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ABSTRACT
We are approaching a world, where the CPU merely orchestrates a
plethora of specialized devices such as accelerators, RDMA NICs,
or non-volatile memory (NVM). Such devices operate by mapping
their internal memory directly into an application’s address space
for fast, low-latency access. With the latency of modern I/O de-
vices low enough to make traditional system calls a performance
bottleneck, kernel interaction has no place on the data path of
microsecond-scale systems. However, kernel bypass prevents the
OS from controlling and supervising access to the hardware.

This paper tries to make a step back by bringing the OS to the
critical path again, but with a reduced performance penalty. We
pick up on previous ideas for reducing the cost of kernel interac-
tion and propose the fastcall space, a new layer in the traditional
OS architecture that hosts specialized and quickly accessible OS
functions called fastcalls. Fastcalls can stay on the critical path of a
microsecond-scale application because the invocation of fastcall-
space functionality is up to 15 times faster than calling kernel
functions from user space. We present and evaluate a prototype
implementation of the fastcall framework and thereby show how
much the overhead of calling into privileged mode can be reduced
while using standard CPU features.

1 INTRODUCTION
Today, the operating system kernel is isolated from user applications
by the tight barrier of CPU privilege levels, shielding the kernel
from the user for security and safety reasons. In a traditional system,
user applications have to cross this barrier by invoking system calls,
e.g. for sending a network packet. However, modern I/O devices
are so fast that the transition between user and kernel mode makes
up for a significant share of the overall I/O latency [27, 48].

Accessing devices through the system call layer is slow for two
reasons: First, performing a system call incurs a considerable per-
formance penalty for the privilege transition, aggravated by miti-
gations against speculation-based side-channel attacks. This aspect
alone adds up to 300 ns (see Section 4) to the datacenter tax [19, 37]
for each system call invocation. The latency of a high-end Infini-
Band NIC can be as low as 600 ns [36], making system calls pro-
hibitively expensive on the critical path of applications [4, 37, 50].
Second, the hot path in OS kernels like Linux [28] can be long and
include several latency-inflating asynchronous calls that require
multiple intra-kernel context switches.

Kernel-bypass architectures remove these performance pitfalls
by mapping devices directly into user applications [4, 16, 27, 37, 48].
But these architectures also remove devices from the control of the
OS and thus rely on the hardware to offer an extended feature set.
∗These authors contributed equally to this work.
†Also with TU Dresden.
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Figure 1: Fastcall system layer. Accessing a device through
a system call adds up to 300 ns to the end-to-end latency,
compared to kernel bypass. A fastcall adds ≈ 30 ns.

For instancewith kernel-less networking stacks like RDMA, the NIC
needs to provide features like multi-tenancy, QoS guarantees [20],
connection tracking [14], or live migration [39] to provide the same
functionality as OS kernels do. For devices lacking such support,
kernel bypass requires the application to be trusted with full device
access, which is viable only for a subset of infrastructure software.
Moreover, the implementation of complex features in hardware
increases both the cost of the device as well as the time-to-market
for new features [1, 6].

To reconcile the goals of performance and OS control, we intro-
duce the fastcall space, a layer within the OS that hosts fastcalls;
functions for fast and supervised device access by user applications.
Fastcalls are small code snippets tailored to specific use cases. They
represent shortcuts of privileged operations and offer user programs
efficient access to the hardware while keeping the OS in control.
Fastcalls implement user logic, but are verified and trusted by the
OS to adhere to the OS-enforced policies. In this aspect, fastcalls
are similar to concepts like UDFs in the Exokernel architecture [7].

The fastcall space (see Figure 1) is a domain within a privileged
CPU mode. In contrast to the kernel space, the fastcall space is not
protected by software-based side channel mitigations [44], making
the invocation of fastcalls faster than the invocation of system calls.
However, this imposes some limitations on fastcalls, like not being
able to access sensitive kernel information for security reasons. Our
prototype implementation of fastcalls shows the minimal overhead
for calling privileged functions on several CPU types, demonstrat-
ing the applicability of our concept. We conclude with an outlook
on possible use cases for fastcalls.

2 THE FASTCALL ARCHITECTURE
Fastcalls provide a low-latency alternative to system calls by min-
imizing the transition overhead between user space and fastcall
space. Moreover, each fastcall implements only the fast path of
an application-specific use case, like sending a network packet of
a pre-defined protocol type and with a fixed destination address.
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Figure 2: Fastcall usage. An application requests 1 the fast-
call provider to register a fastcall. The provider installs 2 the
fastcall, including the MMIO mapping, into the application’s
fastcall space. Now, the application can access the device by
invoking 3 the fastcall. The fastcall uses 4 the MMIO region
of the device to trigger 5 the corresponding I/O operation.
Fastcalls and the MMIO region are inaccessible to the appli-
cation.

Fastcalls trade off the generality as well as some of the security of
system calls for a faster implementation of privileged operations.
This section describes the overall design principles of fastcalls.

The Fastcall Space. The main design goal for fastcalls is to incur
minimal latency overhead when invoking them. To this extent, the
code of a fastcall function is very simple and highly application-
specific. Hence, similar to user spaces, each process in the system
has its private fastcall space.

