution for both real and complex

parts, we obtain the product HjlQ
A
lk ∼ CN (0, 1) which is a

direct result of [5].

We can further study the cross correlation between compo-
nents in the sum (12). Note that for fixed j and k, we can
obtain arbitrary pair of random variables Hl = HjlQ

A
lk and

Hv = HjvQ
A
vk, l ̸= v, which results in

Khl,hv
= E(Hl, Hv) (33)
= E(HlHv)− E(Hl)E(Hv)

= E(HjlQ
A
lkHjvQ

A
vk)− E(HjlQ

A
lk)E(HjvQ

A
vk)

= E(HjlHjv)E(QA
lkQ

A
vk)−E(Hjl)E(QA

lk)E(Hjv)E(QA
vk)

= 0. (34)

We now prove that a vector of aforementioned variables
X = [H1, H2, · · · , HN ]T can follow the multivariate normal
distribution. First, consider the covariance

Kx =


E(H2

1 ) E(H1, H2) · · · E(H1, HN )
E(H2, H1) E(H2

2 ) · · · E(H2, HN )
...

...
. . .

...
E(HN , H1) E(HN , H2) · · · E(H2

N )



=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = I. (35)

Note that E(X) = 0, thus a multivariate Gaussian probability
density function can be written as

fX(x) =
1

(π)
d
2 |Kx| 12

x−(x−E(X))HK−1
x (x−E(X))

=
1

(π)
N
2

e−(|h|21+|h|22+···+|h|2N )

=
1√
π
e−|h|21 1√

π
e−|h|22 · · · 1√

π
e−|h|2N

= fX(h1)fX(h2) · · · fX(hN ). (36)

As a consequence, we can always assume that components
of the considered sum originate from independent Gaussian
variables.

APPENDIX D
PROOF OF PROPOSITION 1

In this appendix, we investigate the independence properties
of the matrix in (10). In particular, considering a pair, e.g., H̃jk

and H̃ju, k ̸= u, we can obtain the covariance matrix as

Kh̃jk,h̃ju
= E(H̃jk, H̃ju) (37)

= E(H̃jkH̃ju)− E(H̃jk)E(H̃ju)

= E

((
N∑
l=1

HjlQ
A
lk

)(
N∑

u=1

HjuQ
A
uk

))

= E

(
N∑
l=1

(
N∑

u=1

HjlQ
A
lkHjuQ

A
uk

))

=

N∑
l=1

(
N∑

u=1

E(HjlQ
A
lkHjuQ

A
uk)

)
= 0. (38)



We can continue in this fashion obtaining the same results for
arbitrary pair of elements in the matrix of (10). We can then
apply the same arguments in the proof of Lemma 3 (c.f. Eqs.
(35)-(36)) and thus conclude the proof.

APPENDIX E
PROOF OF THEOREM 1

To derive the secret key rate, we can first vectorize the
obtained channel matrices as follows ỹA = vec(ỸA), ỹB =
vec(ỸB). By definition of the covariance matrix, we thus get

Ka = E(ỹA(ỹA)H) (39)

= E
(

vec((QB)THQA)vecH((QB)THQA)
)

+ E
(

vec((QB)THQA)vecH((WQA))
)

+ E
(

vec((QB)THQA)vecH(ZAQA)
)

+ E
(

vec(WQA)vecH((QB)THQA)
)

+ E
(

vec(WQA)vecH((WQA))
)

+ E
(

vec(WQA)vecH((ZAQA)
)

+ E
(

vec(ZAQA)vecH((QB)THQA)
)

+ E
(

vec(ZAQA)vecH((WQA)
)

+ E
(

vec(ZAQA)vecH((ZAQA))
)
. (40)

Since the channel, randomization matrices and noise are
independent, after some manipulations, we arrive at

Ka = E
(
((QA)T ⊗ (QB)T )((QA)T ⊗ (QB)T )H

)
+ (σ2

W + σ2
Z)E

(
((QA)T ⊗ I)((QA)T ⊗ I)H

)
, (41)

where σ2
IN = σ2

W + σ2
Z . Due to the properties of mixed

products, i.e., (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), we can
easily achieve

Ka = E
(
(QA(QA)H ⊗QB(QB)H)T

)
+ σ2

INE
(
(((QA)HQA)T ⊗ I)

)
. (42)

Repeating derivation to that of Bob enables us to write

Kb = E
(
(QA(QA)H ⊗QB(QB)H)T

)
+ σ2

INE
(
(I⊗ ((QB)HQB)T )

)
, (43)

Kab = E
(
(QA(QA)H ⊗QB(QB)H)T

)
. (44)

The same is applicable to Kba and it is easy to check that
Ka = Kb,Kab = Kba. Applying the property of determinants
and the derivations above to (13) yield

IK = log
|Ka|

|Ka −KabK
−1
a Kab|

(45)

= logdet(Ka)− logdet(Ka −KabK
−1
a Kab) (46)

= I1 − I2. (47)

An element of the product Q̃ = QA(QA)H is given by

q̃jk =

N∑
l=1

qAjl(q
A
lk)

∗, j = 1 . . . N, k = 1 . . . N. (48)

On the diagonal, i.e., j = k, we obtain q̃jj =
∑N

l=1 |qAjl|2.
Thus

E(q̃jj) = N. (49)

We can apply similar arguments to the product (QB)HQB

and therefore obtain

I1 =

N2∑
l=1

log((N + σ2
IN )N) = N2 log((N + σ2

IN )N). (50)

We note that another indirect result of this derivation is the
computation of SINR which is given by

ξ =
tr
(
E(ỹsỹ

H
s )
)

tr
(
E(ỹwỹH

w )
)
+ tr

(
E(ỹnỹH

n )
) (51)

=
tr
(
E
(
(QA(QA)H ⊗QB(QB)H)T

))
σ2
IN tr

(
E
(
(((QA)HQA)T ⊗ I)

)) =
N

σ2
IN

(52)

where ỹs = vec((QB)THQA), ỹw = vec(WQA), and ỹz =
vec(ZAQA). The second term of (47) can be handled in much
the same way which results in

I2 =

N2∑
l=1

log

(
(N + σ2

IN )N − N3

(N + σ2
IN )

)
, (53)

= N2 log((2Nσ2
IN + σ4

IN )N)−N2 log(N + σ2
IN ).

Combining these results, we can rewrite (47) as

IK = I1 − I2 = N2 log

(
(N + σ2

IN )2

2Nσ2
IN + σ4

IN

)
, (54)

= N2 log

(
1 +

N2

2Nσ2
IN + σ4

IN

)
, (55)

which proves the theorem.
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