
The Software-Defined CPU
Michael Roitzsch
Barkhausen Institut
Dresden, Germany

Till Miemietz
Barkhausen Institut
Dresden, Germany

ABSTRACT
Our CPUs contain a compute instruction set, which regular appli-
cations use. But they also carry a complex underworld of different
CPUmodes, combined with intricate trap and exception handling
to transition between these modes. These mechanisms are manifold,
complex, and are largely outside of meaningful operating system
control. We have to take what CPU vendors provide, including po-
tential security problems fromunneededmodes. This paper explores
the question, whether CPUmodes could instead be defined entirely
by software. It shows how such a designwould function and explores
the advantages it enables.

1 INTRODUCTION
In bygone years, operating systems interacted with the CPU in the
simple terms of traditional user and kernelmode. Privileged features,
like page table manipulation and interrupt handling, were restricted
to kernel mode, while user mode handled regular application code.
But as the systems community demandedmore features to playwith,
CPUvendorsdelivered:Hypervisormodeswithnestedpagingenable
hardware-supported virtualization, monitor modes enable strongly
isolated security contexts [3]. Since CPU performance growth has
slowed, CPU vendors started looking at feature diversification, per-
petuating the trend of adding more CPUmodes: SGX [2], MPK [6],
andSEV[1] are the latest additions to the family. This plethoraof new
modes would not be a problem if they did not also come with a lot of
complexity added to our CPUs. Recent years have shown how brittle
CPU implementations already are [7, 8], and thenewmodes certainly
do not help [9, 10].Whetherwe use thesemodes or not, all the associ-
ated complexity is always present, completely outside operating sys-
tem control. SGX, for example, is highly complex and assumed to be
largely implemented in microcode [4]. But although it is microcode,
it is inseparably linked to the silicon. Although firmware merely is
software soldbyahardwarevendor, the systemsoftwarecannot influ-
ence this microcode to disable unneeded features or to add new ones.

This paper poses the question: What if we could?What if we had
the pendulum swing all the way to the other end? Let us assume
we could not just change microcode, but instead had CPUs, where
the very nature of CPUmodes was fully programmable. The goal of
such a CPU design would be to throw away all existing CPUmodes
and replace themwith software. Let us explore this wild and crazy
idea in the remainder of this paper.

2 CPU PROGRAMMABILITY
Intuitively,CPUsshould take the topspoton the list ofprogrammable
devices. All software is essentially programming the CPU, right?
Our programs are translated to an instruction stream, which the
CPU consumes and interprets. The instructions we use invoke the
CPU-internal function blocks like arithmetic logic units (ALUs),
floating-point units (FPUs), load-store units, and branching units.
We interpret the resulting state changes as program execution. All

user code works this way, but also operating system and hypervisor
code consists mostly of these instructions. We call this portion of
CPU operation the CPU data plane, because its main observable
effect is the transformation of input data to output data.

But next to this data plane, there is a whole other world, which
does not process data, but influences how the CPU processes data.
ThisCPU control plane is invoked byway of traps and exceptions and
contains the logic of CPU mode switches. This logic is hardwired
and complex, which is in stark contrast to the orthogonal and com-
posable function blocks of the data plane. This part of the CPU is
exactly what we want to replace in order to realize our vision of a
software-defined CPU.

But how shouldwe construct a programmableCPU control plane?
Similar to the data plane, we want distinct, composable function
blocks which system software can freely orchestrate. Of course, this
will be a different kind of software. Its instruction stream does not
process data, it rather implements the CPUmodes and transitions
between them. It does so by programming the control plane function
blocks to configure the environment in which the data plane instruc-
tions will run. This concept raises two questions: What should these
function blocks be? And more importantly, where— that is, in what
CPUmode— should the control plane instructions run?

3 THEMODE SWITCHMODE
Here, this concept becomes self-contradicting at first glance, because
we are essentially proposing to add yet another CPUmode.We call it
themode switchmode (MSM) and it should run the control plane code,
which programs the control plane function blocks. But obviously, the
goal of thismode is to subsumeall other built-inCPUmodes by allow-
ing the control plane code to implement all othermodes dynamically
in software. In that sense, the MSM is indeed a newmode, but it is
the last and only CPUmode we will need to worry about ever again.