A fastcall has to securely enforce OS policies, so the user ap-
plication must not be able to manipulate a fastcall’s code or data.
Using modern CPU models, this isolation is achieved by making the
fastcall code accessible from within a privileged CPU mode only.
The hardware forces the user to enter this privileged mode through
fixed entry points defined by the OS. Unlike the standard code
path for entering an OS kernel, a transition to the fastcall space
always omits software-based side-channel mitigations to lower the
overhead of fastcalls.

For the current implementation of the fastcall framework, the
fastcall space lives in the standard kernel CPU mode. However, this
is not by design. For instance, Apple’s recent M1 CPU architecture
introduces GXF; an alternative set of privilege levels orthogonal to
traditional CPU modes [38]. We currently explore whether such
features allow for the implementation of the fastcall space as well.

The Life Cycle of a Fastcall. When a process spawns, its fastcall
space is empty; the application has no access to any fastcall. As
shown in Figure 2, applications may issue requests to a fastcall
provider for getting access to fastcall functions (step 1). A fastcall
provider is a kernel component that generates the code of fastcall
functions ad hoc andmaps it into the fastcall space of the requesting
process (step 2).

For example, in a scenario with high performance demands, an
application could use fastcalls for issuing network packets to a NIC.
To this extent, the user process applies for a suitable fastcall function
at the fastcall provider using an interface specific for the respective
use case. The code generated by the provider can containOS-defined
policies like a check that an application-generated network packet
header contains only a permitted destination IP address.
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Figure 3: Registration (left) and invocation (right) of fastcalls
in our x86-64 implementation. Solid lines show the control
flow, . . . . . . . . .dotted . . . . . . .lines the data flow. An application requests a
fastcall from a fastcall provider using ioctl. This provider
sets up the fastcall handler and inserts it into the applica-
tion’s fastcall table. Directly at the kernel entry point, each
syscall invocation is routed either to kernel or fastcall
space.

Together with the fastcall code, the provider also maps resources,
which the fastcall needs for its work, into the fastcall space of the
target application. In our example, such a resource might be an
MMIO window to communicate directly with the NIC.

Since device resources that are associated with fastcalls are only
accessible from within the fastcall space, all operations of an appli-
cation that affect these resources have to pass through the trusted
fastcall code before reaching a device (steps 3 – 5). If an application
invokes a fastcall using parameters that do not comply with the OS
policies defined in this particular fastcall (like sending a network
packet to an arbitrary address), the fastcall function denies the op-
eration and returns to user space. The application can then either
modify its request or invoke the standard OS stack by issuing a
regular system call.

Security Considerations. As stated before, the entry procedure to
the fastcall space omits software-based side channel mitigations to
speed up the transition from user space. In particular, the fastcall
space resides in the same virtual address space as the application
and is not protected bymeasures like KPTI. Thus, while applications
cannot change any data inside the fastcall space, in the presence of
side-channel vulnerabilities like Meltdown [29], they can effectively
read the data. So the fastcall space must not contain any information
that should be kept secret from a user application.

Fastcall functions do not interact with the OS kernel in any way.
A fastcall provider must verify that the code of a fastcall neither
accesses kernel data nor calls any kernel functions, On systems
that use a separate address space for their kernel, there is a strong
isolation between fastcall space and kernel space. So fastcalls must
be self-contained as, for security reasons, calling user functions is
forbidden as well.
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1 entry_SYSCALL_64: // kernel entry point
2 cmpq $NR_fastcall , %rax
3 je fastcall // branch to fastcall system call
4 /* original kernel entry sequence [...] */
5
6 fastcall: // fastcall dispatcher
7 cmpq $NR_TABLE_ENTRIES , %rdi
8 jae error // table index out of bounds
9 movq $TABLE_ADDR , %rax
10 imulq $TABLE_ENTRY_SIZE , %rdi
11 addq %rdi, %rax
12 jmpq *(%rax) // &some_fastcall_function
13
14 some_fastcall_function: // example fastcall
15 /* fastcall function body [...] */
16 movq <RETVAL >, %rax
17 sysretq // return to user space

Figure 4: Fastcall invocation on x86-64. System calls enter
the kernel at label entry_SYSCALL_64. Lines 2 and 3 test for
the fastcall system call number and branch off to the fastcall
dispatcher, if needed. Register %rdi holds the number of the
invoked fastcall function. Lines 7 to 11 compute the fastcall
function’s address using the fastcall number as an index
into the fastcall table. Line 12 jumps to the fastcall function.
Finally, the fastcall function returns to the application via
sysret.

3 IMPLEMENTATION
This section describes the implementation of fastcalls for the Linux
kernel [28] on the x86-64 architecture1. Figure 3 presents a high-
level view of this particular implementation. The per-process fast-
call space hosts all facilities relevant for executing fastcalls: For
each fastcall registered with a process, the fastcall table contains
an entry with the metadata needed for executing the respective
fastcall function. In addition to a pointer to the code of a fastcall
function, a fastcall table entry comprises auxiliary data like config-
uration parameters or pointers to memory regions associated with
a fastcall.

Besides a fastcall table, the fastcall space hosts a memory re-
gion shared with the user application for exchanging data that is
too large to fit into CPU registers. If required by the fastcall func-
tion, the fastcall space can also hold device memory mappings and
fastcall-private memory pages (e.g. for locks and counters). Fastcall
functions written in C also require a stack. All operations in fastcall
space run in the privileged mode of the CPU (ring 0), so fastcalls
have privileges similar to the kernel and fastcall space memory is
not accessible from user mode. To avoid concurrency issues, there is
one dedicated stack per CPU and interrupts remain disabled during
the fastcall execution.

