
RATLS: Integrating Transport Layer Security
with Remote Attestation

Robert Walther1, Carsten Weinhold2, and Michael Roitzsch2

1 Technische Universität Dresden, Dresden, Germany
robert.walther@mailbox.tu-dresden.de
2 Barkhausen Institut, Dresden, Germany

{firstname.lastname}@barkhauseninstitut.org

Abstract. We present RATLS, a companion library for OpenSSL that
integrates the Trusted Computing concept of Remote Attestation into
Transport Layer Security (TLS). RATLS builds upon handshake exten-
sions that are specified in version 1.3 of the TLS standard. It therefore
does not require any changes to the TLS protocol or the OpenSSL library,
which offers a suitable API for handshake extensions. RATLS supports
remote attestation as part of a complete TLS handshake for new connec-
tions and it augments session resumption by binding session tickets to the
platform state of TLS peers. We demonstrate that RATLS enables both
client and server to attest their respective software stacks using widely-
used Trusted Platform Modules. Our evaluation shows that the number
of round trips during handshake is the same as for traditional TLS and
that session resumption can reduce cryptographic overhead caused by
remote attestation for frequently communicating peers.

Keywords: TLS · TPM · Remote Attestation · Trusted Computing

1 Introduction

Transport Layer Security (TLS) [10] is the state-of-the-art protocol for securing
communication channels between two computers. It uses encryption and mes-
sage authentication codes (MACs) to ensure confidentiality and integrity for
all information that is transmitted over the communication channel. TLS also
provides authentication to ensure that only the “right” communication partners
can successfully establish a TLS connection. The authentication method used by
TLS requires users to trust that the party who operates the remote computer
acting as a TLS peer will keep this computer secure. Typically, if Alice wants to
exchange data over TLS with a computer operated by Bob, she has to make two
assumptions: 1) Bob keeps the cryptographic keys needed for TLS authentica-
tion secret, and 2) the software running on Bob’s computer does what he claims
it does (e.g., not leak data received from Alice).

The Need for Verifiable Trust Unfortunately, TLS on its own cannot pro-
vide a verifiable proof that assumptions 1) and 2) actually hold. In certain highly-
critical use cases, such a proof is desirable, though. For example, Alice might

Michael Roitzsch
This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.
The Version of Record is available online at: https://doi.org/10.1007/978-3-031-16815-4_20.
Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms



2 R. Walther et al.

want an assurance that her valuable scientific data will only be processed by a
certain, trusted analysis program running on the cloud server that Bob rented
to her. And in an Internet-of-Things (IoT) scenario, lives might be at stake if
an attacker manages to manipulate the firmware of an IoT device. The risk that
TLS keys (assumption 1) and software integrity (assumption 2) are compromised
are much greater for a connected device that must be installed in a public place,
compared to a server behind the walls of a guarded data center. Thus, technical
measures are needed to reduce the trust in the operator of a remote computer
or the environment that surrounds it.

Trusted Computing Remote Attestation is a cryptographic protocol that can
complement TLS by solving the two trust problems described above. First, it
is built on top of hardware support that is designed to protect cryptographic
secrets. Second, it provides one computer, the challenger, with a verifiable proof
that software running on another computer, the attester, is in a known-good
state. It works as follows:

1. Identifiability: The attester has a root of trust integrated into its hardware
that includes a cryptographic identity that cannot be forged. Through this
identity, the challenger can know what the attester device is and what its
capabilities are.

2. Integrity: The root of trust can create a digital signature over the code of
the software that has been started on the attester. Through this signature,
the challenger can know, if the software currently running on the attester will
be behave as required. Typically, the signature covers both system-level code
and applications, including the TLS protocol implementation that protects
the communication channel.

Roots of trust are much harder to compromise than pure software solutions
because the attacker has to manipulate tamper-resistant hardware. They are
available in various forms for many different platforms. A well-known implemen-
tation is the Trusted Platform Module (TPM) [4], which is nowadays built into
most desktops, laptops, and many servers.

TLS with Remote Attestation Despite the clear security advantages, Re-
mote Attestation is complicated to deploy for application developers. No stan-
dardized protocol suite exists, but different root-of-trust implementations come
with their own protocol and software development kit. RATLS intends to sim-
plify the use of attestation by integrating it into the widely-used TLS protocol.
The integration leverages a feature of the TLS v1.3 standard [10], where applica-
tions can append user-defined extensions to TLS handshake messages. Using this
mechanism, RATLS is able to piggyback attestation-related messages onto TLS
handshake messages. The RATLS approach can be applied to any TLS imple-
mentation that supports handshake extensions. We built RATLS as a companion
library for the widely-used OpenSSL [2] implementation, which provides a suit-
able extensions API. The design of RATLS is also agnostic to the underlying
hardware root of trust. In this paper, we describe an RATLS plugin that works
with the widely-used TPM v2.0.



RATLS: Integrating Transport Layer Security with Remote Attestation 3

Contribution Our work on RATLS makes the following contributions:

– RATLS integrates remote attestation into TLS, thereby enabling verification
of the identity and software integrity of peers communicating via TLS.

– RATLS does not require changes to the TLS protocol nor modifications to
OpenSSL, thereby demonstrating that the approach is non-invasive.

– RATLS supports both full handshakes for new connections and TLS session
resumption for efficient reconnects.

– We evaluate API usability, security properties, and performance of an RATLS
prototype implementation using TPM v2.0-based roots of trust.

