
Efficient and Scalable CoreMultiplexingwithM3v

Nils Asmussen
Barkhausen Institut
Dresden, Germany

Sebastian Haas
Barkhausen Institut
Dresden, Germany

CarstenWeinhold
Barkhausen Institut
Dresden, Germany

Till Miemietz
Barkhausen Institut
Dresden, Germany

Michael Roitzsch
Barkhausen Institut
Dresden, Germany

ABSTRACT

The M3 system (ASPLOS ’16) proposed a hardware/software co-
design that simplifies integration between general-purpose cores
and special-purpose accelerators, allowing users to easily utilize
them in a unified manner. M3 is a tiled architecture, whose tiles
(cores and accelerators) are partitioned between applications, such
that each tile is dedicated to its own application.

The M3x system (ATC ’19) extendedM3 by trading off some iso-
lation to enable coarse-grained multiplexing of tiles among multiple
applications. With M3x, if source tile 𝑡1 runs code of application 𝑝
and sends a message𝑚 to destination tile 𝑡2 while 𝑡2 is currently not
associated with 𝑝 , then𝑚 is forwarded to the right place through a
łslow pathž, via some special OS tile.

In this paper, we present M3v, which extends M3x by further trad-
ing off some isolation between applications to support łfast pathž
communication that does not require the said OS tile’s involvement.
Thus, withM3v, a tile can be efficientlymultiplexed between applica-
tions provided it is a general-purpose core. M3v achieves this goal by
1) adding a local multiplexer to each such core, and by 2) virtualizing
the core’s hardware component responsible for cross-tile communi-
cations.We prototypeM3v using RISC-V cores on an FPGA platform
and show that it significantly outperforms M3x and may achieve
competitive performance to Linux.

CCS CONCEPTS

·Computer systems organization→ Architectures; · Security
and privacy → Operating systems security; · Software and its

engineering→ Process management;Communicationsman-

agement.

KEYWORDS

Context Switching, Hardware Virtualization

ACMReference Format:

NilsAsmussen, SebastianHaas,CarstenWeinhold,TillMiemietz, andMichael
Roitzsch. 2022. Efficient and Scalable Core Multiplexing with M3v. In Pro-

ceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’22), February 28

ś March 4, 2022, Lausanne, Switzerland.ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3503222.3507741

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507741

Core

Core or
Accelerator

App

Controller

Core

M³

AppApp

Controller

Core

Core

Mux

AppApp

Mux
Controller

DTU

M³x M³v

DTU DTU

DTU DTU vDTU

Core or
Accelerator

Figure 1: Tile multiplexing onM3 (nomultiplexing), M3x (all

tiles canbemultiplexedusing a single centralizedOS tile), and

M3v (general-purpose tiles canmultiplex themselves). Each

of the lower tiles can exist multiple times in a real platform.

1 INTRODUCTION

M3 [16] is a hardware/software co-design that addresses the trend
towards increasingly heterogeneous systems [28, 29, 40, 41, 52]. It
is based on a tiled hardware architecture [59] and allows users to
easily utilize general-purpose cores and special-purpose accelera-
tors in a unified manner. Communication between tiles is achieved
with a custom per-tile hardware component called data transfer
unit (DTU). The DTU provides a uniform interface to all tiles, which
simplifies heterogeneous systems. Additionally, the DTU isolates
tiles from each other, because cross-tile communication is denied
by default. Communication channels between tiles are set up by the
communication controller,1 or controller for short, which runs on a
dedicated OS tile. After the setup, applications can communicate
directly via their DTU, bypassing the controller. Therefore, we call
such communication fast-path communication.

As depicted in Figure 1 (left),M3doesnot support tilemultiplexing
and is therefore limited to one application per tile. The inability to
multiplex tiles inhibits tileutilizationwhenapplicationsareoccasion-
ally idle. Multiplexing tiles amongmultiple applications therefore
enables increased tile utilization. One reason that M3 and similar
systems likeDLibOS [42] are limited to one application per tile is that
tilemultiplexing impedes fast-path communication: theOS is respon-
sible for tile multiplexing, but the goal of fast-path communication
is to bypass the OS. For example, if an application is waiting for an
incoming message, the OS needs to suspend the application to allow
forward progress for other applications on the same tile. Later, the
OS needs to resume the suspended application uponmessage arrival.

M3x [15] resolved this challenge in a manner that allows for mul-
tiplexing of both general-purpose cores and special-purpose accel-
erators. With M3x, the controller performs all context switches on

1We decided to use the name communication controller instead of łkernelž as in previous
M3 papers to prevent confusion with the traditional meaning of łkernelž.

452

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507741
https://doi.org/10.1145/3503222.3507741

ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland Asmussen, Haas, Weinhold, Miemietz, Roitzsch

all tiles in the system remotely, as illustrated in Figure 1 (middle).
Namely, the controller is responsible for scheduling decisions, asks
other tiles to save or restore their state, and switches between con-
texts.M3xretains fast-pathcommunication if the recipient is running,
but otherwise resorts to slow-path communication, which redirects
the communication over the controller.When two applications share
a tile and cause frequent slow-path communication, M3x suffered
from performance problems.

In this paper, we present M3v, a new core-multiplexing approach
for the M3 system that replaces the general mechanism of M3x by a
specificone for general-purpose cores.We trade someof the isolation
andgenerality ofM3x for improvedefficiency.As sketched inFigure 1
(right), our design is based on 1) a core-local software multiplexer,
which performs context switches on this core without involving the
controller on the OS tile and on 2) hardware virtualization of the
DTU (vDTU). In contrast to the previous M3 prototypes that were
simulated, we built a hardware FPGA-based implementation of M3v
including our core-multiplexing support. In the evaluation, we com-
pare to M3x in simulation using a context-switch heavy workload,
showing a two-fold performance improvement and almost linear
scalability up to 12 tiles for M3v, whereas M3x does not scale to two
tiles. Additionally, we evaluate the performance of M3v in compari-
son to Linux on an FPGA platform, showing that M3v is competitive
with single and multiple applications per core.

In terms of isolation, both M3x andM3v are less secure thanM3,
because they weaken isolation, allowing multiple applications to
share a physical core, whereas M3 enforces physical isolation. The
newly proposed M3v further trades off some isolation relative to
M3x, as multiplexing is supported in both M3x and M3v but M3x
implements it remotely in the controller, where it is isolated from
untrusted, potentiallymalicious applications. In contrast,M3v imple-
ments multiplexing in the application tiles, where no such physical
isolation exists, which is most likely riskier, notably with respect to
side-channel attacks.

Moreover,whereasM3xmultiplexing functionality is implemented
in software and is operational only at the controller, M3v multiplex-
ing is implemented in hardware in each individual core. Thus, M3v
trades off software complexity (that affects only one core), with hard-
ware complexity (affecting all cores). In all M3 variants, taking over
the controller implies taking over the entire machine.

Paper Roadmap. In section 2, we provide background onM3 and
M3x and discuss how similar system properties can be achievedwith
traditional architectures. We then present the design and implemen-
tation of M3v in Sections 3 and 4, respectively. Section 5 discusses
the trade-off between isolation and efficiency. We evaluate M3v in
Section 6 and then discuss relatedwork and futurework in Sections 7
and 8, respectively.

2 BACKGROUND

This section introduces M3 [16] and provides the required back-
ground on its extensionM3x [15], which implements core multiplex-
ing. Furthermore, we compare the properties of the M3 platform
with traditional system architectures and discuss the differences.

2.1 TheM3Hardware/Software Platform

M3 [16] proposed a new system architecture based on a hardware/
software co-design. On the hardware side, M3 builds upon a tiled
architecture [59], as shown in Figure 3.M3 extends its tiles by adding
a new hardware component called data transfer unit (DTU) to them.
Each tile contains aDTUand either a core, an accelerator, ormemory
(e.g., a memory interface to off-chip DRAM). In contrast to conven-
tionalarchitectures,M3doesnotbuilduponcoherent sharedmemory,
but uses the DTU for cross-tile messaging and memory accesses.
To performmessage-passing or memory accesses, a corresponding
communication channel needs to be established. Communication
channels are represented as endpoints in the DTU. At runtime, each
endpoint can be configured to different endpoint types: A receive

endpoint allows to receive messages, a send endpoint allows to send
messages to a specific receive endpoint, and a memory endpoint

allows to issue DMA requests to tile-external memory. Message
passing is performed between a pair of send and receive endpoint,
whereas eachmemoryendpoint refers to a regionofmemorywithout
an endpoint on the memory side.