Necessary Function Blocks. Let us design the MSM bottom-up:What
functionality dowe require to implement the existingmode switches
in software? First, we need a way for the data plane to invoke the
MSM.Wethereforeneed tobeable to configure the trappingbehavior
of instructions. Compute instructions can trap as a side effect in some
circumstances, like a division by zero. For syscall instructions, their
entire purpose is to trap.Whathappens after sucha trap is entirelyup
to the MSM code, which needs to inspect the trap cause and react on
it. But whether an instruction traps or not should be configurable. It
may offer interesting opportunities to configure trapping options for
all instructions and even configure conditions like division by zero.

Second,memory accesses can raise exceptionswithin thememory
management unit. Currently, page table entries contain permission
bits with a pre-defined meaning. The MSMwould enable more flex-
ibility by turning the permission bits into small storage areas with
no initial meaning and allowingMSM code to configure the MMU
to implement a software-defined meaning. The MMUwould offer



programmable logic, whose input are the page table bits and prop-
erties of the memory access, like reading or writing. The function’s
single-bit result would determine whether an exception occurs.

Third, the MSM code needs to read and write data plane registers
critical for control flow, especially the data plane instruction pointer.
We think that instruction trapping,MMU configuration, and register
access is sufficient to implement traditional user and kernel mode,
as we illustrate below. However, for newer CPU modes like SGX,
we would need to add specific function blocks to implement their
behavior. The benefit of MSM is that it encourages designs, where
the minimal primitives are added as composable function blocks,
deliberately delegating complex interactions to software. For SGX
andSEV, attestationofMSMcode and configurationof keys for inline
memory encryption may be all that is needed.

The MSM and Traditional Modes. A software-defined CPU accord-
ing to this proposal would have no modes except for the MSM and
regular data plane execution.We have to leave our usual thinking
behind that the CPU is always in a specific mode, we just have data
plane execution and theMSM.TheMSMaccesses the function blocks
described above to alter the environment in which data plane exe-
cution occurs. Only the nature of the environment programmed by
the MSM code turns the data plane execution context into a ‘user
mode’ or a ‘kernel mode’. These modes are now entirely a software
construct emerging from the loadedMSM code. Thus, theMSM code
needs to be loaded very early during the boot process. Within the
scope of this paper, we leave open whether runtime changes should
be allowed and how they would function.

However, when the traditional modes are defined in software,
this software must now remember, what mode is currently active.
Current CPUs remember themode as part of their architectural state.
This state now needs to be managed by the MSM code. Our thinking
is that the MSM should have a small amount of freely usable CPU in-
ternal scratchpadmemory available. To reduce complexity, theMSM
should not have access to regularmainmemory at all. Otherwise, we
would have to deal with the headaches of paging the mode that con-
trols paging semantics. Reading andwriting this scratchpad requires
s small set of simple memory and control flow instructions as part
of the control plane instruction set. State sharing between control
plane and data plane is enabled by adding data plane instructions
to access the MSM scratchpad. Of course, it is MSM-configurable
whether these instructions work or trap.

Walking Through a Mode Transition. Assume we have a software-
defined CPU and are currently running in an environment resem-
bling traditional user mode. Howwould a system call work?What
must the MSM code do to implement the user-kernel transition?

The user code issues a system call instruction, which has been
configured by a previous MSM execution to trap. This trap invokes
theMSM code, which first inspects the trap cause to learn that a tran-
sition to kernel mode is requested. It then reads the current mode
information stored in the scratchpad to learn that the transition
makes sense. MSM then stores the data plane instruction and stack
pointer in the scratchpad and sets them to hardcoded values of the
kernel entry point. Finally, the MSM reconfigures the MMU permis-
sion logic to make kernel pages available. The CPU exits MSMmode
and resume data plane execution at the new instruction pointer. The
execution environment now resembles traditional kernel mode. The

kernel can save the previous ‘user’ instruction and stack pointer by
reading them fromMSM scratchpad.We leave the inverse transition
back to user mode as an exercise to the reader.

4 DISCUSSION
Are the presented mechanisms sufficient to implement all existing
modes?Webelieve the conceptworks, but additional function blocks
may be needed for some of the more complex modes. Virtualization
for example requires to turn nested paging on and off.

