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Abstract—Contemporary HPC systems use batch scheduling of
compute jobs running on exclusively assigned hardware resources.
During communication, polling for progress is the state of the art
as it promises minimal latency. Previous work on oversubscription
and event-based communication, i.e. vacating the CPU while
waiting for communication to finish, shows that these techniques
can improve the overall system utilisation and reduce the energy
consumption. Despite these findings, neither of the two techniques
is commonly used in HPC systems today. We believe that the
current lack of detailed studies of the low-level effects of event-
based communication, a key enabler of efficient oversubscription
for classical MPI-based applications, is a major obstacle to a
wider adoption.

We demonstrate that the sched_yield system call, which is
often used for oversubscription scenarios, is not best suited for this
purpose on modern Linux systems. Furthermore, we incorporate
event-based communication into Open MPI and evaluate the
effects on latency and energy consumption using an MPI micro-
benchmark. Our results indicate that event-base communication
incurs significant latency overhead but also saves energy. Both
effects grow with the imbalance of the application using MPI.

I. INTRODUCTION

The applications prevalent in HPC are compute-heavy and
data-intensive. They are typically based on the message passing
interface (MPI) [1], a ubiquitous standard for communication
and synchronisation that is implemented by various libraries.
This common standard allows for portability of applications
between systems with very diverse networking hardware. HPC
applications run large computations on distributed systems and
are, therefore, very demanding when it comes to communica-
tion. They usually spawn one rank (an MPI term for process)
per available CPU core and, when waiting for communication
operations to complete, rely on busy waiting or polling for
minimal end-to-end latency.

Polling greedily occupies all allocated resources, even
when no computational progress is made. In contrast, event-
based communication has a rank relinquish its CPU until
the runtime system or kernel signals the completion of one
or more communication operations. This strategy lowers the
CPU utilisation, which promises significant advantages with
respect to energy consumption. Event-based communication
also lends itself particularly well to oversubscription, in
which other applications utilise the vacant CPU. Despite these
advantages, there is currently little support for event-based
communication in popular MPI libraries. Instead, when running
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Figure 1: Comparison of Communication Modes. An appli-
cation first sets up a new (send or receive) operation 1 via
the network interface card (NIC) or shared memory (SHM).
In polling mode, shown on the left side, the application
subsequently polls its memory to check for the operation’s
completion 2a . In event-based mode, shown on the right side,
the application sleeps instead. Once the communication finishes,
the operating system wakes up the application 2b .

in oversubscribed environments, MPI libraries give up the
CPU via the sched_yield system call [2]. But as we show,
yielding cannot replace a faithful implementation of event-based
communication in this context.

We find that event-based communication is underrated,
understudied, and lacks wider adoption as a consequence. In
this paper, we present our modifications of Open MPI to support
event-based communication. We then study the mode’s effects
at the lowest possible level using LIBRA, a ping-pong micro-
benchmark we designed for this exact purpose. Furthermore, we
show the problems of using sched_yield as a substitute for
event-based communication in oversubscribed environments.

Following an exploration of relevant concepts (Section II)
and related work (Section III), we introduce our modification
of Open MPI (Section V) and discuss sched_yield ()Sec-
tion VI). Section VI presents the LIBRA micro-benchmark as
well as our measurement setup and results before we summarise
our findings and conclude in Section VII.

II. BACKGROUND

The batch processing of applications, used by virtually
all current HPC systems, assigns resources exclusively. An
application waits until the system’s job scheduler allocates a
dedicated partition of the available hardware resources to it. In
typical HPC setups, the granularity of these partitions is full
compute nodes, not individual CPUs, so different applications
do not share any resources except for the network. The hardware
and the runtime system are deemed fully deterministic. An
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Figure 2: Oversubscription of the LIBRA benchmark using
different communication modes. The graph shows the average
latency and standard deviation of one ping-pong operation.
Both ranks share a CPU and we simulate an imbalance of
50 µs. Section VI provides more details on the benchmark
and measurement setup. “Yield” refers to the standard imple-
mentation of sched_yield in Linux, whereas “Yield*” is a
patched version (Section IV).

application with full control over its partition can, therefore,
make an informed decision on how to use its resources most
efficiently. Consequently, MPI-based applications use one rank
per available CPU core and pin it to that core to effectively
circumvent the operating system scheduler. To minimise end-
to-end communication latency, ranks poll in a busy loop
to check their send or receive operations for completion;
shown on the left side of Figure 1. However, this strategy
leads to inefficiencies when applications cannot fully utilise
their assigned resources due to load imbalances or hardware
performance variations [3].