The left side of Figure 3 shows the creation of a fastcall: An
application requests access to fastcalls from a fastcall provider. In
our implementation, fastcall providers are loadable kernel modules
that interact with the fastcall infrastructure built into the modified
kernel. If the application is authorized to use the requested fastcall,
the fastcall provider adds it to the fastcall table of the calling process.

1The source code is available at https://github.com/vilaureu/linux/tree/fastcall.

The right side of Figure 3 shows the invocation of a fastcall
and Figure 4 provides a low-level view of the entry procedure. We
use the standard system call interface of x86-64 (syscall) and
assign a new system call number to fastcalls. To minimize latency,
fastcalls are distinguished from standard system calls right at the
kernel entry point. If the entry routine detects a fastcall, control
flow is forwarded to the fastcall dispatcher. The dispatcher locates
the requested fastcall function via the fastcall table and executes it.

Fastcalls do not include the overhead of typical operations that
the kernel performs on system call entry and exit. On x86-64, fast-
calls avoid setting up and tearing down the kernel environment (e.g.
swapgs) and mitigating side-channel attacks like Spectre [22], Melt-
down, and Microarchitectural Data Sampling [45]. Fastcalls also
avoid storing and restoring general purpose registers, the system
call table lookup, and consistency checks which are unnecessary
for the fastcall environment.

In essence, the presented design enables fastcalls to perform
privileged operations without fully entering the kernel, which re-
sults in reduced latency compared to system calls. Even in the
presence of currently known side-channel attacks, an application
cannot interfere with or actively manipulate memory in the fastcall
space. Therefore fastcalls are safe even when facing malicious user
applications.

4 EVALUATION
To demonstrate that a fastcall space can be implemented efficiently
using available CPU features, we conduct two sets of microbench-
marks with the fastcall mechanism described in Section 3. First, we
compare the overhead of fastcalls for executing privileged functions
to the overhead of alternative implementations. Second, we mea-
sure the overhead our fastcall implementation imposes on existing
Linux infrastructure, namely process creation.

The fastest way to implement a kernel-supplied function is the
vDSO library that is mapped into each user application [9]. Effec-
tively being normal function calls without any mode transitions,
vDSO functions serve as a lower bound for the overhead introduced
by any of the mechanisms used in our experiments. Special-purpose
system calls or ioctl-based handlers do run in privileged mode, so
they serve as the main comparison point for fastcalls.

Table 1 lists the CPU models we conducted our experiments
on. The selection covers the ISAs prevalent in today’s data cen-
ters; Intel/AMD x86-64 and ARM aarch64. For the benchmarks
on ARM we ported our fastcall framework to that architecture.
We used a Linux kernel of version 5.11 for all experiments and, if
needed, modified it to support fastcalls. However, to prevent the
in-kernel fastcall implementation from influencing the results of
vDSO, system calls, and ioctls, we used a vanilla kernel for these
measurements. We also configured the CPUs to ensure consistent
hardware conditions: Simultaneous multithreading (“Hyperthread-
ing”) and dynamic overclocking (“Turbo Boost”) were switched off.
CPU frequency and voltage scaling were disabled by selecting the
“performance” CPU governor. The source code used for running
the experiments described hereinafter is available online2.

2https://github.com/tmiemietz/fastcall-spma

https://github.com/vilaureu/linux/tree/fastcall
https://github.com/tmiemietz/fastcall-spma
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Table 1: Median latency for invoking an empty function with side channel mitigations disabled.

CPU Model Clock Rate vDSO Fastcall System Call ioctl
[GHz] [ns / cycles] [ns / cycles] [ns / cycles] [ns / cycles]

AMD Ryzen 3700X 3.6 1 / 3 26 / 87 46 / 159 61 / 207
Intel Xeon Platinum 8375C 2.9 2 / 4 47 / 161 58 / 275 74 / 343
Intel Core i7-4790 3.6 2 /—1 24 / 100 47 / 172 73 / 306
AWS Graviton2 (Neoverse-N1) 2.5 3 /—1 35 / 105 97 / 250 120 / 304

Microbenchmarks. Table 1 shows the latency of an empty kernel-
supplied function for different implementations and CPU types.
Since no real work is performed in the functions, the numbers rep-
resent the overhead of the respective mechanisms. We repeated
each experiment at least 10 000 times and present the median la-
tency, both in nanoseconds (from clock_gettime) and CPU cycles
(from rdpmc). To achieve the best performance possible for imple-
mentations inside kernel space (system call and ioctl), we fully
disabled side-channel mitigations.

As expected, calling a vDSO function introduces nigh to no over-
head. On recent Intel Xeon CPUs, the fastcall mechanism is able to
yield a latency improvement of 19% compared to system calls and
36% compared to ioctl handlers, respectively. When considering
older CPU models like the Intel Core i7-4790, the advantage of fast-
calls increases. For the ARM Neoverse-N1, the performance gain of
fastcalls is more pronounced then on x86-64, yielding speedups of
64% compared to system calls and 70% compared to ioctl handlers.

In conclusion, fastcalls significantly reduce the overhead of in-
voking privileged functions on all contemporary ISAs, making fast-
calls the ideal mechanism for latency-sensitive use cases; see Sec-
tion 5.