In the following Section 2, we describe relevant background. Sections 3 and 4
present the design and implementation, respectively, and in Section 5, we eval-
uate RATLS. We discuss related work in Section 6 before concluding paper in
the Section 7.

2 Background

In this section, we describe the basics of TLS. We highlight those features of the
standard that are important for RATLS. Furthermore, we give an overview over
trusted computing concepts that enable remote attestation and secure storage.

2.1 Transport Layer Security

TLS enables two computers to communicate securely over an untrusted network.
The protocol is based on cryptography and it guarantees confidentiality and in-
tegrity for all user data that is transmitted through the communication channel.
Two computers that wish to communicate over TLS must authenticate them-
selves to each other. In the most common scenario, one peer, the server, proves
its identity through possession of the private key of an asymmetric signature
key pair. The other communication partner, the client, can validate the identity
of the server using a publicly-known server certificate that contains the public
part of said key pair. Optionally, the client can also authenticate itself to the
server using its own private key and a corresponding client certificate. In so-called
zero-trust communication scenarios using mutual TLS (mTLS), certificate-based
authentication is mandatory for both peers.

Security Assumptions For all these variants of TLS, the attacker model
assumes that the private key used by a TLS peer is exclusively known to the
party that operates this peer. For example, if Bob operates a TLS-protected
server, then only Bob shall know the private key used by his server. Likewise,
only Alice shall be in possession of the private key used by her TLS client. A
computer operated by a third party like Eve can impersonate neither Alice’s nor
Bob’s machines, because she does not know their respective private keys. The
encryption and signature algorithms as well as the hash-based MAC schemes in
TLS v1.3 are state of the art and considered secure.



4 R. Walther et al.

TLS Handshake and Extensions One TLS peer, the client, initiates the
secure communication by sending a ClientHello. The server replies with a
ServerHello message, which the client acknowledges in a third message. As
part of this three-phase handshake, the client and server present each other
their certificates and they negotiate the symmetric session keys for encrypting
and integrity-protecting the payload data that is transmitted after the channel
has been established. In TLS v1.3, an application program can request the TLS
implementation to append user-defined extensions to certain TLS messages, in-
cluding handshake messages3. Extensions can contain up 64 KiB of arbitrary
data. They must follow a request–response scheme, where a specific extension
can only be appended to a reply message, if the previous message also contained
an extension of the same user-defined type.

TLS Session Resumption Creating and validating signatures and exchang-
ing session keys incurs computational overhead. Furthermore, during the three-
phase TLS handshake, both client and server must wait for replies to arrive over
a potentially slow network, before they can continue with the protocol. To speed
up connection establishment between frequently communicating peers, TLS v1.3
supports session resumption. Using this optimization, a client can reopen a pre-
viously closed TLS session by sending a ClientHello message with a session
ticket that the server issued to the client while the original connection was active.
If the server recognizes the session ticket, only one network round trip is needed
instead of two round trips for the complete handshake. With session resumption,
both client and server skip the certificate exchange and key negotiation, as they
can reuse the session keys from the original connection.

2.2 Trusted Computing

The core idea behind trusted computing is to verify through technical means
that a computer and the software running on it conform to certain security
properties. This verification can be performed remotely from a second, already
trusted device in the case of remote attestation. But given the right hardware
and system-software support, trusted-computing concepts can also be used to
verify software that is running locally, like in the case of sealed memory.

Remote Attestation In the first use case, a trusted challenger device requests
an attestation report from a remote computer called the attester. Like TLS, the
underlying cryptographic protocol uses the private part of a signature key pair4
to prove its identity. However, in contrast to TLS, which is pure software, an
implementation of remote attestation typically requires a hardware root of trust
that is integrated into the hardware of the attester device.5 This root of trust

3 TLS v1.2 supports extensions, too, but on fewer message types than TLS v1.3.
4 Some implementations use symmetric keys or a physically unclonable function (PUF)

instead, but the general concept is the same.
5 There are implementations of remote attestation that are software only, but they

assume a weaker attacker model.



RATLS: Integrating Transport Layer Security with Remote Attestation 5

hides the private key in hardware to make it more difficult to forge. The root of
trust signs the executable code that is currently in control of the attester. If the
challenger recognizes that the signature has been created by a root of trust that
it deems trustworthy, it will know what kind of device the attester is and what
software is running on it. Based on the information in the attestation report
(e.g., a hash of the executable code on the attester), the challenger can then
decide whether to trust the attester’s software for the purpose it is interested in.

Sealed Memory An attestation can also be done locally by the root of trust
on the attester device. Some trusted-computing platforms use local attestation
to protect confidentiality of user data by encrypting it with a storage key that
is also hidden in the hardware root of trust. The root of trust will only release
or unseal the plaintext copy of the data to the currently running software, if the
identity of this software is the one that has been specified as the “owner” when
the data had been sealed. Thus, it is possible to bind (i.e., restrict access to) user
data to a specific, authorized software configuration.

Trusted Platform Modules A widely-used and thoroughly standardized root
of trust implementation is the Trusted Platform Module (TPM) [4]. TPMs can
create remote attestation reports (called quotes) and they support sealed mem-
ory. Quotes are computed over a set of Platform Configuration Registers (PCRs),
which store hashes of the software stack that has been started (ranging from
firmware over bootloader and OS to application programs). Like all roots of
trust, TPMs require operating-system support in terms of a device driver and
other system-level integration. This support includes the so-called TPM Soft-
ware Stack (TSS) [3] through which applications can interact with the TPM.