On the software side, M3 runs a communication controller, or con-
troller for short, on adedicated controller tile, and applications andOS
services on the remaining user tiles. Applications and OS services on
user tiles are represented as activities, comparable to processes. An
activity on a general-purpose tile executes code, whereas an activity
on an accelerator tile uses the accelerator’s logic. Activities can use
existing communication channels, but only the controller is allowed
to establish such channels. By default, no communication channels
exist and thus tiles are isolated from each other. M3 runs at most one
activity per tile and cannot start a new activity on this tile until the
current activity has terminated. In the expectation of abundantly
available tiles, M3 does not support tile multiplexing.

2.2 TileMultiplexing
and Autonomous Accelerators withM3x

M3x [15] introduced tile multiplexing and thereby trades some of
the isolation of M3 for the ability to use the available resources more
efficiently. Since tiles donot sharehardware resources suchas caches,
side-channel attacks based on these resources are not possible be-
tween activities on different tiles. Therefore, if activities share a
tile, isolation between these activities is arguably weaker than the
isolation between activities on different tiles.

M3x proposed to multiplex cores and accelerators with the same
mechanism: the controller performs all context switches on all user
tiles in the system remotely from the controller tile. The controller
is responsible for scheduling decisions, whereas user tiles are re-
sponsible for saving or restoring the activity’s state upon request by
the controller. Since all activities on a tile share the same DTU, the
DTU endpoints need to be saved and restored as well. As the ability
to restore endpoints also allows to create arbitrary communication
channels, saving and restoring of endpoints is done by the controller
inM3x. Activities can use fast-path communication in case the recip-
ient is currently running and fall back to slow-path communication
otherwise. The slow path forwards the message to the recipient via
the controller, which first schedules the recipient and delivers the
message afterwards.

453

Efficient and Scalable Core Multiplexing withM3v ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland

sh $ decode in.png | fft | mul | ifft > out.raw

Software Hardware accelerators for
image processing

Figure 2: Combination of software (decode) and hardware

accelerators (fft, mul, and ifft) inM3x’s shell.

Besides tile multiplexing, M3x also improved the user experience
when utilizing accelerators. As an example, consider that a user
wants to do edge detection on image files. The input image is stored
in the file system and the output image should be stored as raw
pixel data for later post processing. The actual image processing
can be done faster and more energy-efficient on specific hardware
accelerators (e.g., using FFT convolution [47]). However, accessing
files from accelerators or pipelining accelerators with software is
challenging [30, 48, 54, 55]. M3x showed how accelerators can run
łautonomouslyž by connecting them directly with OS services or
activities on general-purpose cores. For that reason, the edge de-
tection can be performed on M3x’s shell as illustrated in Figure 2.
M3x showed that the autonomous execution can lead to significant
speedups and reduced CPU utilization.

Apart from these advantages, M3x revealed performance prob-
lems forworkloads on general-purpose cores that frequently require
the slow-path for communication. For example, if two activities
share a tile, communication between these activities is only possible
through the slowpath. The goal of this paper is tomakemultiplexing
of general-purpose cores more efficient.

2.3 Comparison to Existing Architectures

To illustrate what we want to achieve in this paper (namely, the
increment we establish over M3/M3x), let us describe how the de-
sired additional functionality would have been deployed in a more
conventional, łregularž system, by combining existing hardware
and software components in a manner that achieves, more or less,
similar isolation properties to that of M3v. Consider a hypothetical
multi-socket system in which each socket consists of a single CPU
core. Such a system can run amultikernel operating system (e.g., Bar-
relfish [17]) which executes a separate kernel on each socket. Com-
munication can then be performed via a network interface card (NIC)
that is shared between all sockets and that provides hardware virtu-
alization features such as SR-IOV. Similarly toM3, one socket is used
as the controller socket. The sharedNIC is physically connected to the
PCIe root complex of the controller socket. This allows the controller
socket to bind itself to the physical function of the NIC and thus
exclusively control its configuration. The controller socket can set
up communication channels between two sockets by creating two
virtual functions of the NIC that are tagged with a specific VLAN
ID. Afterwards, the controller grants each socket that should partic-
ipate in said communication channel access to one of the respective
virtual functions by making the associated PCIe memory visible to
the respective sockets. Since the user of a virtual function cannot see

or modify the VLAN tag associated with it, communication chan-
nels are isolated from each other. However, in order to provide the
same security properties asM3, we need to additionally ensuremem-
ory isolation. When DRAM is shared among sockets, the controller
socket must restrict memory accesses of all unprivileged sockets to
individual ranges of the physical address space. If it was possible
to arrange things such that 1) sockets are able to access the shared
memory using only a per-CPU DMA engine that copies memory to
memory (like Intel’s I/O Acceleration Technology [11]), and 2) only
the controller is able to program the IOMMU thereby creating restric-
tive address spaces for these per-CPU DMA engines, as required ś
then similar isolation to that of M3would have been achieved.

Such a setup would have had similar system properties as our
proposed system M3v. Namely, sockets would have been isolated
from each other by default and all sharedmemory or communication
channels would have been explicitly established by the controller
socket. In this setup, each socket can bemultiplexed amongmultiple
applications by the socket-local kernel instance, similarly to our tile-
local multiplexer described in further detail in section 3. Since the
NIC supports SR-IOV, each application can have its own virtual NIC
and applications can benefit from fast-path communication without
involving the controller socket. Therefore, instead of virtualizing
the DTU, it is imaginable to replace all DTUs with something that
is conceptually similar to a single SR-IOV-enabled NIC.

Sucha theoretical setup is functionally analogous towhatwewant
to achieve with the M3v design in terms of isolation and communi-
cation between compute cores. But using an SR-IOV-enabled NIC in
this way is ill-suited for the tiled systems-on-a-chip (SoCs) that the
M3 architecture targets, for the following reasons. First, the NIC is
typically off-chip, so that all on-chip traffic is routed over an off-chip
NIC. Considering that the tile-to-tile latency within our on-chip net-
work is dozens of nanoseconds and typical PCIe latencies are about
1µs [22, 31], we expect an increase of communication costs by multi-
ple orders of magnitude. Second, independent of whether the NIC is
on-chip or off-chip, it would be a central hub for all communication
and therefore constitute an inherent bottleneck. Decentralizing the
NIC and its SR-IOV enforcement is non-trivial, whereas our solution
is distributed by design. And third, like the DTU, the NIC would
become part of the trusted computing base, but it is arguably more
complex. We show in this paper how the DTU as a simple on-chip
communication device can be virtualized and thereby shared in an
efficient and lightweight manner.

3 DESIGN

The overall goal of our work is to extend the M3 system architecture
by the ability to multiplex general-purpose cores efficiently among
multiple applications. In more detail, our goals are:

Efficient and scalablemultiplexing: The overhead of a context
switch should be small, so tiles can be multiplexed efficiently. Fur-
thermore, tile multiplexing should scale with the number of tiles.

Transparentmultiplexing: Activities should be able to use the
same communication mechanism, independent of whether the
communication partner runs on the same tile or a different tile.

Strong isolation between tiles: Like in M3/M3x, tiles should not
share resources to prevent that such resources can be used for

454

ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland Asmussen, Haas, Weinhold, Miemietz, Roitzsch

side-channel attacks between activities on different tiles. There-
fore, isolation between tiles is arguably stronger than isolation
between activities on the same tile. Strong isolation between tiles
requires that the tile-local multiplexer has no control over other
tiles. In other words, access to tile-external resources can only be
granted by the controller.

Weak isolation within tiles: Activities running on the same tile
should be isolated fromeachother using the commonmechanisms
of address spaces and privilege levels, as in M3x. Such isolation
is arguably weaker than the isolation between tiles, because co-
locatedactivities share the tile’s resources. For example, the shared
resources open the possibility for side-channel attacks between
activities on the same tile.

3.1 Overall Approach

Traditional OS kernels multiplex cores by saving and restoring its
state (e.g., registers) with the very same core. Multiplexing a tile in
our system architecture requires to additionally multiplex the DTU
among the applications running on this tile. However, allowing a
tile’s core to multiplex its associated DTU by saving and restoring
the DTU state and in particular the DTU endpoints, would also allow
this core to create arbitrary communication channels. Thus, the core
would have full control over the entire system and thereby break the
isolation between tiles.

