
CABAS: Real-Time for the Masses
Till Smejkal
TU Dresden

Jan Bierbaum
TU Dresden

Manuel von Oltersdorff-Kalettka
TU Dresden

Michael Roitzsch
Barkhausen Institut

Abstract—Although the real-time community has produced
impressive research results, real-time methodology has not
gained traction in commodity application development. Only
in specialized niches, like avionics and automotive, solid real-time
methods are applied because of regulatory requirements and safety
concerns. Outside those niches, best-effort-style programming is
the norm. We strife to bridge this gap by exposing approachable
interfaces to everyday programmers.

In this paper, we present CABAS, a user-level framework that
traces the execution times of jobs online and, based on these
data, automatically adapts the parameters of the CBS real-time
scheduler inside the Linux kernel. With this approach, we hope
to align soft real-time programming with current development
methods by freeing the developer from the burden of manually
deriving appropriate soft real-time scheduling parameters.

I. INTRODUCTION

The real-time community has accumulated an impressive
body of knowledge on task models and schedulability analysis.
However, developing a real-time application according to these
teachings is a complex undertaking in practice. Therefore,
proper real-time methodology is only applied in niches, where
regulatory requirements demand a safety certification. From
cloud interactive apps to IoT robots and drones, many areas
would benefit from solid real-time solutions.

In this work, we present CABAS, a user-level frontend to the
constant bandwidth server (CBS) implementation inside the
Linux kernel. Offline timing analysis of applications is replaced
by automatic online tracing of job runtimes, paired with
machine learning to predict execution times. CABAS is inspired
by ATLAS [1], which has demonstrated a scheduler design
based on tracing of execution times and machine learning
to replace worst-case analysis. ATLAS therefore addresses
our design goal of simplifying the development of real-time
applications, but is limited to single core systems, lacks an
approachable programming interface, and requires an in-kernel
scheduling component.

After we provide a short overview of CBS and ATLAS,
we discuss our framework (Section III). We use synthetic
benchmarks and a video player (Section IV) to demonstrate
that CABAS is not only able to provide appropriate parameters
to the CBS scheduler but also to automatically adapt these
parameters when the application’s demands change at runtime.

II. BACKGROUND

A. ATLAS Runtime and Kernel Scheduler
ATLAS as described by Roitzsch et al. [1] consists of two

parts. First there are a runtime and programming framework
that accept soft real-time jobs from applications and deliver
them to the second part, a dedicated soft real-time scheduler.

One key aspect of the ATLAS runtime is that programmers do
not need to make a complicated execution time analysis of their
applications, but only have to specify a relative deadline. The
execution time of the application is automatically trained by the
runtime using machine learning. This training can be assisted
by the programmer by attaching workload metrics to individual
jobs which will be considered by the runtime to predict the
job’s execution time. Thanks to these runtime abstractions,
programmers can stay in their respective domains and only
have to know which application-specific metrics correlate best
with their application’s execution time.

However, a significant problem of the ATLAS runtime and
scheduler is, that the in-kernel soft real-time scheduler is not
part of the mainline Linux kernel. Hence, maintenance of
the scheduler is a significant burden, as the Linux scheduling
interfaces change regularly. In addition to that, ATLAS cannot
simply be used in a plug-and-play fashion, but instead requires
a special Linux kernel with the ATLAS soft real-time scheduler
built into. Accordingly, although the programming interface
and runtime are beneficial for a wide-spread usage of soft real-
time, an integration of ATLAS into any system for a normal
audience — no kernel developers — is difficult.

B. Real-Time in the Linux Kernel

Priority 100

Priority 99

Priority 2

Priority 1

Priority 0

...

Nice 0

Nice 1

Nice 20

...

SCHED_DEADLINE

SCHED_RR
SCHED_FIFO

SCHED_NORMAL
SCHED_BATCH
SCHED_IDLE

CBS

Posix RT

CFS

Figure 1: Schedulers of the Linux kernel and their priorities.