In the following, we will refer to the combination of root of trust and its system-
level support software as the Attestation Provider. We will also use Quote as a
synonym for “attestation report”, as this term is commonly used for many root-
of-trust implementations. RATLS integrates remote attestation into the TLS
handshake and it uses sealed memory to bind TLS session tickets to the soft-
ware configuration that was valid at the time of the initial handshake. Sealed
memory can also be used to protect TLS private keys, in addition to the iden-
tity keys of the root of trust that are already hidden in hardware. Our prototype
implementation is based on a TPM v2.0-based attestation provider.

3 Design

TLS already provides confidentiality and integrity for all data sent through the
communication channel. Our main goal in improving it is twofold: 1) to enhance
authentication of TLS endpoints through additional identity checking, and 2) to
provide technical means for verifying the software integrity on these endpoints.
Thus, our aim for RATLS is to augment TLS with remote attestation such that
it provides additional security guarantees.



6 R. Walther et al.

3.1 Design Goals

In the following paragraphs, we define security goals as well as functional and
non-functional goals for the design of RATLS.

Freshness of Attestation Reports To prevent replay attacks, it is essential
that pre-generation of attestation reports is not possible. Otherwise, an attacker
could intercept a valid attestation report and send it again when trying to spoof
an identity in an impersonation attack. To prevent replay attacks, RATLS must
include a nonce, which is generated by the challenger, in each attestation report
issued by the attester.

Mutual Attestation In many distributed-computing use cases, both parties
need to trust each other. For example, in so-called zero-trust scenarios in cloud
environments, multiple services communicate with each other over TLS and both
client and server must authenticate themselves. To fully support such mutual
TLS (mTLS) connections, RATLS should enable mutual attestation as well.
Thus, both the client and the server shall be able to request an attestation
report from their respective peer.

Minimal Number of Handshake Messages Round-trip messages require
both client and server to wait, which is particularly costly in case of high-latency
networks. Therefore, RATLS should not increase the number of handshake mes-
sages that need to be sent and received during handshake. We consider both
one-sided and mutual remote attestation for this design goal.

Session Resumption In environments where connections are opened and
closed frequently between the same peers, the TLS standard allows a client to
resume a recently-closed session instead of performing the complete TLS hand-
shake with the server again. To keep the benefits of this optimization, RATLS
shall support TLS session resumption in a way that minimizes the cryptography-
related costs for creating and validating attestation reports.

“Don’t Roll Your Own Crypto” The TLS standard and its implementations
have been subject to extensive review by a huge number of experts in the fields of
computer security and distributed-systems engineering. Therefore, we must avoid
changes to the TLS protocol and, ideally, RATLS should even be compatible with
an existing TLS implementation without further modifications. These two sub-
goals minimize the risk of RATLS introducing new security vulnerabilities. They
also reduce maintenance overhead and make it easier to keep RATLS up to date
with future TLS standards and implementations thereof.

Low-Barrier Adoption The API offered by RATLS should be as simple as
possible and closely follow the API of the TLS implementation it improves upon.
This simplicity will make it easy for application developers to upgrade their
communication from traditional TLS to TLS with remote attestation.

Separation of Concept and Realization Remote attestation is a Trusted-
Computing concept, but to use it in practice, it needs to be implemented for a



RATLS: Integrating Transport Layer Security with Remote Attestation 7

concrete computer platform with a suitable hardware root of trust. Therefore,
we aim to integrate the platform-independent concept of remote attestation in
RATLS, but keep separate the support for specific attestation providers as “plu-
gins” that extend the RALTS implementation.

ServerHello
Certificate

CertificateReq
Certificate

AttestationReq

AttestationReq

Quote

Quote

ClientHello

Finish

Fig. 1. Simplified visualization of the TLS v1.3 handshake (left) and protocol steps of
remote attestation (right)

3.2 High-Level Design

The two sequence diagrams in Fig. 1 show simplified visualizations of the TLS
v1.3 handshake (left) and the steps of the remote attestation protocol (right).
Groups of arrows pointing in the same direction represent protocol informa-
tion that can be transmitted in a single batched message. For example, in
the TLS handshake, the server can send the ServerHello, Certificate, and
CertificateReq messages in a single reply to the ClientHello message. The
green and blue colors highlight conceptual similarities between establishing a
TLS connection and performing a remote attestation. They give an idea of how
the two protocols could be folded into one combined handshake, which estab-
lishes a mutually-authenticated TLS connection with mutual remote attestation
between client and server running in parallel.

Combined RATLS Handshake RATLS builds upon handshake extensions,
which have been standardized in TLS v1.3 [10]. They allow an application to
append arbitrary information to the TLS messages that are exchanged during
the three-phase TLS handshake. The combined handshake works as follows:

1. At the beginning of the TLS handshake, the client and the server send the
ClientHello and ServerHello messages, respectively. RATLS appends to
these messages the attestation requests of both peers. An AttestationReq
message carries a nonce that the sender picked randomly in its role as a
remote-attestation challenger.



8 R. Walther et al.

2. In their role as the attester in the remote-attestation protocol, the client and
server request a quote from the attestation provider of their respective de-
vices. Each quote includes the nonce received from the respective challenger
and the recorded state of the software on the attester. Each attester must
also include the public counterpart to its TLS private key in the attestation
report. By including the public key, both parts of the combined handshake
are cryptographically linked.