Introducing New CPUModes. With everything defined in software,
we can change the strict hierarchical ordering of today’s modes. We
can arrange them differently, like having virtualizationmodes (guest
kernel, guest user) available within host user mode. We can expose
the flushing ofmicro-architectural state as anMSM function block to
offer different trade-offs between side channel mitigation and mode
switch latency.We can add in-process sandboxes, which are interest-
ing to just-in-time compiled code like JavaScript: The JIT code region
is mapped writable when the JIT executes. But before invoking the
created code, we change to a lightweight sandbox mode, where JIT
pages are executable, but no longer writable. Other ideas could in-
clude nested paging inside user code, which has been explored by
Dune [5]. Programming language implementations may also make
use of customizable trap behavior, for example to implement inte-
ger overflow protection with trapping instead of instruction-based
checks.

Microkernels. You may wonder, whether the MSM code is not some
kind of microkernel. It certainly shares properties of a microkernel
and we think a simple partitioning kernel running a fixed, small
number of applications can indeed be implemented entirely in MSM.
But the MSM is not capable of dynamically altering page tables
or managing memory-backed resources like thread control blocks,
simply because MSM has no access to main memory. But it is an
interesting thought experiment to apply the microkernel concept
of running system services in user code to MSM: Can we augment
MSM by having data plane services, for example to emulate missing
hardware features in software?

CISC and RISC. In a way, the principles of RISC have only been
applied comprehensively to the CPU data plane. There, we moved
from CISC’s complex, pre-packages bundles of functionality to or-
thogonal, composable building blocks. The MSM concept tries to
do the same for the CPU control plane: reshape a set of complex,
pre-packaged CPU modes into orthogonal, composable building
blocks orchestrated by software.

5 CONCLUSION
This proposal of a software-defined CPUwill result in years of new
ASPLOSpapers!Wemust build a performantMSM,whichwill be fun
for the architecture community. We can have arbitrary and dynamic
mode graphs instead of the boring hierarchical layers, which will
be fun for the operating systems community. We can have program-
ming languages that invent their ownmodes, which will be fun for
the compiler community. We should start today.



REFERENCES
[1] 2022. AMD Secure Encrypted Virtualization (SEV). https://developer.amd.com/

sev/. (Accessed on February 23, 2022).
[2] 2022. Intel Software Guard Extensions (Intel SGX). https://www.intel.

com/content/www/us/en/architecture-and-technology/software-guard-
extensions.html. (Accessed on February 23, 2022).

[3] 2022. Trustzone for Cortex A – TEE Reference Documentation.
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a/tee-
reference-documentation. (Accessed on February 23, 2022).

[4] Andrew Baumann. 2017. Hardware is the new Software. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, HotOS 2017, Whistler, BC, Canada,
May 8-10, 2017, Alexandra Fedorova, AndrewWarfield, Ivan Beschastnikh, and
Rachit Agarwal (Eds.). ACM, 132–137. https://doi.org/10.1145/3102980.3103002

[5] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David Mazières,
and Christos Kozyrakis. 2012. Dune: Safe User-level Access to Privileged
CPU Features. In 10th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, Chandu
Thekkath and Amin Vahdat (Eds.). USENIX Association, 335–348. https:
//www.usenix.org/conference/osdi12/technical-sessions/presentation/belay

[6] JonathanCorbet. 2015. Memory protection keys. https://lwn.net/Articles/643797/.
(Accessed on February 23, 2022).

[7] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. meltdownattack.com
(2018). https://spectreattack.com/spectre.pdf

[8] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. 2018. Meltdown. meltdownattack.com (2018).
https://meltdownattack.com/meltdown.pdf

[9] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. 2020. Plundervolt: Software-based Fault Injection
Attacks against Intel SGX. In 2020 IEEE Symposium on Security and Pri-
vacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1466–1482.
https://doi.org/10.1109/SP40000.2020.00057

[10] Jo Van Bulck, Marina Minkin, OfirWeisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas FWenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the Intel SGX kingdomwith transient
out-of-order execution. In 27th USENIX Security Symposium (USENIX Security
18). 991–1008.

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://doi.org/10.1145/3102980.3103002
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://lwn.net/Articles/643797/
https://spectreattack.com/spectre.pdf
https://meltdownattack.com/meltdown.pdf
https://doi.org/10.1109/SP40000.2020.00057

	Abstract
	1 Introduction
	2 CPU Programmability
	3 The Mode Switch Mode
	4 Discussion
	5 Conclusion
	References