The wide variety of use-cases for the Linux kernel and
thereby the huge amount of different requirements on the
system, resulted in a number of diverse schedulers co-existing
within the kernel, as shown in Figure 1. The majority of
processes are scheduled using the Completely Fair Sched-
uler (CFS). CFS handles processes that have no real-time
requirements and are thus scheduled with the SCHED_NORMAL
priority. So-called nice-levels can be used to instruct the sched-
uler to prefer some processes over others, but no guarantees
about execution times or when a process is executed are given.



If one strives for more control about a process’ execution, the
Linux kernel also provides the SCHED_FIFO and SCHED_RR
priorities. Both of them are further separated into 99 sub-
priorities and are guaranteed to never be preempted by a process
running in a lower priority within SCHED_FIFO, SCHED_RR,
or any process being scheduled by CFS. Although many
consider the SCHED_FIFO and SCHED_RR schedulers already
as real-time schedulers, no guarantees among the processes are
given by the scheduler regarding, for example, the process’ time
to finish. Instead, processes are just executed in the order in
which they were presented to the scheduler. However, the Linux
kernel also supports yet another scheduling priority, namely
SCHED_DEADLINE. Processes in this priority are handled by
a Constant-Bandwidth-Server-like scheduler and are always
executed with a priority above any other scheduler in the
system.

Constant Bandwidth Server (CBS) [2] is a scheduling algo-
rithm that handles hard and soft real-time tasks simultaneously,
guaranteeing deadlines for hard real-time jobs and a constant
bandwidth for the soft real-time ones. The CBS implementation
in Linux supports hard and soft real-time tasks. In both
cases, a task τi is defined by its inter-arrival time Ti and
its execution time Qi. For hard real-time tasks, Ti and Qi refer
to the minimum inter-arrival time and the worst case execution
time (WCET), whereas for soft real-time tasks the parameters
are just considered mean values. CBS will schedule its workload
using Earliest Deadline First (EDF). For hard real-time tasks
the inter-arrival time Ti is used as the deadline of individual
jobs. For soft real-time tasks the Constant Bandwidth Server
protocol is used to manage the jobs and calculate their per-job
deadlines. Every Constant Bandwidth Server maintains a budget
qi that is expended when a corresponding job executes. Once
the budget reaches 0, the deadline of the server is increased
by Ti of the soft real-time task that the server manages.

In order to integrate CBS in the Linux kernel, various
changes to its behavior were proposed and implemented [3, 4].
Whereas in the original CBS description the budget of a server
depleted equally to the executed time of the corresponding job,
the implementation in the Linux kernel uses a varying rate
based on the state of the server and the overall utilization of
the system. Furthermore, Linux distinguishes between active
servers — servers that have pending jobs — and inactive ones —
servers without pending or running jobs. This state of a server
influences the overall utilization of the system and hence the
rate at which servers decrease their budget. In addition, the
Linux implementation of CBS always leaves some space in
its real-time schedule to let other processes that are scheduled
with lower priorities to also execute on the CPU.

C. Soft vs. Hard Real-Time

The design of the ATLAS scheduler and framework is
tailored towards soft real-time applications. CBS on the
other hand supports both hard and soft real-time applications.
The nature of ATLAS with its predictor, that might estimate
incorrect execution times is an inherent problem for hard
real-time applications, which are usually used in mission-

critical systems where missing a deadline would lead to a
potentially catastrophic failure. For soft real-time applications
a deadline miss is usually not critical but just not favorable.
Typically, with soft real-time applications the usability of a
result decreases the later the job finishes and hence might result
in unwanted glitches or visible artifacts. Yet, normally soft
real-time applications can still continue even after a deadline
miss. Hence, our work CABAS focuses on making the creation
of soft real-time applications easier since moving the time-
consuming execution time analysis of an application into an
online-trained predictor is acceptable. Deadline misses, which
might occur especially at the beginning of the predictor training,
can be tolerated by the application. However, for hard real-time
applications CABAS is probably not suited, although the used
Linux CBS scheduler is capable of managing such scenarios
as well.

III. IMPLEMENTATION

A. Using Linux CBS

As described in Section II-B the Linux kernel scheduler
comprises multiple different schedulers that work together, each
handling a different scheduling priority. In order to run real soft
or hard real-time applications on a Linux system one has to
instruct the kernel to use the SCHED_DEADLINE scheduler for
this particular application via the sched_setattr system
call. To define and possibly change the task parameters such
as its WCET or its deadline one has to use the additional
sched_setparam system call.