3. In the final step, TLS validates the certificates. With RATLS, both parties
also check the validity of the attestation reports. The corresponding quotes
are piggybacked as extensions on the Certificate messages. At this stage
of the TLS v1.3 handshake, all messages and their extensions are already
encrypted. Thus, the quotes are never transmitted as plaintext.

The combined validation of the certificates and the attestation reports is more
complex than in pure TLS. In the final step of the handshake, the challenger
verifies that 1) the nonce is the one sent in step 1, and 2) the attester is indeed
in possession of the private key that signs information in the TLS part of the
handshake. To do that, it compares the public keys (embedded in the client
and server certificates) from the Certificate message to those in the quote. If
the public keys match, the connection is indeed end-to-end encrypted between
the client and server. In case of a mismatch of either the nonce or the public
key, a man-in-the-middle attack has been attempted and the handshake must
be aborted to prevent an insecure (i.e., not end-to-end encrypted) connection.

Properties of the RATLS Handshake By piggybacking attestation-related
information on the three batches of TLS messages, we can integrate remote at-
testation into TLS without additional network round trips. The combination
of both protocols is also convenient from application’s point of view. Once the
combined RATLS handshake completed, both client-side and server-side appli-
cations can be certain that the hardware identity and software integrity of the
remote peer have been verified and found to be trustworthy. If one of the peers
does not need an attestation report from the other party, it can just omit the
AttestationReq extension in its ClientHello or ServerHello message.

Session Resumption When the client resumes a previously closed TLS ses-
sion, some parts of the handshake, including certificate exchange, are skipped.
Instead, the client presents to the server a session ticket that includes the pre-
viously negotiated session keys. This resume handshake is shorter and therefore
the remote-attestation protocol cannot be piggybacked on it. To provide the
additional security guarantees of remote attestation also with session resump-
tion, we borrow from TLS the idea of keeping session secrets for later use. In a
nutshell, our variation of the approach in RATLS works as follows:

1. During the lifetime of a TLS session, the server sends a NewSessionTicket
message to the client. This message carries the session ticket that the client
can later use to resume the session. In RATLS, the server creates a pair
of additional secrets, namely a client secret and a server secret. It appends



RATLS: Integrating Transport Layer Security with Remote Attestation 9

these secrets to the NewSessionTicket message and when the client receives
this message, it stores the server secret in sealed memory. The server keeps
a copy of these secrets, too. It seals the client secret.

2. When an RATLS-enabled client resumes the session at a later point in time,
it unseals the server secret. It appends this secret to the ClientHello mes-
sage and sends it to the server. The server does the same with the client
secret, which it will send to the client in its ServerHello reply. Both client
and server then compare the received secrets with their locally stored copies.

We introduce the client and server secrets, because OpenSSL’s API does not
allow RATLS seal, discard, and later unseal session tickets. By sealing the se-
crets, the client and server bind them to the software states that have previously
been attested as part of the RATLS handshake. The capability of the client and
server to unseal the secrets at a later time is used to prove that the session had
originally been established between remotely attested RATLS peer.

We discuss further details about RATLS session resumption and all other parts
of the implementation in the following Section 4.

4 Implementation

In this section, we describe an implementation of RATLS that is compatible
with the widely-used OpenSSL library. We describe in detail how the combined
RATLS handshake works, both for new connections and for session resumption.
We will also describe the plugin API for attestation providers and an example
implementation of such a plugin for TPMs.

4.1 Architecture

The general design of RATLS is independent of both the TLS implementation
and the attestation provider that is needed for a specific computer platform.
Although message extensions are part of the TLS v1.3 standard, not all TLS
libraries support them. The OpenSSL library does offer an API, which is based
on user-defined callbacks. We therefore built a companion library to OpenSSL
that implements our RATLS prototype as a callback-driven state machine on
top of this interface.

OpenSSL API for Message Extensions Whenever OpenSSL creates or
consumes a TLS protocol message during the lifetime of a TLS session, it
calls a function that RATLS registered for the corresponding OpenSSL ses-
sion context (SSLContext). We refer to these two functions as AddCallback
and ParseCallback, respectively. Before sending a message, OpenSSL invokes
the AddCallback for any extensions that have been registered for that specific
message. The callbacks can specify whether or not to add the extension and
what data to populate it with. When receiving a message, OpenSSL calls the
ParseCallback for all registered extensions. In this ParseCallback, we can



10 R. Walther et al.

extract the extension data and also decide whether to abort or continue the
handshake. There is no way in OpenSSL to define a callback for a missing ex-
tension. If the extension is not set, no callback is invoked. Also, according to the
specification, TLS v1.3 does not allow applications to freely add extensions to
arbitrary messages. Instead, extensions can only be appended if the same exten-
sion has already been added to the corresponding, previously received message.
For example, to add an extension to the Certificate message on the server
side, the same extension must be set in the ClientHello message.

RATLS State Management OpenSSL defines additional callbacks for events
such as creation of a new session or certificate verification. RALTLS registers ap-
propriate callback functions for all relevant events. When invoked by OpenSSL,
each of these callbacks receives a pointer to the current SSL session object. In this
object, the RATLS functions maintain an additional RASession that represents
the attestation-related state during the lifetime of the session. The complete set
of RATLS callback functions implement the generic concept of remote attesta-
tion for TLS.

Attestation Provider Callbacks Each of the RATLS functions invokes an-
other callback function that is implemented by an attestation provider plugin.
This second layer of callbacks separates the platform-specific root of trust and
its system-level support software from the generic parts of RATLS. When the
application initializes OpenSSL and RATLS, it must register the callbacks of the
attestation provider with their generic counterparts in the RATLS library.