During its runtime, each rank alternates between phases of
independent parallel computation and phases of communication
and synchronisation [4]. A straggler, a slow rank entering
its communication phase late, may not only delay the whole
computation, but force other ranks to also waste compute cycles
and energy while waiting for the slow one. Countermeasures
include dynamic load balancing and overlapping of computation
and communication phases.

These strategies, however, are cumbersome and error-prone
for application developers who are often domain experts but
not necessarily MPI experts. The code’s complexity increases,
making it harder to read and maintain [5]. With the expected
increases in the size of HPC clusters and other factors
like heterogeneity and hardware performance variation, the
aforementioned problems will become only more pronounced.
Sometimes, the appearance of stragglers is totally out of
control of application programmers. For example, even the
CPU clock rate may depend on the instructions executed and
manufacturing-induced variations [3, 6, 7]. Therefore, stragglers
should be addressed at the operating system and runtime level
as well.

A. Oversubscription

Oversubscription is a technique that can improve the system
utilisation and throughput. Multiple ranks (potentially from
multiple applications) run on the same CPU cores. This
approach allows the runtime or operating system to take care
of the issues discussed previously, for example by changing
how many and which ranks share a core. But efficient
oversubscription is also a useful tool for developing HPC
applications on ordinary desktop machines with relatively few
cores.

However, naive oversubscription based on polling commu-
nication will achieve the exact opposite as demonstrated in
Figure 2. When multiple ranks share a core, CPU cycles used
to poll for the completion of communication operation might
better be used by another rank’s computation. As polling is
so disastrous to performance in oversubscribed scenarios, the
sched_yield system call is used instead; see Section III.
Open MPI, for example, even applies it automatically when the
library detects oversubscription. sched_yield is expected to
trigger a de-scheduling of the currently running rank, allowing
another rank to run on the CPU. This is not valid anymore
in modern versions of Linux as we will further discuss in
Section IV. Figure 2 also shows the effects of yielding, both
for the default implementation of Linux and our modified
version (see Section IV).

B. Event-based Communication

Event-based communication, shown on the right side of
Figure 1, offers an alternative to polling for completion. A
rank will relinquish its CPU until the runtime system or
kernel signals the completion of one or more communication
operations. This allows either another rank to make progress,
which is especially compelling for oversubscription, or the CPU
to idle and potentially enter energy-saving states. While single
application performance has been the dominating quality metric
of HPC systems for a long time, energy is gaining importance;
a trend that is accelerated by the advent of Exascale systems.
Frontier, the first such system, consumes as much as 21MW of
electrical power [8] and the peak power of Aurora, an upcoming
Exascale machine, is expected to be up to 60MW [9].

Another convenient side effect of event-based communication
leaving the CPU idle is that traditional system monitoring
tools like top allow an easily accessible way to judge the
efficiency of the parallel application. Whereas polling appears
the same as useful computation, idle phases show up in these
tools. However, event-based communication is not widely
supported by MPI libraries. To the best of our knowledge, only
MVAPICH [10] offers such support, limited to its InfiniBand
backend.

C. Open MPI

Open MPI [11] is one of the most commonly used MPI
libraries. It is free software and of particular interest to
us due to its modular and well-documented codebase. For
our experiments, we enabled event-based communication in
Open MPI as detailed in Section V.
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Unified Communication X (UCX) [12] is an open-source
communication framework used as the default communication
backend for InfiniBand in Open MPI. UCX unifies different
vendor- and device-specific drivers on a lower level than MPI
and provides only few, essential messaging primitives. The
library comes with support for event-based communication
for various backends, notably including InfiniBand and shared
memory, which are often found in HPC settings. Even though
each backend requires a distinct implementation — interrupts
generated by the NIC, shared memory ultimately relies on
Unix domain sockets [13] — all mechanisms converge in a
file descriptor that becomes readable once a communication
operation finishes. UCX uses this file descriptor in a poll
system call [14] to implement event-based communication.