As the Linux schedulers always schedule individual threads
(struct task_struct within the kernel), it is even pos-
sible to compose an application of normal threads managed
by CFS and real-time threads managed by the Linux CBS
scheduler. However, this thread-based management within the
kernel makes the integration of the task- and job-based model
of real-time applications difficult. Especially in a soft real-
time scenario, where there are multiple possibly independent
jobs, the mapping to separate threads can be burdensome. Our
framework CABAS addresses this problem and provides the
programmer with an easy-to-use interface that abstracts thread
creation, configuration, and management away.

B. The CABAS Framework

Application

CABAS Framework

Create Tasks
τi(Ti)

1

Submit Jobs
ji(ci)

3

Tr1 Tr2

Create & Initialize Threads
Tri for Task τi

2

Linux CBS

PredictorPredict ci
4

Qi 5

Schedule Tri(Qi, Ti)

6
Admission 7

Figure 2: The architecture of the CABAS framework.



The architecture of CABAS is visualized in Figure 2. In
general CABAS consists of the framework, which handles the
interaction with the kernel’s CBS scheduler as well as manages
all the necessary state, and the estimator, which is used to
predict missing information such as a job’s execution time
based on workload metrics provided by the application. In order
to run a real-time workload using CABAS, the programmer
first has to create tasks τ with an expected inter-arrival time
Ti

1 . For each task CABAS will create a corresponding thread
and initialize the thread such that it can be run with the Linux
CBS scheduler 2 . This initialization includes, for example, the
calls to sched_setattr and sched_setparam with the
correct parameters. Later, when the application submits actual
jobs to the framework, it can optionally augment them with
metrics ci that correlate positively with the jobs’ runtime 3 .
CABAS uses the workload metrics — if provided — to predict
the execution time Qi of the job based on observations of
previous job executions 4 & 5 . We use the linear least-squares
auto-regressive predictor presented by Roitzsch et al. [1], which
we found to work reasonably well for a set of synthetic
benchmarks and a video player; further discussed in Section IV.
As shown in the figure, the predictor is not tightly integrated
into the CABAS framework and can thus be substituted by the
programmer with a specialized implementation. The prediction
step can also be omitted when the programmer provides the
expected execution time with the job submission. Providing an
upper bound from a worst-case execution time analysis allows
hard real-time operation, but this is not the focus of our work.

In any case, CABAS will then schedule the thread correspond-
ing to the job’s task with the specified parameters on the ker-
nel’s CBS scheduler 6 . In the case that the predictor determined
different parameters then for the previous run, CABAS will
update the scheduling parameters via the sched_setparam
system call and the kernel’s CBS scheduler will rerun its

admission test 7 in order to prevent over-utilization of the
system. When this admission should fail, the framework will
receive an error upon which further steps need to be taken by
the programmer. Ignoring the error and running the task with the
old parameters might be a valid option, but overload handling
can be application-specific and is orthogonal to our solution.
If multiple jobs are submitted for one task, the framework will
internally queue them and start them either at a specified point
in time or as soon as possible.

C. Programming with CABAS

1 int create_task(int period, void (*execute)(void *), int
exec_time);

2 int create_task_pred(int period, void (*execute)(void *),
struct metrics (*generate)(void *));

3 void add_job_to_task(int task, void *arg);
4 void join_task(int task);

Listing 1: The C Interface of the CABAS Framework

CABAS itself is an open-source C/C++ framework1 and
can thus be used by many existing applications. Even in-
tegrating it into modern programming languages like Rust
is easily doable as foreign function calls to C libraries are
usually supported. Listing 1 shows the C-interface of CABAS,
which consist of mainly three important functions. There are
create_task_pred and create_task to submit new
tasks to the framework. Whereas the former version will instruct
the framework to use the estimator, the latter follows the more
traditional task model for CBS where a median execution
time and inter-arrival time for a task’s jobs are specified at
creation time. When the predictor is used, CABAS will call the
generate function before every job execution. That function
should return the workload metrics for the given job, which are
then used by the framework to predict the job’s execution time.
Since this function can be specified by the programmer, various
techniques are possible for generating the metrics. To run the
actual job, the framework will call the execute function
specified at the task creation and provide it the corresponding
arguments for the job. CABAS assumes that a task can be
represented by one function. Each job incarnation is a call to
this function with varying arguments. Accordingly, the third
function that the framework provides (add_job_to_task)
adds new jobs to a task by specifying the arguments with
which the execute function should be called. The interface
function join_task will wait for the completion of all jobs
of one task.