This challenge is resolved inM3x by letting the controller save and
restore the DTU state on each context switch. Since the controller
runs on a single dedicated tile and performs all context switches
remotely on all other tiles, M3x shows performance and scalability
problems (see subsection 6.4 for details).We therefore decided to not
save/restore the DTU state at all, but enforce that each application
can only access its own DTU state. To make that enforcement effi-
cient we virtualized the DTU. This approach results inmore efficient
and scalable multiplexing of general-purpose cores, which we show
in section 6, and retains strong isolation between tiles. However, our
approach provides weaker isolation thanM3x, as discussed in more
detail in section 5. The following provides an overview on the sys-
tem architecture, introduces the per-tile multiplexer, and describes
the individual extensions of the DTU to virtualize it including their
interaction with TileMux.

3.2 SystemArchitecture

Figure 3 depicts the system architecture of M3v. The controller runs
on a dedicated tile, whereas applications and OS services run on the
remaining user tiles, represented as activities. On general-purpose
cores, activities execute code,whereas acceleratorswork on a context
associated with the current activity. User tiles with general-purpose
cores contain the virtualized DTU (vDTU) and run the tile-local
multiplexer called TileMux. The combination of TileMux and vDTU
allows to run multiple activities on the same tile. In contrast, the
controller tile does not need a vDTU as it only runs the controller.
Similarly, accelerator tiles cannot be currently multiplexed by M3v
(see section 8) and thus also contain a non-virtualized DTU. As inM3

andM3x, memory tiles do not need to be multiplexed, but multiple
tiles can get shared access to memory tiles via memory endpoints.

Core

TileMux

ServApp

Controller

Core Core

TileMux

Application

Memory

DTU

AcceleratorCore

TileMux

Service

DTU

Context

vDTU vDTU

vDTU DTU

Figure 3: System architecture of M3v. The DTU endpoints

at the end of communication channels correspond to the

activity that owns the endpoint.

Figure 3 also shows communication channels between tiles with
their DTU endpoints on both ends. Communication channels be-
tween twoDTUsrepresentmessage-passingchannels,whereaschan-
nels between one DTU and memory allow to issue DMA requests to
a regionwithin thatmemory. The color of the endpoints corresponds
to the activity that owns the endpoint.

3.3 Tile-Local Multiplexer

The tile-local multiplexer is called TileMux and is responsible for
multiplexing the tile among all activities on this tile. TileMux only
runs on general-purpose cores and leverages the different privilege
modes and address spaces to isolate itself from tile-local activities
and these activities from each other. TileMux is furthermore respon-
sible for scheduling the tile-local activities and to perform low-level
memory management (e.g., manipulation of page-table entries as
explained in more detail in subsection 4.3) upon requests by the
controller. Therefore, TileMux is comparable to traditional kernels
and microkernels [32, 35, 57]. Like with a multikernel [17], we run
one TileMux instance per tile. Additionally, TileMux has no control
beyond its own tile, because TileMux cannot change DTU endpoints
andwe usememory endpoints to control memory accesses to shared
tile-external memory (see subsection 4.3).

Besides the strong isolation between tiles, we want to allow in-
teractions between all activities on all tiles as permitted by the con-
troller, like in M3 and M3x. Therefore like before, the controller
knows all activities in the system and is responsible for establishing
communication channels. The controller decideswhich channels are
established via capability-based access control [46]. Activities send
łsystem callsž in form of DTUmessages to the controller in order to
create, exchange, and revoke capabilities. M3v extends the controller
bycommunicationchannels to eachTileMux instance.Thecontroller
has a send endpoint for requests to TileMux, which are used to, for
example, create new activities or kill activities. TileMux has a send
endpoint to notify the controller about activity terminations.

TileMux offers TMCalls via a trap (e.g., ecall on RISC-V) for
the activities on its tile. TMCalls are used by activities to block for
incoming messages or report a voluntary exit to TileMux.

455

Efficient and Scalable Core Multiplexing withM3v ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland

3.4 Virtualizing the DTU

The DTU provides two interfaces: the external interface for the con-
troller to change endpoints and thereby establish or tear down com-
munication channels; and the unprivileged interface for activities
that allows them to use existing channels.We added a third interface
to virtualize theDTU, called privileged interface. The privileged inter-
face can only be used by TileMux and enables TileMux to maintain
the illusion for activities that each activity has its own vDTU. The
following sections describe how the privileged interface is used to
securely share tile-local resources (endpoints andmemory) between
tile-local activities and how communication with non-running ac-
tivities can be supported. The similarities and differences between
the virtualization of the DTU and SR-IOV are discussed in section 7.

3.5 Endpoint Protection

Sharing the vDTUwithmultiple activities raises the question of how
toprevent thatoneactivity canuseendpointsof another activity.One
approach is to multiplex the vDTU endpoints among all activities by
lettingTileMuxmediate all vDTUaccesses. However,we learned in a
first design iteration that this is not sufficient, because it degraded the
performance of all communication by an order of magnitude due to
several involvements of TileMux. We concluded that activities need
to be able to use the vDTU directly, without mediation by software.

The vDTU therefore tags all endpoints with the owning activity
id and provides the register CUR_ACT containing the id of the current
activity on the tile. The register is part of the privileged interface
and can therefore only be accessed by TileMux. Attempts to use
communication endpoints of another activity result in an łunknown
endpointž error to prevent that activities can gain information about
other endpoints.

3.6 Tile-Local Memory Protection

Besides endpoint protection,weneed toprevent activities fromusing
the vDTU to access each others memory or the memory of TileMux.
For example, when sending a message via vDTU, activities need to
specify its address in memory. The vDTU needs a physical address
to load the message frommemory. However, allowing activities to
specify the physical addresswould allow them to, for example, access
memory from another activity on the same tile. For that reason, the
vDTU accepts virtual addresses from activities and translates them
to physical addresses. However, to keep the vDTU small and simple,
some compromises must be made.

To translate virtual addresses to physical addresses, the vDTU
contains a software-loaded translation lookaside buffer (TLB) for
the recent translations. To further reduce the vDTU’s complexity
we restricted the memory range covered by a source or destination
for reads, writes, and sends to a single page. Additionally, we de-
cided against interrupt injections in case of a TLBmiss. These two
restrictions allow the vDTU to check the TLB once before every
command execution instead of, for example, multiple times during
large memory transfers. Thus, the vDTU lets the command fail in
case of a TLBmiss, in which case the activity uses a TMCall to pass
the desired virtual address and access mode (read/write) to Tile-
Mux. TileMux translates the virtual address and inserts the resulting
physical address into the TLB via the vDTU’s privileged interface.

3.7 Waiting forMessages by Blocking Activities

If an activity wants to wait for incoming messages, a non-polling so-
lution is preferable, because it gives other ready activities the chance
to perform useful work. Therefore, TileMux tells the current activ-
ity via shared memory whether other activities are ready. If other
activities are ready, the current activity uses a TMCall to be blocked
by TileMux until a newmessage arrives. However, without further
measures, TileMux cannot block activities without risking that mes-
sage notifications are lost, similar to the lost wake-up problem [53].
Therefore, the solutionmustmake sure that the check for the absence
of newmessages and the blocking operation are atomic. Note that
our current implementation polls the vDTU for newmessages if no
other activities are ready. We leave a more energy-efficient solution
for future work.

With many communication endpoints, atomically iterating over
all endpoints to check for received messages is not desirable. There-
fore, the CUR_ACT register contains not only the id of the current
activity, but also the number of unread messages for this activity.
The vDTU keeps track of messages by incrementing this counter
whenever a message for the current activity arrives and decrements
it on message consumption. For each non-running activity, TileMux
maintains a counter inmemory. Furthermore, the vDTUoffers a com-
mand in its privileged interface that atomically switches to another
activity and returns the contents of CUR_ACT for the old activity.
This approach allows TileMux to check the message count of the
old activity in order to decide whether it can be blocked until a new
message arrives. The atomicity of the command guarantees that no
other events within the vDTU can interfere with the activity switch.