For reason discussed in Section V, we extended the existing
implementation to allow for a timeout. Even without any
completion, poll will return after this pre-specified time and
thus not suspend execution indefinitely.

III. RELATED WORK

Utrera et al. use oversubscription to provide MPI-based
applications with “virtual malleability” [15]. Normally, the
user decides the number of processes of an MPI application
when launching the programme. Any changes at runtime, if
done at all, need to be triggered by the application. Malleable
applications, on the other hand, can adapt to runtime changes
in the resources available to them, providing the system with
more flexibility. Virtual malleability makes MPI applications
malleable transparently. The system uses oversubscription
should there be fewer cores available than application ranks.

Building on this work, Utrera et al. propose a job scheduler
that maximises resource utilisation and improves overall system
performance by allowing jobs to adapt to variations in the
load through virtual malleability [16]. Considering only single
applications in a heterogeneous environment, Utrera et al.
also applied oversubscription to “pack” MPI applications [17].
The performance difference between more and less powerful
core naturally causes stragglers. Running multiple processes
oversubscribed on a the more powerful cores, frees up some
of these cores without significantly affecting the application’s
wallclock runtime.

“Tangram” [18] fills partially idles nodes by co-locating
applications and selective use of oversubscription. Sharing
nodes between CPU-intensive, memory-intensive, and I/O-
intensive applications allows the system to reduce the overall
makespan as well as the turnaround time for individual
applications.

In all of the aforementioned works, the authors either
use sched_yield for efficient oversubscription or do not
discuss the specific mechanism at all. In the latter case,
sched_yield is most likely applied implicitly by the MPI li-
brary which detects the oversubscription situation automatically.
Other alternatives, especially event-based communications,
have not been explored at this point.

1 end = now() + 30s
2 counter = 0
3
4 while now() < end
5 counter += 1
6 if DO_YIELD

7 sched_yield()
8 else
9 getppid()

10 print(counter)

Figure 3: Micro benchmark to showcase the effects of
sched_yield.

[19] employs oversubscription for the in-situ analysis of a
running simulation. The simulation uses a hybrid approach
with MPI for its inter-node communication and OpenMP
for node-local parallelisation. During serial phases of the
simulation, determined via online monitoring and prediction,
the analysis application utilises the now idle cores. The
authors use SIGSTOP to suspend the analytics whenever the
main simulation runs fully parallel. This way they avoid any
performance degradation due to ranks competing for a CPU.

There are also oversubscription papers which consider
only simultaneous multithreading as a kind of hardware-level
oversubscription [20, 21]. Whereas this approach avoids the
problem of efficient software-level oversubscription, it is also
less flexible then the aforementioned schemes.

Venkatesh et al. demonstrated with “Energy-Aware MPI” that
event-based communication provides significant advantages in
terms of energy consumption [22] as it allows the CPU to idle
and potentially enter energy-saving modes. The system uses no
oversubscription and extends the event-based communication in
MVAPICH to trigger based on expected communication laten-
cies. The user can chose a maximally acceptable performance
degradation in trade for reduced energy consumption.

“Adagio” [23] saves energy for classical MPI applications
that rely on polling. Using predicted computing times, the
runtime system reduced the clock rate of processors (dynamic
voltage and frequency) that run “fast” ranks. This slows all
ranks down to the speed of stragglers and saves energy dues
to the reduced clock rate.

Other approaches incorporate higher-level abstractions [24–
26], extend MPI [27, 28] or employ (user-level) threads instead
of processes to represent MPI ranks [29–31]. This allows for
lower overhead and finer control during oversubscription. How-
ever, non-trivial applications usually require manual adoption
to work with or benefit from these runtimes.

IV. THE SCHED_YIELD SYSTEM CALL

Polling is detrimental to performance in oversubscribed
scenarios. Due to the lack of event-based communication in
most available MPI libraries, they sched_yield system call
is often used to trigger a de-scheduling of the current rank,
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Figure 4: Effects of the sched_yield system call on the
runtime allocated to two processes sharing a CPU. Contrary to
common expectations, a process issuing the system call does
not necessarily vacate its CPU. The effect is significantly more
pronounced with the patched version of CFS (“Yield*”).

allowing another one to run on the CPU. MPI libraries typically
even apply it automatically when they detect oversubscription.
In modern versions of Linux, however, the actual behaviour of
sched_yield is not so straightforward.