D. CABAS vs. Traditional CBS

One significant difference between CABAS and traditional
CBS is that CABAS dynamically adjusts the scheduling param-
eters during the execution of the application. In a traditional
CBS soft real-time application, a programmer would use offline
analysis to determine the mean execution time and the mean
inter-arrival time of a task and provide these values to the
scheduler. Whereas CBS itself is designed to handle variations
within the execution times of the jobs, significant changes
in the behavior of jobs, as they can happen with phased
applications, can lead to a significant tardiness (see Section IV
for an example). CABAS however can alleviate such effects
by dynamically adjusting the CBS scheduling parameters at
runtime and is thereby able to react to changing application
behavior. For example, if an application enters a phase where
jobs take longer than usual, CABAS will automatically increase
the budget for the corresponding CBS Server, reserving more
CPU time for the job.

This dynamic parameter adaptation is also beneficial when
an application is ported to new hardware. With traditional CBS
one either has to do a new analysis to calculate the mean
execution times of the application on the new hardware, or
use the previously calculated values and accept a potentially
significant job tardiness. With CABAS and its predictor no
analysis is necessary as the system will automatically learn the
mean execution times and use them accordingly.

1https://github.com/TUD-OS/Cabas

https://github.com/TUD-OS/Cabas


IV. EVALUATION

We evaluate CABAS with two different applications: a
synthetic benchmark and an elementary video player. All
experiments were performed on a machine with an Intel
Core i7-4790 (4 cores, 2 threads each) and 8GiB RAM
running Ubuntu 21.10 with Linux 5.13. For collecting runtime
data, we used the low-overhead Linux Trace Toolkit: next
generation (LTTng) to set a tracepoint to the end of a job and
calculated its tardiness. The time CABAS requires for training
and estimation is accounted as part of a job’s execution time.

A. Synthetic Benchmark

A synthetic soft real-time workload comprises multiple tasks,
each with a target mean inter-arrival time and mean execution
time. The values for individual jobs use a standard distribution
with the chosen mean value and a standard deviation of 10%.
Within this range the values are uniformly distributed.

To acquire representative and reliable results, we generated
1000 workloads for each integer utilisation in the range between
50% and 200% using the UUniFast algorithm [5]. Each
workload comprises five tasks with at least five jobs each,
capping the inter-arrival time at 10 000 µs. The minimum inter-
arrival time is set to 200 µs. Workloads run for at least 50 000 µs
on either one or two cores. Utilisation above 100% were only
run in the two-core scenario as CBS is not expected to handle
overload situations. A dedicated thread in SCHED_FIFO
submits the real-time jobs to the CABAS framework, which
then executes them on Linux CBS. The jobs themselves consist
of a busy loop consuming the job’s appointed runtime.

Figure 3 shows the mean tardiness of a job across the 1000
workloads for a specific system utilisation. CBS is statically
configured with the target mean inter-arrival time and mean
execution time of a workload. Note, that in a real-world scenario
the application developer would need to determine and provide
this information. CABAS, on the other hand, is given only the
mean inter-arrival time and automatically derives the expected
runtime using its predictor (see Section III).

The tardiness of jobs increases up to 100 µs to 250 µs when
scheduled with CABAS. The overall behaviour is similar for
the dual core scenario. Considering the simplistic nature of the
synthetic real-time jobs, the only possible metric is the target
runtime itself. Knowing these values, however, would allow to
directly use CBS and thus defeat the purpose of CABAS, so
we did not use any metrics.