3.8 ReceivingMessages for Blocked Activities

If an activity that is currently blocked receives a message, TileMux
needs to be notified to decide whether it should switch to the recip-
ient. Like in M3 and M3x, messages are transferred between send
endpoints and receive endpoints using credit-basedflowcontrol [44],
which is maintained by the vDTUs. Each send endpoint is connected
to exactly one receive endpoint, whereas receive endpoints can re-
ceivemessages frommultiple send endpoints. Receivedmessages are
stored in a per-endpoint receive buffer in memory. However, in con-
trast to M3x, received messages can always be stored in the receive
buffer of the targeted receive endpoint, independent of whether the
recipient (theownerof the receiveendpoint) is running.The reason is
that the DTU inM3x has only the endpoints of the currently running
activity available. Therefore, theDTUdoesnot knowwhere to store a
message foranon-runningactivityandM3xneeds to fall back to slow-
path communication. The vDTU inM3v knows all endpoints of all
activities on the tile, independent of whether they are currently run-
ning or not, and can therefore always use fast-path communication.

If the recipient is not running, the vDTU additionally injects an in-
terrupt into the core to notify TileMux. Themechanism is called core
request and the core request tells TileMux which activity received
a message. However, as multiple receive endpoints can receive mes-
sages simultaneously, the vDTU needs to maintain a small queue of
core requests. The queue is not accessible for TileMux, but TileMux
can handle the first core request through the vDTU’s privileged
interface. TileMux obtains information about the core request by
reading a register in the privileged interface and has to acknowledge

456

ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland Asmussen, Haas, Weinhold, Miemietz, Roitzsch

the core request by awrite to the same register.Afterwards the vDTU
might issue another core request via interrupt in case the queue is
not empty. Queue overruns are handled via the packet-based flow
control of the on-chip network, which operates independently of
the higher-level credit-based flow control of the vDTU.

3.9 TransparentMultiplexing

Different placements of activities should not require different com-
municationmechanisms.For that reason,wedecided touse thevDTU
for all communication, even if both communication partners run on
the same tile. If the recipient is currently running on a different tile,
it directly receives the message, otherwise TileMux on the receiving
tile receives an interrupt andmarks the recipient as ready.The sender
does not need to distinguish between these two cases, which makes
it transparent for the sender. In contrast, with M3x messages cannot
be delivered via vDTU if the recipient is not running. In this case,
the activity needs to communicate with the controller, which first
schedules the recipient and delivers the message afterwards.

4 IMPLEMENTATION

Our implementation is based on the openly available M3x hard-
ware/software platform [3].We replacedM3x’s support for tilemulti-
plexing with a more efficient multiplexing of general-purpose cores
and virtualized its DTUmodel for gem5 [19]. Furthermore, we im-
plemented the vDTU in hardware with all features to run complex
workloads on our FPGA prototype. To ease the development, we
used both gem5 and the FPGA prototype and made them binary
compatible. M3v, the vDTUmodel in gem5, and the vDTU hardware
implementation are available as open source2. This section explains
the most important aspects of our implementation.

4.1 Hardware Implementation

In contrast to our previous work on M3, we built a hardware pro-
totype of the M3v system architecture. Our hardware platform de-
picted in Figure 4 is implemented on a Xilinx Virtex UltraScale+
FPGA (VCU118 board). The architecture allows to place hardware
components such as cores, memories, and I/O devices on physically
separated tiles. The current prototype contains eight processing tiles
with a single RISC-V core each. One of these processing tiles has an
on-chip NIC attached to its RISC-V core, which provides network
access in our benchmarks. Additionally, our platform has two mem-
ory tiles with interfaces to external DDR4 DRAM. Finally, one tile
runs a hardware UDP/IP stack, which is used exclusively for config-
uration and debugging purposes. This UDP/IP tile is only involved
in benchmark setup and does not contribute to any measurements.
Even though the architecture would allow to build larger designs,
we are limited by the given resources of the FPGA.

All tiles are connected by a network-on-chip (NoC) using a 2x2
star-mesh topology.TheNoCconsists of routers, links between them,
and links to the tiles. Furthermore, each processing tile integrates
a vDTU to enable tile multiplexing, whereas other tiles integrate a
DTU. For simplicity, the following speaks only of the vDTU, which
additionally implements the privileged interface, in contrast to the
DTU. The vDTU controls the interface between the core and the

2https://github.com/Barkhausen-Institut/M3

RISC-V
vDTU

R R

R R

RISC-V
vDTU

RISC-V
vDTU

UDP/IP
DTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

RISC-V
vDTU

DDR4 IF
DTU

DDR4 IF
DTU

NIC

DRAM

Gbit Ethernet
DRAM

Debug IF

Figure 4: TheM3v hardware platformwith eight RISC-V tiles,

twomemory tiles, and one debug tile. The tiles are connected

via a NoCwith four routers (R).

NoC. As described earlier, the vDTU enforces isolation policies on
the hardware level as set up by the controller.

RISC-V Cores. Our hardware platform employs RISC-V cores in
the processing tiles. We use Rocket cores [13] and BOOM cores [63],
which are available as open source. Rocket is a 64-bit RISC-V in-order
core with MMU and 16 kB L1 cache, each for instruction and data,
as well as a shared 512 kB L2 cache. BOOM is the out-of-order vari-
ant of Rocket with the same cache configuration. We set the clock
frequencies of the Rocket and BOOM cores to 100MHz and 80MHz,
respectively, to fullymeet timing requirements during FPGA synthe-
sis and place-and-route. The main memory is located in the external
DDR4 DRAM and can be accessed via the vDTU’s PMP feature (see
subsection 4.3).

Additionally, we integrated a NIC into a selected processing tile,
which provides the necessary hardware basis for our network stack
running on the RISC-V core (see subsection 4.4). The on-chip NIC
is built out of Xilinx Ethernet IP blocks including an AXI-based Eth-
ernet subsystemwith the Ethernet MAC, which is connected to the
external Ethernet PHY. In addition, an AXI DMA block is also con-
nected to the core’s cache-coherent system bus to access data of sent
and received Ethernet packets. The RISC-V core has interrupt-driven
access to the AXI DMA.

Core-vDTU Interface. The core can use the unprivileged and priv-
ileged interface of the vDTU via memory-mapped I/O (MMIO). Both
interfaces offer command registers to operate the vDTU. For example,
the unprivileged interface allows to send amessage via theSEND com-
mand,whichexpects the idof the sendendpoint, themessage address
inmemory, and themessage size as arguments in the command regis-
ters. The vDTU first verifies whether the command can be executed
based on the endpoint with given id (e.g., the message is not larger
than the maximum size set in the send endpoint). To execute the
command, the vDTU has access to the core’s cache-coherent system
bus via DMA. For example, the vDTU loads a message frommemory
via the cache-coherent system bus before sending the message to
the receiver over the NoC.

Virtualized Data Transfer Unit. From a hardware perspective, the
feature set of the vDTU is provided by three main functionalities:

457

https://github.com/Barkhausen-Institut/M3

Efficient and Scalable Core Multiplexing withM3v ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland

Register File

Control Unit

CMD
CTRL

NoC
CTRLNoC

vDTU to Cache

Unpriv. Cmds

Unpriv.
Regs

Endpoints

Memory
Mapper

Priv. Cmds

Priv.
Regs

I/O FIFOs

Core MMIO

PMPCore Mem

Figure 5: Hardware implementation of the vDTU. Dashed

blocks and arrows indicate optional components.

1) command execution to enable data transfers, 2) interfacing the
NoC and tile-internal components (e.g., the core), and 3) providing
access to the vDTU’s register file.

First, the vDTU executes commands to support message passing
andmemory transfers (unprivileged commands) aswell as commands
to handle virtual memory and switch between activites (privileged
commands). Commands are implemented as finite state machines.
They are processed and executed in the vDTU control unit as shown
in Figure 5. Furthermore, the vDTU includes logic to access the NoC,
which allows the vDTU to send and receive packets via the NoC.

Second, a memory mapper multiplexes the access of the core
to the vDTU via MMIO and the vDTU’s access to the core’s cache.
Furthermore, to control accesses to physical memory (e.g., shared
DRAM), the memorymapper routes all last-level cachemisses of the
core through physical-memory protection (PMP) within the vDTU.
The vDTU decides whether the access is allowed based on memory
endpoints. The current implementation uses the first four endpoints
as memory endpoints for PMP and selects the PMP endpoint with
the upper two bits of the physical address.

Third, a register file holds the necessary hardware registerswhich
areusedby the corewithin the tile to communicatewith thevDTU. In
our current hardware implemention, the register file contains 2 exter-
nal registers, 4 unprivileged registers, 4 privileged registers, and 128
endpoints. The number of endpoints is a trade-off between usability
and chip area consumption. Significantly increasing the number of
endpointswould require to outsource endpoints to externalmemory.
We leave this open for future work. As shown in Figure 5, parts of
the vDTU drawn with dashed lines can be omitted for specific tiles.
The non-virtualized DTU in the controller tile and accelerator tiles
can omit the privileged registers and privileged commands. DTUs
in memory tiles omit all components with dashed lines.