4.2 RATLS Handshake with Remote Attestation

The sequence diagram in Fig. 2 visualizes the complete, mutual handshake for
both client and server attestation. For readability reasons, we explain in the
following paragraphs only how the server attests to the client. The steps for
attesting the client’s identity and software state to the server are analogous and
interleaved in the RATLS handshake as shown in Fig. 2.

Request Phase Each TLS handshake starts with a ClientHello message
sent by the client to the server. If RATLS has been enabled for the specific
SSLContext, OpenSSL invokes the AddCallback for the remote attestation re-
quest (RA_REQ) extension. The AddCallback invokes another callback function
for generating an RA_REQ. This CreateRequest callback is provided by the at-
testation provider. It is called in the client’s role as the challenger of the remote-
attestation protocol and its main purpose is to randomly generate a nonce.

Attestation Phase Upon receiving the ClientHello message, the server de-
tects the RA_REQ extension and invokes the ParseCallback. The server stores
the client’s nonce in the RASession part of OpenSSL’s SSL session object, such
that the next RATLS callback function can retrieve the nonce from there. The
handshake continues until the server intends to send the Certificate mes-
sage. OpenSSL calls the RATLS AddCallback, this time for the remote at-
testation response (RA_RES) extension. From this callback, RATLS invokes the



RATLS: Integrating Transport Layer Security with Remote Attestation 11

ClientHello
RA_REQ (nonce)

ServerHello
RA_REQ (nonce)

CertRequest
RemoteAttest

Quote
Certificate
RA_RES (quote)

RemoteAttest
Quote

Certificate
RA_RES (quote)

Create 
Quote

Create 
Quote

note nonce

note nonce

Attestation providerAttestation provider Client Server

Fig. 2. Remote attested handshake

RemoteAttest function of the attestation provider plugin with the previously
stored nonce as a parameter. In the RemoteAttest function, the server’s attes-
tation provider creates a quote of the client’s nonce, the TLS public key, and the
system state. The user-defined data that has been passed via CreateRequest
will also be included in the quote. RATLS appends the quote to the Certificate
message.

Verification Phase When RATLS on the client receives the Certificate
message via the ParseCallback, it stores the server’s quote in the client-side
RASession for later use. Later, OpenSSL invokes the certificate-validation call-
back of RATLS. Here, RATLS checks if the client application originally requested
an attestation. This information is expresses as a flag in the RASession. If the
flag is true and the server ignored the request, the handshake is aborted. If the
server did append an RA_RES extension with a quote, RATLS calls the attestation
provider’s CheckQuote function with the original nonce and the received quote
as a parameter. In it’s role as remote-attestation challenger, it then checks the
quote’s signature, compares the copies of the public key in the TLS certificate
and the quote, and aborts the handshake if there is a mismatch. The CheckQuote
function also decides whether the server’s software state as reported in the quote
is acceptable or not.

4.3 RATLS Handshake with Session Resumption

When the client resumes a TLS session, RATLS uses the same callback-based
approach to create and inspect message extensions.

Binding Phase Session resumption requires a preparatory step while a TLS
session is active. The specification allows the server to send a NewSessionTicket



12 R. Walther et al.

message at any point during the lifetime of this session. When that happens, a
server-side RATLS callback function creates and appends two new secrets, the
client secret and the server secret, to this message. On the server, RATLS keeps
the server secret in plaintext, but it invokes the SealSecret callback function of
its attestation provider plugin to seal the client secret. It then discards the plain-
text copy of the client secret. The client performs a similar procedure after receiv-
ing the two secrets in the RA_RESUMPTION extension of the NewSessionTicket
message. It stores the server secret in sealed memory and keeps the client secret
in plaintext. Fig. 3 shows the sequence of messages to perform this exchange.

NewSession-
Ticket

RA_RESUMPTION
ClientSecret 

ServerSecret

(ServerSecret, ClientSecret)
Seal

ClientSecretSeal
ServerSecret

ClientSecret
ServerSecret

Attestation providerAttestation provider Client Server

Fig. 3. Attested ticket issuing

Unseal and Resume Phase As explained at the end of Section 3.2, OpenSSL
does not allow RATLS to access the session ticket. Instead the client must ap-
pend the server secret to the ClientHello message when it wants to resume
an RATLS-enabled session. Since it discarded the plaintext copy after sealing
this secret, RATLS must first unseal it using the UnsealSecret function of its
attestation provider plugin. When the server receives the session ticket and the
client’s copy of the server secret via the ClientHello message, it looks up the
secret that matches the session ticket. It then compares the client’s version of
this secret with its own, locally found copy. It allows the session to resume, if
the two copies of the client secret match and the session ticket is valid. As shown
in Fig. 4, the server proves the capability to access its previously sealed copy of
the client secret in the same way.

Security of Session Resumption Because of the way the TLS protocol
works, the NewSessionTicket message and its RA_RESUMPTION extension are
end-to-end encrypted between client and server. However, when resuming, the
RA_RESUMPTION extension attached to the ClientHello must be transmitted in



RATLS: Integrating Transport Layer Security with Remote Attestation 13

Unseal

ClientHello
RA_RESUMPTION

(ServerSecret)

ServerSecret

Unseal
ClientSecret

ServerHello
RA_RESUMPTION

(ClientSecret)

Attestation providerAttestation provider Client Server

Fig. 4. Resumed attested handshake

plaintext and the server secret is potentially revealed to an observing attacker.
Nevertheless, an impersonation attack cannot be mounted using just the server
secret:

1. TLS Session tickets are cryptographically bound to the client and server
that negotiated a TLS session. Therefore only a specific pair of client and
server processes have access to the pre-shared session keys associated with
the session ticket. Well-behaving TLS clients and servers do not compromise
session tickets and keys.