B. Video Player

A typical application that can profit from soft real-time is a
media player that wants to provide smooth playback even in the
presence of high system load. Unfortunately, adopting real-time
scheduling is complex and no major media player makes use of
it. To evaluate this interesting scenario anyway, we developed
an elementary video player based on FFmpeg. The player reads
a media file, extracts the video stream, decodes the individual
video frames, and renders them using SDL2. Any other media
streams (audio, subtitles, . . .) are discarded.

The player maintains three processing tasks: (read and)
decode frames, scale the frame to the expected output size and
colour format, and render the frame at the right point in time. In
contrast to regular video players, ours never drops late frames
to highlight the effect of such delays. For the evaluation, we
used the animated short film “Big Buck Bunny”2. This video
is encoded with H.264, has a resolution of 1920× 1080 pixels,
and a frame rate of 60Hz. We played the first 3 minutes of the
video, i.e. 10 800 frames. Given the target frame rate, all tasks
have a period of 1

60 s. A dedicated management thread, pinned
to one core, issues new jobs to the aforementioned tasks and
forwards data whenever appropriate. Processing jobs are free
to use any of the remaining hardware threads.

CABAS allows to provide application-specific metrics with
a new job, which are then used to improve the runtime
prediction (see Section III). Whereas scaling and rendering have
a homogeneous workload and take a fixed amount of time, this
is different for the decoding task. Due to the nature of modern
video codecs, frames might have to be decoded out of order:
Decoding a B frame (bidirectional coded picture) requires that
its successor has been decoded. Thus, the execution time for
decoding the chronologically next frame can vary depending
on that frame’s type and we use this frame type as a metric for
CABAS. To give the scheduler more leeway in compensating for
deviations, we established a buffering scheme that allows up to
8 scale jobs and 8 render jobs to exists in the system. In contrast
to the synthetic benchmark, the mean job runtimes for the video
player tasks were not known. We determined these times in
an initial run of the player in CFS on an unloaded system.
The decoding time for each frame is depicted in Figure 4. To
simplify the player’s implementation, we also pre-determined
the frame type during this initial run.

Users of a media player care about smooth playback, i.e.
the timely rendering of frames. Figure 5 shows mean tardiness
for each individual frame when using different schedulers.
On a lightly loaded system CFS shows no tardiness at all,
which also demonstrates that the CPU is capable to decode all
frames fast enough to maintain the target frame rate. However,
with heavy load, CFS finishes with the video playback almost
9 seconds late. A heavily loaded system for CFS was simulated
by running in parallel to the video player as many stress3

benchmarks as the system has CPUs.
CBS, configured with the mean value of all execution times

for each specific task, accumulates a delay of 18 seconds over
the 3 minute runtime of the video. Further tests showed that
long-running decode jobs may leave the scale task without
work and thereby depleting the scale task queue eventually.
Since the scale task has a very stable runtime, its budget is
just enough to complete one job per period. Therefore, the
scale task can never catch up with the refilled queue once it
was initially delayed. Unfortunately, this creates a downstream
effect as the following render task will also eventually deplete
its queue and be limited by the throughput of the scale task.

2https://peach.blender.org/download/
3https://github.com/resurrecting-open-source-projects/stress



50 60 70 80 90 100
0

100

200

300

400

500

Utilisation in %

Ta
rd

in
es

s
in

µ
s

CBS
CABAS

(a) Real-time tasks on a single core

60 80 100 120 140 160 180 200
0

100

200

300

400

500

Utilisation in %

Ta
rd

in
es

s
in

µ
s

CBS
CABAS

(b) Real-time tasks on two cores

Figure 3: Mean tardiness of a job depending on the workload’s utilisation.

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000
0

50

100

Frame number

E
xe

cu
tio

n
tim

e
in

m
s

m
ea

n

Figure 4: Execution times of the decode task in low-load CFS. The black line shows the mean value used for CBS (8.268ms).

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000
0

3

6

9

12

15

18

Frame number

Ta
rd

in
es

s
in

s

CFS (low load)
CFS (high load)
CBS
CABAS

Figure 5: Tardiness of the render task for individual frames.