As part of our research onwhether the GXF feature of Apple’s M1
cores can be used for implementing fastcalls, we also measured the
overhead of the associated mode transition instruction. Our early
measurements find the roundtrip latency for using the alternative
privilege modes of GXF is only 69 cycles, compared to 87 cycles
required for svc/eret, ARM’s equivalent of the syscall/sysret
instructions. Thus, we believe that the performance of fastcalls on
the ARM architecture could be reduced by another 18 cycles, if
Graviton2 systems supported GXF.

Impact of Side-Channel Mitigations. As shown in Figure 5, the
side-channel mitigation configuration of the kernel has a significant
impact on the efficiency of the methods for implementing privileged
OS functions. Particularly with older CPU models like the Intel
Core i7-4790, enabling mitigations incurs a significant performance
penalty for entering and leaving the kernel due to, for example, KPTI
which causes additional address space switches in this situation.
Here, fastcalls have a distinct latency advantage whenever the
content of the privileged functions does not need to be secret.

For newer CPU models that have built-in mitigations for some
side-channel attacks, the latency advantage of the fastcall mecha-
nismwith mitigations is less pronounced than on older CPUmodels.

1Our measurement infrastructure could not produce precise results in these cases.
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Figure 5: Performance comparison of empty system calls
with different mitigation configurations. Note, that the per-
formance of vDSO calls does not change with different miti-
gation settings and is equal to the results presented in Table 1.

However, as Figure 5 shows, when all side-channel countermea-
sures are in effect, the latency of an empty fastcall is still 33% lower
than that of an equivalent system call.

Note, that while post-Meltdown processors do not show a sig-
nificant performance degradation when enabling side-channel mit-
igations in the kernel, crossing the syscall barrier incurs a higher
latency penalty in general.We believe CPU vendors should addition-
ally offer a privilege transition instruction without side-channel
mitigations. Programmers can then choose a trade off between
security and latency that is appropriate for a specific use case.

Overhead of the Fastcall Mechanism. The implementation of fast-
calls demands for several changes in other kernel subsystems like
the memory management or the fork handler. Hence, we need to
make sure that introducing fastcalls does not adversely affect the
performance of other features, e.g. by requiring additional memory
manipulation during fork. Figure 6 shows the impact of fastcalls
on the performance of fork. If a process has no fastcalls registered,
the time for fork is almost unchanged by introducing the fastcall
feature to the kernel (“Without Registrations”). When there are
fastcalls registered, the overhead for fork increases (“With Regis-
trations”) because the memory mappings involved in the fastcall
mechanism have to be reset when spawning a new process.

The green bars in Figure 6 show the overhead caused by calling
fork from a process with 100 fastcalls registered, each using two
private memory pages. Also note, that the mitigation settings have
no significant impact on the fork performance.



Fast Privileged Function Calls SPMA ’22, April 05, 2022, Rennes, France

default mitigations no mitigations
0

20

40

La
te

nc
y 

[µ
s] With

Registrations
Without
Registrations
Vanilla Kernel

Figure 6: Overhead of the fastcall framework on the fork
operation (CPU: AMD Ryzen 3700X)

Applicability Considerations. Fastcalls are designed to improve
performance in comparison to system calls. If the overhead of a
system call is negligible due to the long runtime of the operation
performed, there is no need for fastcalls. For example, assume an
overhead 𝑂 ≤ 5% to be negligible, a system call overhead with
default mitigations 𝑜𝑠 = 355 ns, and a fastcall overhead 𝑜 𝑓 = 24 ns
(corresponding to the Intel Core i7 in Figure 5). The total runtime of
an invocation is𝑇 = 𝑡 +𝑜 , where 𝑡 is the time spent on the operation
itself and the overhead 𝑜 is either 𝑜𝑠 or 𝑜 𝑓 . A fastcall is beneficial if
the overhead of a system call is not negligible:

𝑜𝑠

𝑇
=

𝑜𝑠

𝑜𝑠 + 𝑡
> 𝑂

Solving for 𝑡 , we get that the operation must not take more than
6.745 ns for fastcalls to offer a tangible benefit. If we additionally
require the fastcall overhead to be negligible, the operation should
take at least 456 ns. This lower limit is not a hard limit, but rather
an indication that another solution, possibly a hardware-based one,
can offer significantly better performance. To put these numbers
into perspective, a high-end InfiniBand NIC provides back-to-back
latency as low as 600 ns [36]. We believe this small example shows
that few other microsecond-scale techniques can offer performance
advantages over fastcalls.

5 USE CASES FOR FASTCALLS
We envision a framework for low-overhead execution of tailored
OS functions that will cater to a variety of use cases. This section
outlines the most promising ones.

Enforcing Network Policies. Consider a situation where the OS
passes an Ethernet device to an application but wants to limit
the egress traffic to a specific IP address. Normally, the OS must
rely on hardware capabilities to enforce such policies, which of-
ten are not fine-grained enough. We propose to map the device’s
MMIO region into fastcall space and wrap the corresponding send
function (ibv_post_send for RDMA and rte_eth_tx_burst for
DPDK) with a fastcall. This way, the application can only send a
packet by invoking the fastcall, and the corresponding wrapper
will impose the checks required by the OS.