4.2 TileMux

TileMux is a small software component running on a single tile and
is implemented in Rust. We chose Rust due to the memory-safety
guarantees the language provides and also rewrote the controller
and all system services of M3 in Rust. TileMux supports the x86-64,
ARMv7, and RISC-V architectures, but we focus on RISC-V in this
work, because the FPGA prototype employs RISC-V cores.

Similar to anOSkernel, TileMux is running in the core’s privileged
mode (e.g., supervisormodeonRISC-V)and is enteredviaTMCalls by
activities (e.g., using theecall instructiononRISC-V)andupon inter-
rupts or exceptions. TileMux uses address spaces as provided by the
core’s MMU to isolate activities from each other. Additionally, Tile-
Mux maps itself into every address space using pages that cannot be

accessed by activities. If the running activity causes a page fault, the
core raises a page fault exception,which is handled byTileMux in col-
laboration with a pager, as explained inmore detail in subsection 4.3.

TileMux is responsible for scheduling the activities on its tiles.
TileMux implements a preemptive round-robin scheduler with time
slices and uses timer interrupts to preempt activities as soon as their
time slice is depleted. However, to keep TileMux simple, interrupts
are disabled while TileMux is running. Activities can use TileMux
to wait for events such as received messages and hardware inter-
rupts of tile-local devices (used by the network driver as described
in subsection 4.4). If no activities are ready to run, TileMux runs an
idle activity. As soon as a non-running activity received a message
and has time left to execute, TileMux switches to that activity. Note
that our current implementation pins activities to tiles, but could be
extended to support activity migration between tiles.

As described in subsection 3.4, the vDTU offers an external, privi-
leged, and unprivileged interface. The external interface can only be
used via łexternalž requests from the controller. The privileged and
unprivileged interface are accessible throughMMIO from the core
that is attached to the vDTU. To ensure that activities can only use
the unprivileged interface, TileMux maps the privileged interface
only for itself. Hence, only TileMux can switch between different
activities, maintain the vDTU’s software-loaded TLB, and handle
interrupts upon receivingmessages for non-running activities. Since
TileMux requires endpoints to communicate with the controller, it
has a special activity id and these endpoints are tagged with this
activity id. However, the vDTU does not allow to use endpoints of
non-running activities. Therefore, TileMux needs to switch to its
own activity id before being able to use its own endpoints. In general
when switching between activities, TileMux ensures that no mes-
sage notifications are lost by checking the old value of the CUR_ACT
register after the atomic switch provided by the vDTU.

4.3 MemoryManagement

The memory management in M3v is split into physical-memory
management and virtual-memory management. Physical-memory
access of each tile needs to be granted by the controller and is en-
forced by the tile’s vDTU. If a tile’s core has a memory-management
unit (MMU), activites on this core can use virtual memory.

As described in subsection 4.1, access to physical memory is con-
trolled via the vDTU’s physical-memory protection (PMP) based
on dedicated memory endpoints. As with all endpoints, only the
controller can configure them. The first endpoint is predefined by
the controller to a per-tile region in DRAM for TileMux, whereas
the other endpoints are usable by activities.

The virtual-memory management is split between the controller,
TileMux, and a pager. Like in M3x, the pager is an OS service rep-
resented as an activity. The pager is responsible for address space
layouts of other activities and policies such as demand loading and
copy-on-write, similar as in L4 [32, 35, 57]. If the pager wants tomap
memory for an activity under its control, the pager sends a memory-
mapping request to the controller. The pager needs to provide ca-
pabilities to the controller to proof the legitimacy of the mapping
request. In contrast toM3x, page-table entries are not updated by the
controller, but the controller forwards the mapping request to the
TileMux instance that is responsible for the activity. For that reason,

458

ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland Asmussen, Haas, Weinhold, Miemietz, Roitzsch

the controller does not need to know the page-table format on other
tiles. TileMux trusts the controller that the mapping is valid and
manipulates the page-table entries accordingly. In any case, neither
activities nor TileMux can access any memory outside the defined
PMP regions and theM3v controller makes sure that two tiles do not
have access to the same memory region unless explicitly allowed.

4.4 Network Stack

To enable networking on M3v, we added an OS service called net
based on smoltcp [10]. Smoltcp is a standalone Rust-based TCP/IP
stack for bare-metal systems. Net provides POSIX-like sockets for
clients and uses a per-socket communication channel to exchange
data and events with clients. For example, the client sends network
packets as vDTUmessages through this communication channel to
net, which enqueues the packet for transmission.

Towards the network side, we adapted the AXI Ethernet stan-
dalonedriver fromXilinx [5]and integrated itwithsmoltcp (resulting
in a single software component). In our current hardware platform,
the corresponding AXI Ethernet NIC is attached to a dedicated core.
Therefore, net is always placed on this core.

5 ISOLATIONVS. EFFICIENCY TRADE-OFF

TheM3 architecture provides better securityÐin terms of per-core
isolationÐwhen compared to prevalent off-the-shelf CPUs like the
x86 family. Isolation is improved because M3 cores are physically
isolated from each other and share no resources, whereas x86 cores
share resources like caches, opening the possibility of side-channel
exploits [33, 39].

Both M3x and M3v trade some isolation of M3 for the ability to
multiplex tiles. Namely, if activities share a tile, these activities share
the tile’s resources, opening the possibility of side-channel attacks
based on these shared resources. M3x implements tile multiplexing
in the controller, whereas M3v uses a tile-local multiplexer and a
virtualized DTU. Due to these differences, M3v further trades some
isolation of M3x for more efficiency. Compared to M3, M3v increases
the complexity of the DTU, in hardware, in all tiles, whereas M3x
increases the complexity of the controller, in the software that runs
on a single core. Assuming that more complexity increases the prob-
ability for exploitable bugs, both M3x andM3v are less secure than
M3. By compromising either the controller or any DTU, an attacker
can take over the system in both M3x andM3v.

M3v additionally introduces TileMux as a tile-local multiplexer.
Like the multiplexer in M3x, TileMux needs to maintain meta data
about its activities (e.g., their timeslices), which can possibly be ex-
ploited by attackers. In contrast toM3x, TileMux keeps themeta data
on the same tile as the potentially malicious applications, whereas
M3x stores them in the controller and thereby physically isolated
from applications. We therefore conclude that M3v further trades
off some isolation fromM3x to improve efficiency.

6 EVALUATION

In our evaluation, we first discuss the hardware/software complexity
of the vDTU, the controller, and TileMux. Afterwards, we evalu-
ate the efficiency of tile multiplexing with M3v. We start with mi-
crobenchmarks to provide a basic understanding for the system’s
behavior, followed by a comparison to M3x in terms of performance

Table 1: FPGA area consumption: Logic and LUT-RAM (LUTs),

registers (Flip-flops, FFs), block RAM (BRAM) with 36 kbit

per block.

LUTs [k] FFs [k] BRAMs

BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vDTU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMDCTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

and scalability with the number of tiles. Finally, we use application-
level benchmarks to compare M3v’s performance to Linux 5.11. To
run POSIX applications on M3v, we use a port of the musl [9] C
library, which translates a subset of the Linux system calls to the
corresponding API calls of M3v. If not explicitly stated otherwise,
all measurements run on the FPGA prototype, described in subsec-
tion 4.1. To enable performance comparisons to Linux, we run Linux
bare-metal on a single tile of our FPGA prototype using the boot-
loader from RISC-V-PK [12]. Note that Linux runs only on a single
tile, because tiles are not cache coherent, as required by Linux.

6.1 Hardware and Software Complexity

In contrast to previous M3 works, we built a hardware prototype.
Therefore, we evaluate the hardware complexity of the DTU and
the costs for virtualizing it. Furthermore, we show the complexity of
the software components that enable efficient tile multiplexing. For
both hardware and software we use metrics as established proxies
for complexity (FPGA gates, source lines of code).

Table 1 shows the consumed FPGA resources of themajor compo-
nents in our hardware platform. The presented vDTU configuration
includes all extensions and corresponds to the implementation in
the processing tiles including the RISC-V core. In comparison to the
BOOM and Rocket core, the vDTU only requires 10.6% and 32.6% of
the FPGA LUTs, respectively. Since the vDTU contains no memory
or caches, the number of required BRAMs is negligible compared to
the cores. This is an advantage especially when considering a real
chip implementation where memory consumes a substantial part of
the area. The DTU is virtualized by adding the privileged interface
and privileged registers. This increases the size of the DTU’s logic
by 6% and adds four additional registers.