The main problem is that the Linux CBS implementation is not
work conserving in contrast to when the player runs in CFS.
Further measurements showed that overbudgeting the scale
task (e.g. giving it twice the budget) can remedy this situation
to some degree, but would not add any additional insight to
the comparison of the schedulers. Such a decision is, once
again, on the programmer of the application. In addition we
found out, that the rendering of the video in the SDL2 player
window done by the X-server also introduces some push back
on the render task. The main problem is that the X-server itself
is not scheduled using real-time priorities. This mismatch of
scheduling priorities between the render task and the X-server

creates unpredictable additional delay in the render task as the
task waits for the acknowledgment of the window manager that
the window was updated before it renders another frame. We
could verify with additional measurements that not drawing
the frame on the X-server window but just in an internal frame
buffer reduces the delay of the video playback when run with
CBS. When this drawing just to an internal frame buffer is
combined with the aforementioned overbudgeting of the scale
task, the video player is even able to catch up with the playback
eventually after a delay happened and will thus finish with a
lower or even no delay in contrast to what is shown in Figure 5
for CBS



When running the player with CABAS tardiness increases,
too, but less drastically than with CBS. Adjusting the scheduling
parameters by learning and estimating the execution times with
CABAS’ predictor can better compensate for the long-term
variation in execution times. CABAS will temporarily give, for
example, the scale tasks more budget when a long-running
decode occurs in the decode task, which causes a delay of
the scale task. The scale task is thus able to catch up with
the refilling queue eventually. When the scale task catches
up with the new load and has a stable execution time again,
CABAS will reduce the budget accordingly. To sum it up, due
to the execution time predictor, CABAS can react to changes
in the application behavior which otherwise have to be done
manually by the programmer. Additional measurements with
CABAS where we disabled the rendering of the frame in the
X-server window, similar to the scenario for CBS, resulted
in a tardiness of 0 s and show that our framework is able
to smoothly play back a video even without any additional
scheduling-specific knowledge (e.g. fine-tuning of scheduling
parameters) from the programmer.

V. RELATED WORK

CABAS intends to make real-time scheduling more acces-
sible for developers. A considerable expertise barrier exists
when application developers implement problems amenable
to real-time scheduling, which has also been observed by
Brandenburg [6]. Other works share our goal of lowering this
barrier, approaching it either using reservation-based methods
or the fair-share schedulers present in commodity systems.

a) Reservation Approaches: The original CBS [7] wraps
tasks with varying execution times in a server to make
scheduling behavior more robust if task parameters are not
exact. To improve quality of service for a soft real-time load,
later work added dynamic changes to the allocated server
bandwidth [8] and slack reclaiming mechanisms [9]. CBS-
based schedulers have also been demonstrated on multicore
systems [10] and within frameworks for quality of service
control [11].

At their core, all reservation-based mechanisms require the
developer to report an execution time or bandwidth requirement
to the scheduler. Such information is difficult to obtain for
highly workload-dependent tasks that end-users run on a
variety of hardware platforms with different speeds. The added
adaptivity features, however, enable CBS to tolerate over- as
well as underspecification. In return, CBS provides timeliness
guarantees and is suitable for hard real-time. CABAS relieves
the developer from determining execution times entirely, but
is not suitable for hard real-time. A common trait of CBS’es
adaptive reservations and CABAS is the use of a per-task
execution time estimator. However, the estimator presented
for CBS [8] extrapolates by using only past execution times.
CABAS leverages workload metrics to improve estimations and
transparently communicates execution time information to the
CBS scheduler without involving the developer.

b) Fair Processor Sharing: Fair-share schedulers allow
limited control over scheduling behavior by providing a priority
interface like the Unix nice levels. However, a developer cannot
determine the correct priority level for an application without
a complete overview of all other applications in the system.
Borrowed Virtual Time [12] expresses task priorities with a
concept called warp time, but assigning these parameters still
requires global system knowledge, because warp times are not
intrinsic to one application. CABAS, CBS, and all other EDF-
based schedulers employ deadlines which are parameters from
the problem domain of the application. They can be specified
without global knowledge.