Fine-grained Access Control for NVM. Current CPUs offer mem-
ory protection only at the level of memory pages that are typically
several kilobyte in size. Thus, applications cannot be granted direct
access to a pagewithout exposing all of its content.With NVM, how-
ever, this may become a problem. On the one hand, data structures

protected by the OS should be packed densely to save persistent
storage space. On the other hand, funneling all application accesses
to such in-memory data structures through the system call inter-
face lowers performance [32]. We envision fastcalls as a means
for implementing secure and efficient access to fine-grained data
structures located in NVM.

Fast Event Notification. The fastest way to receive event notifica-
tions is to busy poll on the corresponding event notification queue.
Unfortunately, this method wastes energy and CPU time. Therefore,
in many cases, the application requests the kernel to deliver event
notifications; a mechanism that incurs significant latency overhead.

Fastcalls are able to improve wake-up times without resorting to
busy polling by using the privileged monitor/mwait instructions.
For an initial experiment, we adapted OpenMPI [10] to use fastcalls
wrapping these instructions for node-local synchronisation. The
performance is comparable to the regular polling mode:Across the
NPB benchmark suite [34] we found a median overhead of 0.6% for
the fastcall-based monitor/mwait mechanism.

This experiment strengthens our conviction that fastcalls are
applicable in real-world scenarios and that they are easier to deploy
than custom system calls. We plan to integrate this functionality
into libevent [35], which will allow us to study the impact on a
multitude of applications.

Augmenting Specialization. Fastcalls are installed on demand
and can be parameterized for each specific instantiation. This prop-
erty allows them to serve as an efficient implementation vehicle
for OS specialization frameworks such as the Synthetix operating
system [40]. By reducing the overhead for entering and exiting priv-
ileged CPU modes, fastcalls could also further speed up kernel soft-
ware layer bypassing solutions like netmap [41]. For specialization,
we envision fastcalls to be used together with modern approaches
like JIT-compilation and a flexible infrastructure that allows for
exposing arbitrary privileged operations through fastcalls.

6 RELATEDWORK
This section puts the fastcall framework in the context of other
works that try to reduce the cost of isolation mechanisms residing
on the critical path of high-performance applications. These ap-
proaches either try to make transitions between isolation domains
cheaper or to remove isolation boundaries altogether. Previous
works already attempted to solve problems similar to ours. Unfortu-
nately, they either turned out to be slow [25], were insecure [46], or
relied on not-yet-existent hardware extensions [32]. We believe that
fastcalls are able to solve all of the aforementioned shortcomings.

Removing Isolation Boundaries. An I/O-bound application can
improve its performance by having direct access to the underlying
device, thus removing the need to switch between kernel and user
space. Referred to as kernel-bypassing, such architectures exist for
networking [16, 27] as well as for storage devices [21, 48].

To achieve the best performance attainable, it is not enough just
to pass a device to the application, one also needs an efficient API to
access that device. This observation has been reflected in dataplane
OS [4, 37, 49] and LibOS [7, 26, 30] architectures. Single-address-
space systems completely avoid CPU-enforced isolation. Instead,
these systems rely on language features and runtime checks to
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achieve isolation between different applications [23, 33] or soft-
ware modules [47]. Our approach brings novelty to the existing
architectures by maintaining the isolation boundary but making it
as thin as it is technically possible.

Fast Transition Mechanisms. The reduction of mode transition
latency can be addressed at a CPU-microarchitectural level, e.g.
by providing faster instructions [13, 17, 31]. For example, Intel’s
discontinued Itanium architecture provided promotion pages, that
are executable-only for user applications. Code inside these page
can trigger a fast transition to privileged mode [18, Section 4].
In the most extreme case, the transition cost can be reduced to
almost zero, as in case with vDSO [9]. As a disadvantage, vDSO
offers only very limited functionality. Asynchronous system call
mechanisms [3, 11, 43] and io_uring in asynchronous mode [5]
also allow to reduce the transition latency but, in exchange, induce
higher CPU utilization.

Simurgh [32] proposes an ISA extension for the x86 architecture
that allows to mark kernel-level pages as execute protected. Invoking
a special instruction (jmpp) causes the CPU to jump to an execute-
protected page while simultaneously switching to privileged CPU
mode. This way, the OS exposes a set of privileged functions to
a user process through an execute-protected page. In contrast to
Simurgh, the fastcall mechanism is available on standard CPUs
today.

Critical path interposition. Traditionally, an external I/O-request
(e.g. some request received over the network) will first be processed
inside the kernel and then be passed to the user-space application,
causing a context switch. The response will require a similar path.
Multiple methods employed eBPF [8] to offload simple request
processing routines from the user application into the storage [50],
network [12], or scheduling [15] subsystems of the Linux kernel.
This way, many context switches can be completely eliminated.

Both fastcalls and eBPF functions insert code snippets into the
kernel, their purpose is vastly different however. Whereas eBPF pro-
grams effectively shift application code into the kernel, fastcalls are
primarily designed for leveraging the efficient and secure deploy-
ment of kernel components in user space, thus reducing the amount
of code running in privileged mode. Fastcalls thus aim at fostering
an OS design closer to that of microkernels and exokernels.

In the context of kernel-bypass architectures the OS may want
to achieve similar interposition, without impairing application per-
formance. For that, the OS can employ SmartNICs [6, 42], pro-
grammable SSDs [24], or programmable switches [2] to filter, sched-
ule, or process user application requests transparently. In contrast
to interposition methods using smart hardware, fastcalls do not
require custom extensions of I/O devices.