2. If there is a client and server secret for a session ticket, this session ticket has
been exchanged between two computers whose software stacks have been ver-
ified and found to use well-behaving TLS implementations based on remote
attestation during the initial, non-resume handshake.

3. The fact that a server secret (or client secret) is presented during a resume
handshake means that the software on the client (or server) has been in the
correct state at the time of the resumption attempt. Otherwise, the attes-
tation provider of the respective device could not have successfully unsealed
the plaintext secret that the well-behaving RATLS implementation discarded
before. The pre-shared session key are required to complete the handshake.

Thus, despite their name, the client and server secrets are not used for crypto-
graphic purposes or as an authentication token. Instead, they merely serve as
a hint that the session that is being resumed has been previously negotiated
with a well-behaving client or server that must still be in the same software and
hardware state as at the time of the attestation. An eavesdropper has no use
for the secrets as the session is still cryptograhpically bound to the TLS session
ticket.



14 R. Walther et al.

4.4 Attestation provider plugins

RATLS integrates the concept of remote attestation into the TLS handshake but
leaves the implementation open to a specific attestation provider. All attesta-
tion provider-specific functionality is offloaded to callbacks. This allows RATLS
to be easily used with a variety of attestation providers. The API callbacks of
RATLS are described below. These callbacks could map directly to the attesta-
tion provider plugins API, making them trivial to use:

– CreateRequest is the callback that generates the nonce for the attestation.
Also user specific data could be included, which in turn then is also part of
the generated attestation report.

– RemoteAttest is called by RATLS upon receiving an attestation request. It
passes the requested nonce to the callback. This function should return a
quote based on the requested nonce.

– CheckQuote is called, when RATLS received a quote. This quote and the ex-
pected nonce are passed as parameters to the function. The function returns
true, if the quote comes from a trusted attestation provider and matches the
requested nonce. Otherwise, false is returned.

– SealSessionSecret is called by RATLS upon receiving a session secret.
This callback binds the secret to the system state and returns the encrypted
session secret.

– UnsealSessionSecret is the inverse operation to SealSessionSecret. It
unseals the secret and returns it as plaintext.

RATLS must register two callback functions in the OpenSSL context to work as
intended. If an application registered its own callbacks for the same OpenSSL
handshake events, it would disable RATLS. Therefore, RATLS provides the fol-
lowing replacement callbacks, which such an application can use instead:

– CustomNewSession mirrors the functionality of the new_session_cb call-
back in OpenSSL. It gets called when a session ticket is issued or received.

– CustomVerifyCallback mirrors the verify_callback and is invoked when
OpenSSL verifies the certificate chain.

Customization Registering these two callbacks is optional. Furthermore, the
behavior of RATLS can be adjusted by the following parameters:

– maxSessionTicketsNum specifies the maximum number of session tickets
that RATLS should keep stored, making it possible to limit the memory
footprint.

– onlyAllowRemoteAttestedSessionResumption can be specified on the client
side to prevent the use of session tickets that resulted from unattested ses-
sions.

– forceClientRemoteAttestation is a server-side parameter. When set to
true, the server will abort the handshake, if the client has not attested itself.
When false, unattested TLS connections are accepted, too.



RATLS: Integrating Transport Layer Security with Remote Attestation 15

RATLS_TPM2 RATLS comes with a sample implementation of an attesta-
tion provider plugin for TPM v2.0-based roots of trust. The RATLS_TPM2
plugin is based on Microsoft’s TSS.MSR [5] library, which allows communi-
cation with both hardware and software TPMs. We use the C++ version of
TSS.MSR, which we extended with a driver back-end class for accessing TPMs
via the /dev/tpm0 character device on Linux. RATLS_TPM2 provides all call-
back functions that RATLS needs and it performs all TPM_Quote, TPM_Seal, and
TPM_Unseal operations that a TPM v2.0 attestation provider must use to fulfill
its purpose. It also verifies quotes using TSS.MSR, as a real implementation
would do, but with demonstration-only TPM storage and attestation keys.

5 Evaluation

In this section, we evaluate the usability, security, and performance of our RATLS
prototype implementation.

5.1 Usability

Activating RATLS for a specific OpenSSL context is as simple as performing
one initialization call. After that all handshakes in that context are attested. To
use RATLS with a specific attestation provider, the application just needs to
register the callback functions of the plugin library.

5.2 Security

RATLS is about integrating the concept of remote attestation into TLS, but
its security guarantees build upon the underlying attestation provider and its
system-level integration. These lower layers must ensure secure startup of appli-
cations that use RATLS. They also provide the functionality that RATLS needs
to request quotes that attest identity, integrity, and possession of certain secrets
for the system and application using RATLS. However, the specifics of their im-
plementation are out of scope for this paper, as RATLS does not need to alter
the quote format employed by the underlying root of trust. It transmits each
quote as an opaque piece of data. Furthermore, RATLS does not alter the TLS
protocol or its implementation, but rather extends OpenSSL through publicly
available interfaces. Therefore, we are confident that RATLS does not individu-
ally weaken the security properties of remote attestation or TLS. However, two
potential issues remain.