VI. CONCLUSION

We present CABAS, an easy-to-use user-level frontend
to the CBS real-time scheduler. CABAS mediates between
application and scheduler, enabling developers to spawn new
work items with individual execution behavior by way of
a single function call. Developers need to reflect only on
application-local behavior and CABAS only asks for parameters
from the application domain: Periodic deadlines express latency
requirements, workload metrics describe jobs. CABAS uses
these values and execution time information it gathers in the
background to derive scheduling parameters for CBS.

We have demonstrated, using synthetic benchmarks and
video playback, that CABAS can properly handle common use
cases. Not only can it derive suitable CBS parameters, but also
automatically adjust them to changing application demands at
runtime. Our framework, thus, makes soft real-time scheduling
readily available to the average developer.

As a next step we plan to look more closely into why CBS
has such a devastating behavior for the video player example
and whether we can improve CABAS and Linux’ CBS in general
to closer match the CFS low load performance. Furthermore,
we want to investigate other applications and areas where
CABAS can be applied. One interesting aspect would be to
use the real-time-specific information such as deadline and
estimated execution time for more energy-aware scheduling.

REFERENCES

[1] M. Roitzsch et al., “ATLAS: Look-ahead scheduling using
workload metrics,” in Proceedings of the 19th IEEE real-
time and embedded technology and applications symposium,
ser. RTAS, Philadelphia, PA, USA: IEEE, Apr. 2013, pp. 1–10,
ISBN: 978-1-4799-0184-5. DOI: http://dx.doi.org/10.1109/
RTAS.2013.6531074. [Online]. Available: http:/ /os. inf. tu-
dresden.de/papers_ps/rtas2013-mroi-atlas.pdf.

[2] L. Abeni and G. Buttazzo, “Integrating multimedia applications
in hard real-time systems,” in Proceedings 19th IEEE real-
time systems symposium (cat. no. 98CB36279), IEEE, 1998,
pp. 4–13.

[3] L. Abeni et al., “Greedy CPU reclaiming for
SCHED_DEADLINE,” in Proceedings of the real-time
Linux workshop (RTLWS), dusseldorf, germany, 2014.

[4] J. Lelli et al., “Deadline scheduling in the Linux kernel,”
Software: practice and experience, vol. 46, no. 6, pp. 821–839,
2016.

[5] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-time systems, vol. 30, no. 1, pp. 129–
154, May 2005. DOI: 10.1007/s11241-005-0507-9.

https://doi.org/http://dx.doi.org/10.1109/RTAS.2013.6531074
https://doi.org/http://dx.doi.org/10.1109/RTAS.2013.6531074
http://os.inf.tu-dresden.de/papers_ps/rtas2013-mroi-atlas.pdf
http://os.inf.tu-dresden.de/papers_ps/rtas2013-mroi-atlas.pdf
https://doi.org/10.1007/s11241-005-0507-9


[6] B. B. Brandenburg, “The case for an opinionated, theory-
oriented real-time operating system,” in 1st international
workshop on next-generation operating systems for cyber-
physical systems, ser. NGOSCPS, Montreal, Canada, Apr. 2019.
[Online]. Available: https : / / www. cse . wustl . edu / ~cdgill /
ngoscps2019/papers/NGOSCPS2019_Brandenburg.pdf.

[7] L. Abeni and G. Buttazzo, “Integrating multimedia applications
in hard real-time systems,” in Proceedings of the 19th IEEE
real-time systems symposium, ser. RTSS, Madrid, Spain: IEEE,
Dec. 1998, pp. 4–13, ISBN: 0-8186-9212-X. DOI: http://dx.
doi .org/10.1109/REAL.1998.739726. [Online]. Available:
http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf.

[8] L. Abeni et al., “QoS management through adaptive reserva-
tions,” Real-time systems, vol. 29, no. 2, pp. 131–155, Mar.
2005, ISSN: 0922-6443. DOI: http://dx.doi.org/10.1007/s11241-
005-6882-0. [Online]. Available: http://retis.sssup.it/~lipari/
papers / real _ time _ systems _ cucinotta _ palopoli _ adaptive _
reservations.pdf.