7 CONCLUSION
We built this paper on the observation that current mechanisms
for the transition from applications to kernel code can become a
performance bottleneck in modern systems. We propose the fast-
call framework for enabling operating systems to protect security-
critical resources like kernel or devicememory from arbitrary access
by applications. Fastcalls reduce the overhead for calling privileged
functions to the bare minimum and thus yield better performance

properties than traditional system calls. We implemented a proto-
type version of the fastcall framework and conducted microbench-
marks that showed latency improvements of up to 15× compared
to system calls of a vanilla Linux kernel. Even though fastcalls of-
fer a limited execution environment that only allows for running
simple code snippets, they may be used to implement secure, fast,
and CPU-efficient device accesses as well as to give applications
protected access to privileged CPU instructions.

8 ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
comments. We furthermore thank Christian von Elm for conducting
measurements on the AppleM1 CPU. This research was co-financed
from the European Union’s Horizon 2020 research program under
grant agreement No. 957216, by the SAB (Development Bank of
Saxony) under frameworks from both the ERDF (European Regional
Development Fund) as well as the ESF (European Social Fund), and
by public funding from the state of Saxony/Germany.

REFERENCES
[1] networking:toe [Wiki]. URL https://wiki.linuxfoundation.org/networking/toe.
[2] Bedrock: Programmable network support for secure RDMA systems. URL https:

//www.usenix.org/conference/usenixsecurity22/presentation/xing.
[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L
Stillwell, David Goltzsche, David Eyers, Rudiger Kapitza, Peter Pietzuch, and
Christof Fetzer. SCONE: Secure Linux Containers with Intel SGX. page 17.

[4] AdamBelay, George Prekas, Christos Kozyrakis, Ana Klimovic, Samuel Grossman,
and Edouard Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, pages 49–65. ISBN 978-1-931971-16-4.

[5] Jonathan Corbet. Ringing in a new asynchronous i/o API. URL https://lwn.net/
Articles/776703/.

[6] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Vivek Bhanu, Eric Chung, Harish Kumar Chan-
drappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava,
Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid,
David A. Maltz, and Albert Greenberg. Azure Accelerated Networking: Smart-
NICs in the Public Cloud. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), NSDI’18. ISBN 978-1-931971-43-0.

[7] Dawson R Engler, M Frans Kaashoek, James O’Toole, and M I T Laboratory.
Exokernel: An Operating System Architecture for Application-Level Resource
Management. page 16.

[8] Matt Fleming. A thorough introduction to eBPF. URL https://lwn.net/Articles/
740157/.

[9] Mike Frysinger. vdso(7). URL https://man7.org/linux/man-pages/man7/vdso.7.
html.

[10] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI im-
plementation. In Dieter Kranzlmüller, Péter Kacsuk, and Jack Dongarra, editors,
Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages
97–104, Berlin, Heidelberg, September 2004. Springer. ISBN 978-3-540-30218-6.
doi:10.1007/978-3-540-30218-6_19.

[11] Luis Gerhorst, Benedict Herzog, Stefan Reif, Wolfgang Schröder-Preikschat,
and Timo Hönig. Anycall: Fast and flexible system-call aggregation. In PLOS
’21: Proceedings of the 11th Workshop on Programming Languages and Operat-
ing Systems, Virtual Event, Germany, October 25, 2021, pages 1–8. ACM, 2021.
doi:10.1145/3477113.3487267. URL https://doi.org/10.1145/3477113.3487267.

[12] Yoann Ghigoff, Julien Sopena, Gilles Muller, Kahina Lazri, and Antoine Blin. BMC:
Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing.
page 16.

[13] Charles Gray, Matthew Chapman, Peter Chubb, David Mosberger, and Gernot
Heiser. Itanium - A system implementor’s tale(awarded general track best student
paper award!). In Proceedings of the 2005 USENIX Annual Technical Conference,
April 10-15, 2005, Anaheim, CA, USA, pages 265–278. USENIX, 2005. URL http:
//www.usenix.org/events/usenix05/tech/general/gray.html.

https://wiki.linuxfoundation.org/networking/toe
https://www.usenix.org/conference/usenixsecurity22/presentation/xing
https://www.usenix.org/conference/usenixsecurity22/presentation/xing
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1145/3477113.3487267
https://doi.org/10.1145/3477113.3487267
http://www.usenix.org/events/usenix05/tech/general/gray.html
http://www.usenix.org/events/usenix05/tech/general/gray.html


Fast Privileged Function Calls SPMA ’22, April 05, 2022, Rennes, France

[14] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan, Bei Hua, Zhi-Li Zhang,
and Kai Zheng. MasQ: RDMA for Virtual Private Cloud. In Proceedings of the
Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication,
SIGCOMM ’20, pages 1–14. Association for Computing Machinery. ISBN 978-1-
4503-7955-7. doi:10/gg9rjq.

[15] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret Rhoden,
Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and Christos Kozyrakis.
ghOSt: Fast & Flexible User-Space Delegation of Linux Scheduling. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21,
pages 588–604. Association for Computing Machinery. ISBN 978-1-4503-8709-5.
doi:10/gm8ntm.