A. Scheduling in Linux

The Completely Fair Scheduler (CFS), Linux’ default
scheduler, is designed to give each running process1 a fair
share of the available CPU time. To do so, CFS maintains a
record of the virtual runtime of each process and bases its
scheduling decisions on this value. Whenever a scheduling
decision is due, CFS will select the process with the currently
lowest virtual runtime as it did not yet have its fair share of the
available computation time. The virtual runtime is proportional
to the time a process occupied any CPU, weighted by the
process’s scheduling priority; a higher priority making the
virtual time pass slower. A rank’s priority can be influenced
by the user but CFS also adjusts it automatically: compute-
intensive ranks get demoted to provide a fairer distribution
of available compute time and better interactive in end user
systems. For traditional HPC applications, CFS has hardly any
influence. Each rank is pinned to a dedicated CPU which runs
nothing else. So priorities and even CFS as a whole do not
play any signifiant role.

This situation changes drastically as soon as oversubscription
comes into play: Now, multiple ranks compete for a CPU and
get scheduled by CFS. As mentioned before, MPI libraries
or runtimes (see Section III) use the sched_yield system
call to influence the work of CFS, making it de-schedule the
running rank, which polls for some communication operation to
complete, in favour of another. However, modern implementa-
tions of CFS strive to uphold their fairness property even in the
presence of sched_yield. The scheduler will tenaciously
select the process with the currently lowest virtual runtime.

1CFS, being a Linux kernel scheduler, is concerned with processes or threads
in general. For the purpose of this paper, we consider the terms “process” and
“rank” equivalent and use whichever is more appropriate in the given context.

When CPU pinning is involved, only processes allowed to
run the CPU are eligible. Polling for the completion of
communication requires the rank only to check a few memory
locations for updates before it yields the CPU. With high
probability, the polling rank still has the lowest virtual runtime
and continues to run. So, in contrast to the programmer’s
intention, sched_yield has little to no effect in these
scenarios.2

B. Demonstration of the Effects

We patched Linux to reinstate the (now deprecated) option to
enforce sched_yield even within CFS. This patch closely
resembles the implementation of sched_compat_yield
that was available in kernel versions prior to 3.03 with small
changes to work with current kernels. Whenever a rank invokes
sched_yield, the patched CFS will look up the currently
largest virtual runtime among all ranks assigned to the same
CPU. The calling thread’s virtual runtime is then set to this
maximum + 1 to effectively “move it to the end of the queue”.
An entry in the sysfs pseudo file system [32] allows the user
to switch between the regular implementation and the modified
one at runtime.

To demonstrate the vastly different effect, consider the micro-
benchmark shown in Figure 3. The benchmark runs for a
fixed time of 30 seconds, continuously incrementing a counter
variable in a tight loop. It also issues a system call in the loop;
either sched_yield or getppid, depending a command
line argument. This approach makes sure that the inherent
overhead of a system call has no effect on the result. At the
end, the benchmarks outputs the final value of its counter
variable which serves as a measure of the compute time the
benchmark received.

We run two instances of this benchmark in parallel on
a single core, a setup similar to oversubscription. One of
the two instances always has DO_YIELD set to false, so
it does not call sched_yield. We calculate the share of
runtime of instance X as counter_X / (counter_1 +
counter_2). Figure 4 shows the results for three different
scenarios: In the baseline measurement, the second instance of
the benchmark also uses DO_YIELD = false. As expected,
both instances got equal shares of CPU time. In the remaining
scenarios the second instance has DO_YIELD set to true. They
differ only in the implementation of sched_yield being
used and the effect of the “more aggressive” patched version
is clearly visible.

To be able to use a modified Linux kernel, we had to run the
benchmark on a test cluster in our lab. However, repeating the
first two scenarios on the “Taurus” cluster bore similar results.
We conclude that the Linux kernels shipped by HPC vendors
are not different from the vanilla kernel in this particular aspect.
Details on both systems are available in Section VI.

2Note, that according to documentation [2], the effects of sched_yield
are unspecified for CFS. The stated effect is based on the actual implementation
within the Linux kernel.