On the software side, the M3v controller consists of 11.5k SLOC
(Rust; 900 unsafe according to cargo-count [1]), to which TileMux
adds 1.7k SLOC (Rust; 50 unsafe). In comparison, the NOVAmicro-
kernel [57], which is similar to the controller, consists of about 9k
SLOC (C++).

6.2 Microbenchmarks

To get a better understanding of the system’s behavior, we start the
performance evaluation with microbenchmarks on the basic prim-
itives in M3v. As a reference, we show the performance of similar
functionality in Linux. Applications onM3v use remote procedure

459

Efficient and Scalable Core Multiplexing withM3v ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland

Linux yield (2x)
Linux syscall

M³v local
M³v remote

0 25 50 75 100
Duration (µs)

0 2 4 6 8
Duration (K Cycles)

Figure 6: Local/remote communication on M3v and similar

primitives on Linux as a reference.

calls (RPCs), consisting of a request and a response, to access sys-
tem services or the M3v controller. Therefore, we measured the
performance of no-op RPCs between tiles on M3v and show the
performance of no-op system calls on Linux as a reference. Addi-
tionally, we measured the performance of tile-local no-op RPCs on
M3v, which requires two context switches and is therefore similar
to two switches between processes on Linux via the yield system
call. Both M3v and Linux run on our FPGA platform. M3v runs the
communication partners on one or two BOOMcores, and Linux uses
a single BOOM core. We performed 1000 runs with a warm system.

The results in Figure 6 show that cross-tile communication (łM3v
remotež) is roughly as fast as a system call on Linux. On M3v, the
RPC requires multiple interactions with the vDTU via MMIO to
send the message, fetch the message on the receiver side, reply on
the received message, fetch the reply on the sender side and mark
the message as read. These vDTU interactions are done without
involving TileMux or the M3v controller. Tile-local communication
(łM3v localž) is significantlymore expensive, because it involves two
interrupts as messages are received for non-running activities. Thus,
TileMux is involved twice and needs to schedule the corresponding
activity. However, as the results show, the costs are on a similar level
as two yields (two context switches) on Linux, even though M3v
requires several vDTU interactions for the two message transfers.

For reference,wenote thatM3xconsumes9 µs for tile-localRPCon
gem5’s 3 GHz out-of-order x86-64 core, translating into about 27k cy-
cles. M3v requires about 5k cycles for the same operation, indicating
a performance advantage over M3x. However, we acknowledge that
these results cannot be directly compared, because M3x obtained
these results on gem5’s out-of-order CPUmodel, whereas M3v used
an out-of-order BOOM core on our FPGA platform. Note also that
M3v could employ a different mechanism for tile-local RPC, sim-
ilar to microkernel-based systems [32, 35], to further increase its
performance. However, we opted against this optimization to keep
communication agnostic regarding the placement of activities.

6.3 OS Services

Following up on the previous microbenchmarks, we now compare
the performance of basic OS services such as file systems and net-
work stacks. The file system benchmarks compare the performance
when reading and writing files using the POSIX read/write API and
access the in-memory file system of M3v and Linux’ tmpfs. For the
extent-based file system of M3v, we limited the size of extents to
64 blocks. OnM3v, we show the read and write performance with
(łsharedž) and without tile sharing (łisolatedž). All involved compo-
nents (pager, file system, and the benchmark) share the same BOOM
core in the former case, and run on separate BOOMcores in the latter

Throughput (MiB/s)

Linux write
Linux read

M³v write (shared)
M³v write (isolated)
M³v read (shared)

M³v read (isolated)

0 50 100 150 200 250

Figure 7: File read/write throughput comparison. The results

without tile sharing (łisolatedž) cannot be compared to Linux,

because in contrast to Linux, M3v usesmultiple tiles.

Latency (µs)

Linux
M³v (shared)

M³v (isolated)

0 200 400 600 800

Figure 8: UDP latency comparison. The results without tile

sharing (łisolatedž) cannot be compared to Linux, because

in contrast to Linux, M3v usesmultiple tiles.

case. On both systems we used 2 MiB files, a 4 KiB buffer for read
and write operations, and performed 10 runs after 4 warmup runs.

As shown in Figure 7, the performance of read and write opera-
tions differs significantly betweenM3v and Linux. The reason for the
performancedifferences is that a single readorwrite request toM3v’s
file systemgrants the application direct access to an entire extent. Af-
terwards, the application can perform the actual reads andwrites via
vDTUwithout involving the file system again until access to another
extent is required. In contrast, every read orwrite operation onLinux
is a system call involving the kernel. On both M3v and Linux, writes
are much slower than reads, because blocks need to be allocated,
cleared, and appended to a file. Note that these performance differ-
enceswere also shownbyearlierM3prototypes in simulation [15, 16]
and are now confirmed byM3v on an FPGA platform.

M3v shows better performance than Linux both with and with-
out tile sharing. However, the results without tile sharing on M3v
(łisolatedž) cannot be directly compared to Linux, because Linux
cannot leverage multiple non-coherent tiles. In contrast, the results
with tile sharing (łsharedž) are comparable to Linux, because both
run the involved components on a single tile. Note that the M3v
controller is rarely used during the benchmark, but is always called
synchronously, so thatM3v does not take advantage of the additional
tile. As shown in Figure 7, tile sharing has an impact onM3v’s read
and write performance. The reason is that requests for new extents
require a call to the file systemvia a tile-local RPC, involving two con-
text switches. However, independent of tile sharing, all data accesses
are performed directly via vDTU. Note that the throughput numbers
are smaller than the throughput of today’s systems, because the
BOOM cores on our FPGA prototype are clocked with only 80MHz.

To compare basic network performance, we measured the UDP
latency between a sender running on a BOOM core of our FPGA
platform and a receiver on an AMD Ryzen machine that is directly
connected via Ethernet. We used 50 repetitions of sending and re-
ceiving 1 byte packets after 5 warmup runs. The results are shown in
Figure 8. Like in the file-system benchmarks, the numbers without

460

ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland Asmussen, Haas, Weinhold, Miemietz, Roitzsch

T
h

ro
u

g
h

p
u

t
(r

u
n

s
/s

)

of tiles
1 2 3 4 5 6 7 8 9 10 11 12

0

400

800

1200

M³x find M³x SQLite M³v find M³v SQLite

M3x find throughput (runs/s): 45 (1 tile), 49 (2 tiles), 94 (4 tiles)

M3x SQLite throughput (runs/s): 49 (1 tile), 82 (2 tiles), 86 (4 tiles), 68 (8 tiles)

Figure 9: Scalability of context-switch-heavy applications on

M3x andM3v with tile multiplexing.

tile sharing onM3v (łisolatedž) cannot be compared to Linux. With
tile sharing (łsharedž),M3v shows competitive performance to Linux.

6.4 Comparison withM3x

After the microbenchmarks, we now compare the efficiency of tile
multiplexing onM3v withM3x. Since M3x does not run on the FPGA
platform, we use gem5 and replicate benchmarks previously per-
formed with M3x [14] on M3v with the same settings on gem5. In
contrast toRISC-Vas in the other benchmarks,weuse a 3GHzout-of-
order x86-64 core in each tile. To stress both systems, the benchmark
uses communication-heavy applications based on system call traces.
Weuse traces from łfindž and łSQLitež, both accessing an in-memory
filesystem. The find benchmark searches through 24 directorieswith
40 files each, whereas the SQLite benchmark performs 32 database
inserts and selects. These traces were recorded on Linux and are
replayed on both systems using a traceplayer. We execute one trace-
player on each tile and connect it to a filesystem instance on the same
tile. Therefore, all calls to the file system require a context switch
from the traceplayer to the filesystem and back.

Figure 9 shows the resultswhen executing these benchmarkswith
one up to 12 tiles. The y-axis shows the number of application runs
per second after one warmup run. As can be seen, the throughput of
M3x improves only slightly with an increasing number of tiles. The
reason for this behavior is the single-threaded controller performing
all context switches on all tiles. Note that the benchmark on M3x
does not run reliably with higher tile counts (8 and 12 for find, 12
for SQLite) and therefore these numbers are missing in Figure 9.
In contrast, M3v scales almost linearly up to 12 tiles. Since context
switches are performed tile-local, scalability is only limited by other
shared resources in the system such as the controller. Finally, with
a single tile, M3x executes 45 and 49 applications per second with
łfindž and łSQLitež, respectively, whereas M3v executes 84 and 111,
constituting a performance improvement of about 2x.