[16] InfiniBand Trade Association. InfiniBand Architecture Specification, volume 1.
InfiniBand Trade Association, 1.3 edition. URL https://cw.infinibandta.org/
document/dl/8567.

[17] Intel Corporation. Flexible return and event delivery (FRED). URL
https://software.intel.com/content/dam/develop/external/us/en/documents-
tps/346446-flexible-return-and-event-delivery.pdf.

[18] Intel Corporation. Intel Itanium architecture software developer’s manual, May
2010. URL https://www.intel.de/content/dam/www/public/us/en/documents/
manuals/itanium-architecture-software-developer-rev-2-3-vol-2-manual.pdf.

[19] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale
computer. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture, ISCA ’15, pages 158–169. Association for Computing Machinery.
ISBN 978-1-4503-3402-0. doi:10/ghmjs6.

[20] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu Pad-
hye, Shachar Raindel, Chuanxiong Guo, Vyas Sekar, and Srinivasan Seshan.
FreeFlow: Software-based Virtual RDMA Networking for Containerized Clouds.
In Proceedings of the 16th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI, pages 113–125, . ISBN 978-1-931971-49-2.
doi:10.5555/3323234.3323245.

[21] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. NVMeDirect: A user-
space i/o framework for application-specific optimization on NVMe SSDs.
. URL https://www.usenix.org/conference/hotstorage16/workshop-program/
presentation/kim.

[22] Paul Kocher, Jann Horn, Anders Fogh, {and} Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In
40th IEEE Symposium on Security and Privacy (S&P’19).

[23] Gregory M. Kurtzer, Vanessa Sochat, andMichael W. Bauer. Singularity: Scientific
containers for mobility of compute. 12(5):e0177459. ISSN 1932-6203. doi:10/f969fz.

[24] Dongup Kwon, Junehyuk Boo, Dongryeong Kim, and Jangwoo Kim. FVM: fpga-
assisted virtual device emulation for fast, scalable, and flexible storage virtualiza-
tion. In 14th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020, pages 955–971. USENIX Association,
2020. URL https://www.usenix.org/conference/osdi20/presentation/kwon.

[25] Hojoon Lee, Chihyun Song, and Brent ByungHoon Kang. Lord of the x86 rings:
A portable user mode privilege separation architecture on x86. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1441–1454. ACM, 2018.
doi:10.1145/3243734.3243748. URL https://doi.org/10.1145/3243734.3243748.

[26] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Teodorescu, Sebas-
tian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier. FlexOS: Towards
Flexible OS Isolation. URL http://arxiv.org/abs/2112.06566.

[27] LF Projects, LLC. Data plane development kit. URL https://www.dpdk.org/.
[28] Linux Kernel Organization, Inc. The linux kernel archives. URL https://www.

kernel.org/.
[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user space.
In 27th USENIX Security Symposium (USENIX Security 18).

[30] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: library operating systems for the cloud. 48:461. ISSN 03621340.
doi:10.1145/2499368.2451167.

[31] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. SkyBridge: Fast
and secure inter-process communication for microkernels. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 1–15. Association for
Computing Machinery. ISBN 978-1-4503-6281-8. doi:10.1145/3302424.3303946.
URL https://doi.org/10.1145/3302424.3303946.

[32] Nafiseh Moti, Frederic Schimmelpfennig, Reza Salkhordeh, David Klopp, Toni
Cortes, Ulrich Rückert, and André Brinkmann. Simurgh: a fully decentralized

and secure NVMM user space file system. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
’21, pages 1–14. Association for Computing Machinery. ISBN 978-1-4503-8442-1.
doi:10/gn4bjw.

[33] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li,
Gerd Zellweger, and Anton Burtsev. RedLeaf: Isolation and Communication in
a Safe Operating System. pages 21–39. ISBN 978-1-939133-19-9. URL https:
//www.usenix.org/conference/osdi20/presentation/narayanan-vikram.

[34] NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. URL
https://nas.nasa.gov/Software/NPB/.

[35] NickMathewson, Azat Khuzhin, and Niels Provos. libevent – an event notification
library. URL https://libevent.org/.

[36] NVIDIA. ConnectX-6 VPI Card Product Brief. URL https://www.mellanox.com/
files/doc-2020/pb-connectx-6-vpi-card.pdf.

[37] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system
is the control plane. 33(4):11:1–11:30. ISSN 0734-2071. doi:10.1145/2812806. URL
https://doi.org/10.1145/2812806.

[38] Sven Peter. Apple silicon hardware secrets: Sprr and guarded exception levels
(gxf). URL https://blog.svenpeter.dev/posts/m1_sprr_gxf/.

[39] Maksym Planeta, Jan Bierbaum, Leo Sahaya Daphne Antony, Torsten Hoefler,
and Hermann Härtig. MigrOS: Transparent Operating Systems Live Migration
Support for Containerised RDMA-applications. In USENIX ATC 2021, pages
47–63. ISBN 978-1-939133-23-6. URL https://www.usenix.org/conference/atc21/
presentation/planeta.

[40] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole,
and K. Zhang. Optimistic incremental specialization: streamlining a commercial
operating system. In Proceedings of the fifteenth ACM symposium on Operating sys-
tems principles, SOSP ’95, pages 314–321. Association for Computing Machinery.
ISBN 978-0-89791-715-5. doi:10/c8w2pt.