3Git commit 1799e35d in the official Linux repository.
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1 progress_loop()
2 static num_tries = 0
3
4 events = ucx_progress()
5 if events > 0
6 goto reset_tries
7
8 num_tries += 1
9 if TRIES_POLL == INFINITY or

num_tries < TRIES_POLL

10 return
11
12 if TRIES_YIELD == INFINITY or

num_tries < (TRIES_POLL + TRIES_YIELD)
13 sched_yield()
14 return
15
16 events = ucx_wait(TIMEOUT)

17 if events > 0
18 reset_tries:
19 num_tries = 0

Figure 5: Simplified progress loop of Open MPI with modifi-
cations for adaptive waiting.

V. EVENT-BASED COMMUNICATION IN OPEN MPI

Open MPI advances any kind of communication in its
progress loop. This regularly executing code queries all
available communication backends for progress and triggers
further actions when completions occur. During polling, the
progress loop is running continuously. When Open MPI detects
that it runs in an oversubscribed environment (or when manually
instructed to do so), the progress loop incorporates a call to
sched_yield. The intention is for the system scheduler to
give the CPU to another process. Section IV discusses how
this expectation is not necessarily met by modern versions of
the Linux kernel.

We modified the existing progress loop to allow for adaptive
waiting. In contrast to the readily available implementation of
event-based communication in MVAPICH, ours works not only
for InfiniBand but, in principle, for arbitrary backends. Cur-
rently, only UCX provides the required features for InfiniBand
and shared memory. Furthermore, adaptive waiting allows to
switch from tight polling to yielding the CPU to event-based
communication at runtime. This scheme is inspired by similar
approaches in the implementation of locks.

Figure 5 shows pseudo code for our implementation. In the
original implementation, all available communication backends
are progressed individually. That includes processing of out-
standing messages and checking for completed communication
operations. We concentrate on UCX as the main backend, so
line 4 refers only to that. Note, that UCX supports shared
memory communication, too, so adaptive waiting also works

in the common scenario where InfiniBand and shared memory
are in use at the same time.

If there are any completions, the number of unsuccessful tries
is reset (line 6). Three user-controlled parameters further steer
the communication strategy: TRIES_POLL specifies how often
the progress loop is to run in a tight polling mode. The default
value of INFINITY indicates to use this mode exclusively; the
standard behaviour of Open MPI. In the actual implementation,
we also use compiler hints to optimise for this scenario so as to
not affect the performance of traditional MPI applications. As
long as as we remain in polling mode, the progress loop returns
(line 10) and higher layers of Open MPI will re-executed the
function almost immediately.

After TRIES_POLL repetitions of the progress loop failed
to see any communication operation complete, we call
sched_yield for the following TRIES_YIELD attempts
(line 13). The next run of the loop will, again, check all
backends for completions. Note, that both aforementioned
parameters can also be set to 0 to directly activate the last, the
event-based mode. In this mode, the progress loop instructs
UCX to suspend itself (see Section II-C for details) until either
any communication operation finishes or the TIMEOUT elapses
(line 16).

The timeout turned out to be necessary as Open MPI does
expects its progress loop to finish fast and run repeatedly.
Progressing the communication backends (line 4) also triggers
processing of yet unsent messages. Unbounded waiting can
therefore lead to deadlocks in some cases, especially in
collective MPI operations or when other backends are used in
parallel with UCX. Until we solve these issues, the timeout
serves as a fallback.

VI. EVALUATION

As demonstrated in II-A efficient oversubscription of clas-
sical MPI applications relies on event-based communication.
To properly judge the cost and benefit of this communication
mode, we devised the LIBRA micro-benchmark and used it to
run extensive experiments.

A. LIBRA Micro-Benchmark

The main effects of event-based communication will show
in the latency of MPI operations and their energy consumption.
For our low-level study, we concentrate on point-to-point
messages as collective operations are typically built on to of
these primitives. One of the main use cases of oversubscription
is to better cope with stragglers, i.e. ranks that are slower than
their communication partner. Therefore, we want to be able to
emulate their effect in the communication.