Code Size First, RATLS itself contributes additional library code to an appli-
cation using it and therefore increases code complexity. Our prototype implemen-
tation adds 1, 145 and 384 lines of C++ code for RATLS and RATLS_TPM2,
respectively. OpenSSL is much more complex, as the entire package consists of
hundreds of thousands of lines of code. The C++ implementation of TSS.MSR
comprises more than 30, 000 lines of code. Weighed against the stronger crypto-
graphic assertions offered by attestation, we consider this a worthwhile addition.



16 R. Walther et al.

Protocol Composition Second, although we reuse attestation and TLS with-
out modification, RATLS could introduce weaknesses at the meeting points of
both protocols. We performed a manual audit and identified one critical point:
Looking at Fig. 2, we observe that a malicious server could try to fake an at-
testation response in the server-side RemoteAttest step. Instead of asking its
local root of trust for a quote, the server could instead become a client to a new
attested handshake and pass along the quote obtained from this new connection
as its own. The original client would thus receive a valid quote as part of a valid
TLS connection, but from different remote machines. RATLS defends against
this attack by including the public keys of the TLS certificates in the measure-
ments that are reported by the quote. By comparing the keys in the quote and
the certificate, each peer can verify that the quote it received originates from
the machine terminating the TLS connection and not from a third party.

5.3 Performance

We evaluate the performance of our RATLS prototype implementation with
standard, non-attested TLS as a baseline. The evaluation was carried out on
two Raspberry Pi 4 single-board computers acting as client and server. Each
Raspberry Pi had an Infineon Optiga SLB 9670 TPM 2.0 plugged onto the
GPIO pin header of the device. Both devices were located in the same local-area
network with a round-trip latency of less than half a millisecond.

Baseline We benchmarked four variants for establishing a TLS connection:
1) mutually-attested RATLS handshake, 2) RATLS session resumption using
sealing, 3) standard TLS handshakes, and 4) standard TLS session resumption.
Variants 3 and 4 represent the baseline, using the same OpenSSL version and
parameters as RATLS. All experiments were run 100 times. Tab. 1 shows the
average duration to complete the handshake for all four variants and for both
server and client side. Variation was low, as indicated by the standard devia-
tion (STDEV) figures in the table.

Table 1. Comparison of RATLS and TLS handshake duration

Benchmarks Server Client

Avg. time STDEV Avg. time STDEV
RATLS initial handshake 616.06ms 2.92ms 525.30ms 2.88ms
RATLS resume handshake 156.23ms 1.42ms 114.28ms 1.30ms
TLS initial handshake 52.89ms 2.03ms 52.60ms 2.04ms
TLS resume handshake 2.97ms 0.38ms 2.79ms 0.37ms

Initial Handshake Measurements Mutually-attested RATLS handshakes
are significantly slower than standard TLS handshakes without remote attes-
tation. The observed 10x overhead is caused almost entirely by cryptographic



RATLS: Integrating Transport Layer Security with Remote Attestation 17

operations being performed inside the Optiga TPM. On average, TPM_Quote
and TPM_Seal operations take 212 and 42 milliseconds, respectively. As the TLS
handshake protocol forces client and server to perform their quote operations
one after the other (see Fig. 2 on page 11), these costs add up for mutually-
attested sessions. The measurements also include the cost for sealing the session
secrets on the server. A breakdown of these costs, including the time spent on the
TLS part of the protocol, is shown in Fig. 5. Note that the client receives mul-
tiple NewSessionTicket messages that trigger TPM_Seal operations. But two of
these messages arrives after the handshake already completed on the client side.
Hence, their costs are not captured in the client-side figures in the table, but we
confirmed that the operations are performed by the client and the costs are as
expected.

Attest

TLS

Check quote

Seal
Unseal

TLS initial
handshake

TLS resume
handshake

RATLS initial
handshake

RATLS resume
handshake Duration handshake 

in milliseconds

~ 525ms

~ 114ms

~ 52ms

~ 3ms

50 100 200 300 400 500

Fig. 5. Duration of client side handshakes in comparison

Resume Handshake Measurements The TLS-only bars in Fig. 5 show that
TLS session resumption can speed up TLS re-connects. Fortunately, RATLS can
play the same trick to reduce the attestation-related costs. RATLS session re-
sumption is dominated by the duration of two TPM_Unseal operations, one per-
formed by the client and one on the server. As unsealing is cheaper on the Optiga
TPM than generating a quote, RATLS re-connects are about four times faster
than a complete RATLS handshake. On the server, we measured 156 millisec-
onds, whereas the client finishes the resume handshake after 114 milliseconds.
Like above, for the complete handshake, this difference is caused by session-ticket
messages arriving after the client-side finished the handshake.

Discussion We acknowledge that RATLS takes significantly more time to es-
tablish a secure connection than standard TLS. However, our benchmarks repre-
sent a worst-case scenario, because discrete TPM chips like the ones we used are
among the slowest roots of trust that are available. Also, the relative performance
benefits of session resumption would be greater in higher-latency networks (e.g.,
over the Internet); we used an Ethernet link with 0.5 ms latency. The additional
costs pay for the additional security guarantees that remote attestation provides.



18 R. Walther et al.

6 Related Work

RATLS integrates remote attestation into the TLS handshake. Other works have
explored integration at levels below or above the TLS protocol layer with result-
ing differences in usability or generality.