[41] Luigi Rizzo. Netmap: a novel framework for fast packet i/o. In Proceedings of the
2012 USENIX conference on Annual Technical Conference, USENIX ATC’12, page 9.
USENIX Association.

[42] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S. Berger, James C.
Hoe, Aurojit Panda, and Justine Sherry. We need kernel interposition over the
network dataplane. In Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’21, pages 152–158. Association for Computing Machinery. ISBN
978-1-4503-8438-4. doi:10.1145/3458336.3465281. URL https://doi.org/10.1145/
3458336.3465281.

[43] Livio Soares and Michael Stumm. FlexSC: flexible system call scheduling with
exception-less system calls. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI’10, pages 33–46. USENIX
Association.

[44] The kernel development community. Page table isolation (PTI), . URL https:
//www.kernel.org/doc/html/v5.11/x86/pti.html.

[45] The kernel development community. Microarchitectural data sampling (MDS)
mitigation, . URL https://www.kernel.org/doc/html/v5.11/x86/mds.html.

[46] Amit Vasudevan, Ramesh Yerraballi, and Ashish Chawla. A high performance
kernel-less operating system architecture. In Proceedings of the Twenty-eighth
Australasian conference on Computer Science - Volume 38, ACSC ’05, pages 287–296.
Australian Computer Society, Inc. ISBN 978-1-920682-20-0.

[47] Robert Wahbe. Efficient data breakpoints. In Barry Flahive and Richard L.
Wexelblat, editors, ASPLOS-V Proceedings - Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Boston,
Massachusetts, USA, October 12-15, 1992, pages 200–212. ACM Press, 1992.
doi:10.1145/143365.143518. URL https://doi.org/10.1145/143365.143518.

[48] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao, J. Stern,
V. Verma, and L. E. Paul. SPDK: A development kit to build high performance stor-
age applications. In 2017 IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom), pages 154–161. doi:10.1109/CloudCom.2017.14.
ISSN: 2330-2186.

[49] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson,
Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh
Badam. The demikernel datapath OS architecture for microsecond-scale da-
tacenter systems. In Robbert van Renesse and Nickolai Zeldovich, editors,
SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Vir-
tual Event / Koblenz, Germany, October 26-29, 2021, pages 195–211. ACM, 2021.
doi:10.1145/3477132.3483569. URL https://doi.org/10.1145/3477132.3483569.

[50] Yuhong Zhong, Hongyi Wang, Yu Jian Wu, Asaf Cidon, Ryan Stutsman, Amy
Tai, and Junfeng Yang. BPF for storage: an exokernel-inspired approach. In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’21,
pages 128–135. Association for Computing Machinery. ISBN 978-1-4503-8438-4.
doi:10.1145/3458336.3465290. URL https://doi.org/10.1145/3458336.3465290.

https://doi.org/10/gg9rjq
https://doi.org/10/gm8ntm
https://cw.infinibandta.org/document/dl/8567
https://cw.infinibandta.org/document/dl/8567
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/346446-flexible-return-and-event-delivery.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/346446-flexible-return-and-event-delivery.pdf
https://www.intel.de/content/dam/www/public/us/en/documents/manuals/itanium-architecture-software-developer-rev-2-3-vol-2-manual.pdf
https://www.intel.de/content/dam/www/public/us/en/documents/manuals/itanium-architecture-software-developer-rev-2-3-vol-2-manual.pdf
https://doi.org/10/ghmjs6
https://doi.org/10.5555/3323234.3323245
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://doi.org/10/f969fz
https://www.usenix.org/conference/osdi20/presentation/kwon
https://doi.org/10.1145/3243734.3243748
https://doi.org/10.1145/3243734.3243748
http://arxiv.org/abs/2112.06566
https://www.dpdk.org/
https://www.kernel.org/
https://www.kernel.org/
https://doi.org/10.1145/2499368.2451167
https://doi.org/10.1145/3302424.3303946
https://doi.org/10.1145/3302424.3303946
https://doi.org/10/gn4bjw
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://nas.nasa.gov/Software/NPB/
https://libevent.org/
https://www.mellanox.com/files/doc-2020/pb-connectx-6-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-6-vpi-card.pdf
https://doi.org/10.1145/2812806
https://doi.org/10.1145/2812806
https://blog.svenpeter.dev/posts/m1_sprr_gxf/
https://www.usenix.org/conference/atc21/presentation/planeta
https://www.usenix.org/conference/atc21/presentation/planeta
https://doi.org/10/c8w2pt
https://doi.org/10.1145/3458336.3465281
https://doi.org/10.1145/3458336.3465281
https://doi.org/10.1145/3458336.3465281
https://www.kernel.org/doc/html/v5.11/x86/pti.html
https://www.kernel.org/doc/html/v5.11/x86/pti.html
https://www.kernel.org/doc/html/v5.11/x86/mds.html
https://doi.org/10.1145/143365.143518
https://doi.org/10.1145/143365.143518
https://doi.org/10.1109/CloudCom.2017.14
https://doi.org/10.1145/3477132.3483569
https://doi.org/10.1145/3477132.3483569
https://doi.org/10.1145/3458336.3465290
https://doi.org/10.1145/3458336.3465290

	Abstract
	1 Introduction
	2 The Fastcall Architecture
	3 Implementation
	4 Evaluation
	5 Use Cases for Fastcalls
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