[9] L. Palopoli et al., “Weighted feedback reclaiming for multime-
dia applications,” in Proceedings of the 2008 IEEE/ACM/IFIP
workshop on embedded systems for real-time multimedia,
ser. ESTImedia, Atlanta, GA, USA: IEEE, Oct. 2008, pp. 121–
126, ISBN: 978-1-4244-2612-6. DOI: http://dx.doi.org/10.1109/
ESTMED.2008.4697009. [Online]. Available: http://disi.unitn.
it/~palopoli/publications/estimedia08.pdf.

[10] S. Kato et al., “AIRS: Supporting interactive real-time ap-
plications on multicore platforms,” in Proceedings of the
22nd euromicro conference on real-time systems, ser. ECRTS,
Brussels, Belgium: IEEE, Jul. 2010, pp. 47–56, ISBN: 978-0-
7695-4111-2. DOI: http://dx.doi.org/10.1109/ECRTS.2010.33.
[Online]. Available: http://ertl.jp/~shinpei/papers/ecrts10.pdf.

[11] T. Cucinotta et al., “On the integration of application level
and resource level QoS control for real-time applications,”
IEEE transactions on industrial informatics, vol. 6, no. 4,
pp. 479–491, Nov. 2010, ISSN: 1551-3203. DOI: http://dx.doi.
org/10.1109/TII.2010.2072962. [Online]. Available: https:
//scholar.google.com/scholar?cluster=5484267806271076788.

[12] K. J. Duda and D. R. Cheriton, “Borrowed-Virtual-Time (BVT)
scheduling: Supporting latency-sensitive threads in a general-
purpose scheduler,” in Proceedings of the 17th ACM symposium
on operating systems principles, ser. SOSP, Charleston, SC,
USA: ACM, Dec. 1999, pp. 261–276, ISBN: 1-58113-140-2.
DOI: http://doi.acm.org/10.1145/319151.319169. [Online].
Available: http://gregorio.stanford.edu/bvt/bvt.ps.

https://www.cse.wustl.edu/~cdgill/ngoscps2019/papers/NGOSCPS2019_Brandenburg.pdf
https://www.cse.wustl.edu/~cdgill/ngoscps2019/papers/NGOSCPS2019_Brandenburg.pdf
https://doi.org/http://dx.doi.org/10.1109/REAL.1998.739726
https://doi.org/http://dx.doi.org/10.1109/REAL.1998.739726
http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf
https://doi.org/http://dx.doi.org/10.1007/s11241-005-6882-0
https://doi.org/http://dx.doi.org/10.1007/s11241-005-6882-0
http://retis.sssup.it/~lipari/papers/real_time_systems_cucinotta_palopoli_adaptive_reservations.pdf
http://retis.sssup.it/~lipari/papers/real_time_systems_cucinotta_palopoli_adaptive_reservations.pdf
http://retis.sssup.it/~lipari/papers/real_time_systems_cucinotta_palopoli_adaptive_reservations.pdf
https://doi.org/http://dx.doi.org/10.1109/ESTMED.2008.4697009
https://doi.org/http://dx.doi.org/10.1109/ESTMED.2008.4697009
http://disi.unitn.it/~palopoli/publications/estimedia08.pdf
http://disi.unitn.it/~palopoli/publications/estimedia08.pdf
https://doi.org/http://dx.doi.org/10.1109/ECRTS.2010.33
http://ertl.jp/~shinpei/papers/ecrts10.pdf
https://doi.org/http://dx.doi.org/10.1109/TII.2010.2072962
https://doi.org/http://dx.doi.org/10.1109/TII.2010.2072962
https://scholar.google.com/scholar?cluster=5484267806271076788
https://scholar.google.com/scholar?cluster=5484267806271076788
https://doi.org/http://doi.acm.org/10.1145/319151.319169
http://gregorio.stanford.edu/bvt/bvt.ps

	Introduction
	Background
	Atlas Runtime and Kernel Scheduler
	Real-Time in the Linux Kernel
	Soft vs. Hard Real-Time

	Implementation
	Using Linux CBS
	The Cabas Framework
	Programming with Cabas
	Cabas vs. Traditional CBS

	Evaluation
	Synthetic Benchmark
	Video Player

	Related Work
	Conclusion