6.5 Macrobenchmarks

We want to frame our application-level performance evaluation
within a larger scenario to show the applicability of our results. We
did not implement this scenario end to end, but we zoom into spe-
cific aspects, which we quantify with individual experiments. We
envision our platformwithin an example Internet-of-Things (IoT)
device and within a cloud server. Our IoT example is a simplified
voice assistant, which continuously listens to room audio and scans
for a trigger word. Once the trigger is detected, audio data is com-
pressed and sent to the cloud for further processing. As one part of a

larger voice recognition pipeline, our cloud service stores extracted
observations in a key-value store for retrieval by other services.

In a world where we consider software and hardware vulnerable,
we must think of the trust domains within our applications and how
to map them to cores. On the IoT voice assistant, it is crucial that
audio data remains on the device until the trigger word is detected.
Access to the audio stream should be protected even when the at-
tacker compromises the network stack and exploits a vulnerability
in the underlying core. A similar argument can bemade for the cloud
use case, where multi-tenancy is an important requirement. The
key-value storemay hold sensitive data, which needs to be protected
from breaches of inter-tenant isolation.

6.5.1 Voice Assistant. For the first part of the application-level
benchmarks, we zoom into the introduced voice assistant as it could
run on an IoT device. The voice assistant consists of four compo-
nents: 1) the scanner that looks for trigger words, 2) a compressor

that receives selected audio samples from the scanner and sends
them to the cloud, 3) the network stack for these transmissions, and
4) the pager that manages the address spaces of the former two. The
scanner does not use a pager, but gets all pages mapped right away
to minimize its trusted computing base. To receive audio samples,
the scanner delegates a memory capability to the data in memory
to the compressor. The compressor uses libFLAC [2] as a lossless
compression and sends the result to another machine.

To show the overhead of tile multiplexing, we map this scenario
to our platform by either placing all components but the scanner
on the same tile to save resources or by placing each component
on a dedicated tile. The scanner runs on a separate Rocket core to
strongly isolate it from the other components, which run on a com-
plex out-of-order BOOM core. In reality, the compressor would send
the audio data via TCP to the cloud service. Unfortunately, evenwith
a direct Ethernet connection between the FPGA and another ma-
chine, we observed several packet drops, which made it impossible
to get reproduceable results on M3v3. We therefore decided to send
the data out via UDP and ignore lost packets.

With 16 repetitions after warmup we obtained 384ms without
sharingand398mswithsharing, constitutinganoverall sharingover-
head of 3.6%. However, note that this overhead does not only stem
from the actual context switches, but also from the fact that the com-
pressor, the network stack, and the pager compete for the same core.

6.5.2 Cloud Service. Finally, we evaluate the cloud side of our voice-
activation system. The cloud service hosts leveldb [8] as a key-value
store to aggregate data from IoTdevices andperform further analysis
on the data. In particular, it offers the ability to answer requests on
the stored data. Therefore, the scenario comprises four components:
1) the database using leveldb and handling requests, 2) the file sys-
tem as a backend for leveldb, 3) the network stack to receive and
answer requests, and 4) the pager to manage their address spaces.
The question we strive to answer is whether M3v delivers compet-
itive performance for such a complex and communication-heavy
application scenario with and without tile sharing.

To support networking on Linux, we used the available Xilinx
Linux driver for AXI Ethernet NICs with DMA support [4]. Like for

3We suspect problems in smoltcp in combination with the vast performance difference
between the 80MHz BOOM core on the FPGA and an AMD Ryzen 7 2700X on the other
side, which prevents sender and receiver to get in sync.

461

Efficient and Scalable Core Multiplexing withM3v ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland

M
³v

 (
is

o
la

te
d
)

M
³v

 (
s
h
a
re

d
)

L
in

u
x

Read

0

1

2

3

4

5

T
im

e
 (

s
)

M
³v

 (
is

o
la

te
d
)

M
³v

 (
s
h
a
re

d
)

L
in

u
x

Insert

M
³v

 (
is

o
la

te
d
)

M
³v

 (
s
h
a
re

d
)

L
in

u
x

Update
M

³v
 (

is
o
la

te
d
)

M
³v

 (
s
h
a
re

d
)

L
in

u
x

Mixed

M
³v

 (
is

o
la

te
d
)

M
³v

 (
s
h
a
re

d
)

L
in

u
x

Scan

0

10

20

30User System

Figure 10: Cloud service in comparison to Linux. The results

without tile sharing (łisolatedž) cannot be compared to Linux,

because in contrast to Linux, M3v usesmultiple tiles.

the voice assistant, TCP was not usable due to huge variations on
M3v. Since UDP does not allow to receive data reliably and, most
importantly, reproducably between runs and fair betweenM3v and
Linux (random packet drops make the results incomparable), we
decided to not just send the results to another machine via UDP, but
also the requests. For that reason, the database reads the requests
ahead of time from a file, executes them afterwards and sends the
requests and results via UDP to another machine.

To let the database handle a realistic workload, we use the Yahoo!
Cloud Serving Benchmark (YCSB) [6], which supports insert, update,
read, and scan operations. Scan operations are the most expensive,
because they need to walk through large parts of the data to find
a range of values. For that reason and also to understand the be-
havior of different operations, we execute read-heavy, insert-heavy,
update-heavy, and scan-heavy workloads. The first three omit the
scan operation and use a proportion of 80-10-10 (e.g., 80% reads,
10% inserts, 10% updates). The scan-heavy workload omits updates
and has a 80-10-10 proportion for the other three. Finally, we use a
mixed workload using a 50-10-30-10 proportion for reads, inserts,
updates, and scans, respectively. All workloads are generated with
the Zipfian distribution and are based on 200 records that are created
first, followed by the execution of 200 operations on these records
according to the stated proportions.

Figure 10 shows the result of 8 runs after 2 warmup runs as a
comparison betweenM3v with isolated tiles (łisolatedž), with one
shared tile for all four components (łsharedž), and Linux. The plot
shows the total runtime in seconds split into user and system time.
On Linux, user and system time was obtained by getrusage. On
M3v, time spent by the file system and network stack is considered
system time, whereas the remainder is accounted as user time. For
implementation-specific reasons, time spent by TileMux and the
pager is also accounted as user time onM3v, resulting in more user
time than on Linux. The results depend on the workload, because in-
serts andupdates causefile systemwrites,whereas scansarememory
intensive. All workloads cause UDP network traffic.

In general, M3v benefits from direct data transfers with the vDTU
as indicated by the microbenchmarks. As before, the results of M3v
with isolated tiles (łisolatedž) cannot be compared to Linux, because
Linux runs on a single tile. We therefore show the results with iso-
lated tiles only for completeness. Placing all components on a single
tile (łsharedž) leads to a slowdown as more components compete

for the same core, but M3v shows still competitive performance for
reads, inserts, and updates. However, Linux performs worse than
M3v (łsharedž) for scans. We suspect, that the small L1 instruction
cache (16 kB) and Linux’ code size cause the application to lose most
of its state on every system call, which happen frequently during
this benchmark. M3v’s smaller components lead to less cache foot-
print and due to the M3v architecture, many file system calls can
be handled via the vDTU without context switches. However, we
believe that Linux could benefit from extensions like FlexSC [56] to
reduce its cache footprint. Note that the M3v controller runs on a
simpler and more trustworthy Rocket core, but is rarely involved
during the benchmark. If it is involved, it is called synchronously,
so that M3v does not take advantage of the additional tile. Finally,
we want to highlight that even with tile sharing, M3v isolates all
participating components from each other like inmicrokernel-based
systems, whereas Linux executes the file system, network stack, and
pager in privileged mode without any isolation.

7 RELATEDWORK

M3v implements core multiplexing by virtualizing the DTU in the
context of a tiled architecture. We therefore discuss related work for
I/O device virtualization, architectures distributed across physically
separate compute resources, and inter-process communication.