SGX Remote Attestation with TLS Knauth et al. integrated attestation
for Intel SGX enclaves with TLS [9]. They chose not to change or extend the
TLS protocol or implementation, but included an attestation quote into the
X.509 certificate used for authentication. A certificate extension is used to carry
the additional information. This method of integration is fully transparent to the
TLS layer and therefore works with any TLS implementation. However, a new
certificate must be minted for every attestation, complicating the interaction
with existing TLS certificate hierarchies. The paper therefore restricts its scope
to self-signed certificates. RATLS does not alter certificates and thus can fully
reuse existing certificate chains and the trust relationships they encode.

HTTPA King and Wang proposed HTTPA, the HTTPS Attestable Proto-
col [8]. This work integrates attestation in a protocol layer above TLS, by propos-
ing changes to the HTTP layer. New HTTP messages are used to exchange
bidirectional attestation information. Consequently, no changes to TLS imple-
mentations or certificates are needed. However, attestation is specific to HTTP
and must be integrated into application-level code. By encapsulating attesta-
tion in TLS, RATLS gives developers TLS encryption with automatic remote
attestation for any application-layer protocol with just a few lines of code.

DECENT Zheng and Arden published DECENT [11], which is an attestation
system for decentralized applications consisting of multiple distributed compo-
nents. These components mutually authenticate and attest themselves. In or-
der to save expensive attestation operations, DECENT proposes mechanisms to
perform attestation only once at component launch. TLS-based protocols like
RATLS would have to re-attest components for every established connection.
However, because we integrated session resumption, RATLS can keep attesta-
tion information alive and reusable, similarly saving expensive operations.

LightBox Duan et al. describe an example of how trusted execution environ-
ments can be used to protect metadata of network applications. Their network
middlebox system, called LightBox [6], tightly integrates with Intel SGX [1].
Their proposed design is highly optimized for operation in SGX enclaves to avoid
computational overhead when handling packet routing inside an SGX enclave.
Although RATLS could use SGX as an attestation provider for an application
running in an SGX enclave, its goals are orthogonal. Namely, RATLS aims to
integrate the concept of remote attestation into the TLS protocol, so that it
can be used in a variety of applications with minimal effort on behalf of the
application developer.

Benefits of Remote Attestation Other works point out security benefits of
trusted execution environments and using their roots-of-trust for remote attes-



RATLS: Integrating Transport Layer Security with Remote Attestation 19

tation. For example, Kim et al. published [7] case studies for leveraging of SGX
for privacy sensitive applications. In their use cases, they introduce attestation
schemes for inter-domain routing, mix relays like TOR, and other types of mid-
dle boxes. The goals and benefits of RATLS are similar to what they present
in terms of establishing a secure channel between attested endpoints or middle
boxes. RATLS could be used as a building block to implement such use cases
and because of its modular design, it is compatible with a variety of attestation
providers besides SGX. But most importantly, our work aims to be a general
solution that is easy to use. Thus, by integrating remote attestation into the
TLS Handshake, RATLS makes it trivial to upgrade existing TLS connections
to remote attested sessions in many other application scenarios.

7 Conclusions

In this paper, we presented the design and implementation of RATLS, which
integrates the concept of Remote Attestation into the Transport Layer Secu-
rity (TLS) protocol. RATLS provides additional security guarantees for authen-
tication and software integrity of TLS endpoints. Our implementation builds
upon message extensions in v1.3 of the TLS standard. This approach requires
no modifications to the TLS protocol or its implementation, thereby minimizing
the risk of introducing new security weaknesses. Our prototype is compatible
with Trusted Platform Modules (TPMs), but thanks to a modular design, other
hardware roots of trust could be supported via attestation provider plugins.

Acknowledgements This research was co-financed by public funding of the
state of Saxony/Germany. It has also received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No. 957216.

References

1. Intel Software Guard Extensions (Intel SGX).
https://www.intel.com/content/www/us/en/architecture-and-
technology/software-guard-extensions.html, (Accessed on May 1, 2022)

2. OpenSSL, https://www.openssl.org/
3. The Trusted Computing Group - TPM Software Stack (TSS),

https://trustedcomputinggroup.org/work-groups/software-stack/
4. The Trusted Computing Group - Trusted Platform Module (TPM),

https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
5. TSS.MSR, https://github.com/microsoft/TSS.MSR
6. Duan, H., Wang, C., Yuan, X., Zhou, Y., Wang, Q., Ren, K.:

LightBox: Full-stack protected stateful middlebox at lightning
speed p. 2351–2367 (2019). https://doi.org/10.1145/3319535.3339814,
https://doi.org/10.1145/3319535.3339814

7. Kim, S., Shin, Y., Ha, J., Kim, T., Han, D.: A first step to-
wards leveraging commodity trusted execution environments for net-
work applications (2015). https://doi.org/10.1145/2834050.2834100,
https://doi.org/10.1145/2834050.2834100



20 R. Walther et al.

8. King, G., Wang, H.: HTTPA: HTTPS Attestable Protocol. CoRR
abs/2110.07954 (2021), https://arxiv.org/abs/2110.07954

9. Knauth, T., Steiner, M., Chakrabarti, S., Lei, L., Xing, C., Vij, M.: Integrating Re-
mote Attestation with Transport Layer Security. CoRR abs/1801.05863 (2018),
http://arxiv.org/abs/1801.05863

10. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
RFC Editor (August 2018), https://www.rfc-editor.org/rfc/rfc8446.txt

11. Zheng, H., Arden, O.: Building secure distributed applications the DECENT way.
CoRR abs/2004.02020 (2020), https://arxiv.org/abs/2004.02020