Initially, we considered using the point-to-point latency
benchmark from the OSU benchmark suite [33]. However,
this benchmark reports only average latencies and offers no
way to emulate stragglers. Using the benchmark as an example,
we developed LIBRA. Figure 6 shows a pseudo code version of
LIBRA’s core implementation: Its two ranks first synchronise
and then exchange MPI messages in a ping-pong fashion for a
configurable number of times. In one direction, LIBRA sends
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Rank 0

MPI_Barrier()

for (#ITERATIONS)
timed_loop(DELAY)

start = now()
MPI_Send(buffer, MSGSIZE, rank1)
MPI_Recv(buffer, 0, rank1)
record_time(now()− start)

write_timings()

Rank 1

MPI_Barrier()

for (#ITERATIONS)

start = now()
MPI_Recv(. . .)
MPI_Send(. . .)
record_time(. . .)

Figure 6: LIBRA MPI Micro-Benchmark

a message of configurable size, whereas the reply is empty
to maintain better control over the amount of transferred data.
To avoid any uncontrolled imbalance between the two ranks,
both time each individual ping-pong operation. The time source
for now() is std::chrono::steady_clock. In the end,
rank 0 writes these values to a file for further analysis. This
approach of recording the end-to-end ping-pong latency in one
rank avoids any issues with unsynchronised clocks in the two
ranks.

To emulate a straggler rank, we introduce a time-based loop
in rank 0 which continuously polls the current time until the
user-specified DELAY elapsed. This polling is equivalent to
compute operations of an actual MPI-based application and is
not part of the measured communication latency. The delay loop
does, however, contribute to the overall energy consumption as
we measure energy externally for a full run of the benchmark,
not for individual ping-pongs.

B. Measurement Setup

For measurements shown in previous sections of this paper,
we used a local test machine with a 4-core Intel Core i7-4790
CPU with Hyper-Threading enabled (but unused), 32 GiB RAM,
and a Mellanox ConnectX-3 (MT27500) network adapter (also
not used). In contrast to an HPC cluster, we were able to run
a modified Linux kernel (version 5.12.1) on this machine.

All of the following experiments, we ran on the High
Performance Computing and Storage Complex (HRSK-II or
“Taurus”)4 at TU Dresden. Each node of this system has two
12-core Intel Xeon E5-2680 v3 CPUs with Hyper-Threading
disabled, 64 GiB RAM, and a Mellanox Connect-IB (MT27600)
network adapter. The system is equipped with “High Defini-
tion Energy Efficiency Monitoring” (HDEEM) [34], power
instrumentation that allows to record energy consumption
data for individual nodes and their CPUs. The system runs
a standard Red Hat Enterprise Linux kernel (version 3.10.0-
1127.19.1.el7.x86_64) provided by Bull.

For all benchmarks we used an exclusively allocated single
node and pinned each rank to one of the CPUs. Not only does
this method allow HDEEM to measure the energy for each rank
separately, it also enables the CPUs to make full use of their

4https://tu-dresden.de/zih/hochleistungsrechnen

energy saving modes. Using a single node avoids any external
influences from other users. In particular that means, that
measurements on the InfiniBand backend use the InfiniBand
network adapter for communication but not the network. We
deem this a valid approach as event-based communication
has no influence on the propagation of messages within the
network.

We used Open MPI 4.1.1 with UCX 1.10.1, both patched
as described in Section V, together with our LIBRA micro-
benchmark. Rank 0, the “measuring side” of the benchmark,
always runs with polling-based communication to ensure
minimal latency. The “measured side”, rank 1, runs either with
polling, (unmodified) yielding, or event-based. LIBRA ran with
message sizes from 1B up to 8MiB and sender delays ranging
from 0 µs to 1ms. To keep the benchmarking time manageable,
we selected the number of iterations according to message size
and sender delay: 100 000 iterations for messages smaller than
1KiB and delays shorter then 50 µs, then progressively fewer
down to 100 iterations.

Different modes and backends have an effect on the
communication. We consider the InfiniBand and the shared
memory backend, to cover the typical communication paths
for HPC applications: shared memory for ranks on the
same node and InfiniBand for remote nodes. To study the
properties of all available communication modes, we measured
the times for polling (TRIES_POLL=INFINITY), yielding
(TRIES_POLL=0, TRIES_YIELD=INFINITY), and event-
based communication (TRIES_POLL=0, TRIES_YIELD=0
, TIMEOUT=100). Different timeout values for event-based
communication had no measurable effect so we omit them for
brevity.

C. Results

As there are no other processes sharing the CPU with the
benchmark, we observe yielding to effectively become polling.
The results for these two modes lie within a 5% range of each
other. We therefore omit yielding from the graphs and further
discussion.

a) Latency: Figure 7 depicts the average latency of a
ping-pong operation across different message sizes and sender
delays. Without any sender delay, i.e. for perfectly synchronised
applications, there are only small differences between polling
and event-based communication. This is because the first test for
completion already succeeds and no waiting occurs. For higher
delays we see an increased variance as well as a significant
absolute overhead for event-based communication that levels
out with increasing delays. For small messages this overhead
stabilises at ≈ 90 µs for InfiniBandand ≈ 50 µs for shared
memory. Considering the already large delay at this point, the
additional overhead added by event-based communication is
negligible. For large messages, the data transfer itself consumes
more time which reflects in the latency; it increases for polling
as well. As a consequence, the relative latency overhead of
event-based communication gets lower, better amortising its
cost.
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Figure 7: Average latency of a ping-pong operation in the LIBRA micro-benchmark. Whiskers show the standard deviation. The
latency increases with larger messages as the data transfer itself takes longer. As an result, the relative overhead of event-based
communication becomes smaller with increasing message size.

We did not yet investigate the sources for the observed
overhead in detail. But the longer the delay, the more likely
rank 1 will actually wait and enter a sleeping state. Setting up
the waiting mechanism, suspending the rank, and resuming it
later on are likely the main source of the observed overheads
but we also consider the power-saving mechanism of modern
CPU to play an important role.

b) Energy: The assumption of power-saving mechanism
having significant influence is strengthened by the energy
consumption we observe in our experiments, shown in Figure 8.
We omit results for very short sender delays as the method of

measuring the energy consumption from outside the benchmark
turned out to produce noisy results in these cases. Due to the
short benchmark runtime the measurement captured too many
unrelated external effects.

Considering only the CPU that runs rank 1 (Figure 8a),
event-based communication is always beneficial using Infini-
Band. Longer delays, emulating more imbalanced applications,
strengthen this effect as the CPU remains idle for longer
whereas in polling mode it runs a tight loop. In absolute
numbers, the energy required for a small message grows by
multiple orders of magnitude from ≈800mJ to >30 J. Similar
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to longer delays, larger messages lead to longer overall runtimes
and, therefore, higher absolute energy consumption. Only for
shared memory the message size has a noticeable effect on
the relation between polling and event-based mode. This effect
vanishes with longer delays. At this point, the causes are
unknown and require further investigation.

With the overall system energy consumption (Figure 8b),
the overarching trends are the same but the savings are less
pronounced. This energy domain includes the second CPU
running rank 0 as well as the power supply unit, local mass
storage, the network adapter, and other peripherals. Compared
to just the CPU running rank 1, the absolute energy consumed
is larger by a factor of 5. However, only that CPU becomes
idle in event-based mode and can save energy.

VII. CONCLUSION & OUTLOOK

We have demonstrated event-based communication are a
promising basis for oversubscription in HPC environments
by implementing and evaluating this communication mode in
Open MPI, a popular HPC communication library. For the
evaluation, we developed LIBRA, an MPI micro-benchmark
that can emulate imbalanced applications and measure the
latency and energy consumption of low-level communication
operations precisely. Furthermore, we showed the futility of
using the sched_yield system call of modern Linux kernels
for efficient oversubscription. All software patches discussed in
this paper and the full benchmarking data are available online
at https://zenodo.org/record/7198966.

Our results show that event-based communication incurs
a latency overhead that is particularly significant for small
messages and well-balanced applications. In these scenarios the
traditional polling approach is better suited. For large messages,
however, the overhead is less pronounced and especially for
imbalanced applications event-based communication allows
the CPU to save energy. One possible cause for both, higher
energy savings and higher latency overhead, is that the CPU
needs more time to wake from deeper sleep states.

As a next step we plan to look more closely into the exact
causes for the latency overhead of event-based communication
in Open MPI. We surmise that parts of the overhead stem from
UCX not being optimised for fast event-based communication.
We also intent to better integrate event-based communication
into Open MPI to avoid the explicit timeout and combine
our setup with oversubscription approaches using our current
findings for tuning.
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Figure 8: Energy Consumption. The bars show the energy
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energy consumed by polling. The numbers inside the bars
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benchmark to allow for the comparison of runs with different
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