I/O Device Virtualization. Bypassing the kernel has been iden-
tified as a key design principle [50] for fully utilizing the perfor-
mance offered by modern I/O devices [44]. Kernel-bypass also en-
ables application-specific shortcuts for interactions across multiple
devices like streamingdata fromstorage to thenetwork[43].Contem-
porary userspace driver libraries like DPDK [7] and SPDK [60] have
evolved into complete system architectures like Demikernel [62].
Naturally, the performance benefits of kernel bypass should be re-
tained when virtualizing devices to share them among multiple
clients. For instancewithstoragedevices, software-basedapproaches
like SPDK-vhost [61] or MDev-NVMe [49] implement device vir-
tualization by means of dedicated virtualization servers that use
shared memory for communicating with their clients, thus avoiding
the tax of entering and returning from the kernel. However, such
approaches consume a significant amount of CPU resources, as they
have to poll on saidmemory regions. ELI [24] has demonstrated how
I/O device virtualization can use blocking communication while still
achieving near-native performance by handling interrupts directly
within virtual machines, but supports only direct device assignment
to a single client. Solutions like LeapIO [37] extend the I/O device
with additional hardware to allow secure sharing among multiple
clients. I/O devices later added standard functionality similar to ELI
(called IOMMU posted interrupts) that also allows multiple clients.

To compare the vDTU against SR-IOV, let us establish a M3v-like
system based on SR-IOV: Consider a set of virtualmachines (VMs) as
applications. Assume that 1) all these application VMs executes on a
single physical server, 2) eachVM is allocated its own SR-IOVNIC in-
stance, 3) the memory accesses of each NIC instance are constrained
by the IOMMU to only access the private memory address space of
the corresponding application, and 4) the system is configured such
that the only means of communication between applications is via
their SR-IOV NIC instances. In such a system, these SR-IOV NIC
instances share several commonalities with vDTU communication

462

ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland Asmussen, Haas, Weinhold, Miemietz, Roitzsch

channels, notably, that they are implemented as replicated state in
hardware, and they provide direct communication between applica-
tions, shielding them from each other in the presence of application
multiplexing. The differences are: 1) the SR-IOV channels operate
across PCI, whereas vDTU channels operate across the much faster
network-on-chip, 2) the SR-IOV hardware state is implemented in a
single component (theNIC), whereas vDTU state is distributed (each
vDTU stores state of the applications that execute on the associated
core), and 3) the IOMMU provides full address translation services,
includingpage tablewalks and, potentially [36], a page fault protocol,
whereas the vDTU only supports a software-loaded (IO)TLB.

Physically SeparateCompute Resources. Barrelfish [17] introduced
themultikernel concept, which runs an independent kernel instance
on each core and uses message passing to communicate between
kernel instances. The idea of remote system calls by placing ker-
nel code on dedicated cores was explored by FlexSC [56]. Within
large-scale distributed systems, CapNet [20] has promoted the idea
of using capabilities to manage communication permissions. Sim-
ilarly, Caladan [58] proposed a distributed capability-based OS for
data centers. Caladan runs a distributed kernel on Smart NICs and
uses RDMA for cross-node communication. M3 and its extension
M3v run a capability-based OS on a tiled architecture, communicate
between tiles via vDTU, and run a controller on a dedicated tile to
setup communication channels.

Inter-Process Communication. Inter-process communication (IPC)
has a long history [18, 21, 25, 32, 34, 38] and exists in different flavors
such as shared memory, pipes, or messages. We focus on message-
based IPC and discuss works related to the vDTU-based message
passing between activities on M3v. Message-based IPC is used in
many microkernel-based systems [16, 26, 32, 35, 57] to exchange
data between otherwise isolated applications and OS services. Early
L4 prototypes [38] transferred messages in CPU registers between
applications, whereas modern L4 systems [32, 35, 57] transfer mes-
sages based on pinned pages that are shared between application
and kernel. DLibOS [42] is based on the Tilera architecture [59]
and leverages its intercore messaging facility for IPC between cores
without involving the kernel. Similarly, SkyBridge [45] proposed the
usage of the VMFUNC instruction for kernel-bypassing communica-
tion. All these systems implement IPC using standard CPU features
or extensions of the CPU instruction set. In contrast, IPC in M3v
is based on a dedicated and per-core hardware component. Simi-
larly, the MAGIC component of the FLASHmultiprocessor [34] is
a dedicated hardware component that allows message passing be-
tween cores. However, in contrast to the fixed-function hardware
implementation of the vDTU, MAGIC is implemented in software
on a general-purpose processor. In addition tomessage passing, M3v
also uses the vDTU to control cross-tile memory accesses, which is
similar to components like NoC-MPU [51] and DPU [23].

8 DISCUSSIONAND FUTUREWORK

Legacy Support. Our implementation already employs a port of
the musl [9] C library, which translates Linux system calls to the cor-
responding API calls of M3v. This approach allowed us to easily run
existing software such as leveldb or libFLAConour platform. Further

legacy support is imaginable by running a complete Linux on a tile
with restricted access to tile-external resources through the vDTU.

Cache Coherency. Our current prototype does not maintain cross-
tile cache coherency,whichwedeemsufficient for typical IoTdevices.
However,more complex use cases could benefit from this feature.We
believe thatM3v could support cross-tile cache coherency, while still
providing strong isolation between tiles. Building upon our phys-
ical memory protection, we could allow cross-tile cache-coherency
traffic only if it conforms to the PMP restrictions of the participating
tiles. In this way, each tile could have private memory areas, but
also share selectedmemory areaswith other tiles. Implementing and
evaluating this idea is left for future work.

Accelerator Support. M3v shares the simplified integration be-
tween general-purpose cores and special-purpose accelerators with
M3 andM3x, allowing users to easily utilize them in a unifiedmanner.
For example, accelerators can run łautonomouslyž and access OS
services like inM3x. However, M3v focuses on efficient multiplexing
of general-purpose cores and does currently not support multiplex-
ing of accelerators. We believe that accelerators can be multiplexed
remotely as in M3x, but the multiplexing should be implemented by
an OS service on a user tile rather than by the controller. However,
we leave accelerator multiplexing for future work.

Scalability. Our current prototype uses a single instance of the
M3v controller. Although the controller is rarely involved during
runtime and primarily when new activities are set up, it will become
a bottleneck with a large number of user tiles. However, as already
shown by SemperOS [27], M3 can scale to hundreds of user tiles
when employing multiple controller instances. We believe that our
current implementation can be extended similarly.

9 SUMMARY

M3v builds upon M3x but trades some of the isolation and gener-
ality of M3x for more efficient core sharing. M3x multiplexes cores
and accelerators with the same mechanism and remotely from a
dedicated core, whereas our work introduces a new approach to
multiplex cores efficiently. M3v improves themultiplexing efficiency
with a core-local multiplexer and by virtualizing the on-chip hard-
ware component for cross-core communication. Our results show
that the additional hardware costs are modest. In comparison to
M3x, M3v achieves a two-fold performance improvement when run-
ning workloads with frequent context switches on a single core and
scales almost linearly with the number of cores. However, M3v loses
some isolation in comparison to M3x, because the multiplexer keeps
its state on the same core as the potentially malicious applications.
Finally, we show that M3v exhibits competitive performance in com-
parison to Linux, even for workloadswith frequent context switches.

ACKNOWLEDGMENTS

Wewould like to thank our shepherd, Dan Tsafrir, for his feedback
and guidance in the revision process, as well as Boris Pismenny for
his helpful suggestions. We further thank the anonymous review-
ers for their comments and insights. This research was co-financed
by public funding of the state of Saxony/Germany. It has also re-
ceived funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 957216.

463

Efficient and Scalable Core Multiplexing withM3v ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland

A ARTIFACTAPPENDIX

A.1 Abstract

Ourwork studies a hardware/operating-system co-design and there-
fore requires custom hardware. The artifact contains the hardware
platform in form of bitfiles for the Xilinx VCU118 FPGA. For the
software side, it includes the source code of all M3v components, the
modified Linux kernel we compared M3v against, and all scripts to
run the benchmarks. Executing the scripts will build all required
parts, run the experiments on the FPGA, and produce the plots. For
comparison, the artifact also contains the raw results used for the
plots in this paper. The artifact covers the results of subsection 6.2,
subsection 6.3, and subsection 6.5.

A.2 Artifact Check-List (Meta-Information)
• Program: M3v operating system, Linux, RISC-V PK, buildroot, LevelDB,
and Yahoo! Cloud Serving Benchmark (YCSB). All are included in the
provided source code.

• Compilation: GCC cross compiler, Rust nightly-2021-04-19, and Vivado
Lab 2019.1. The cross compiler is included and built automatically. The
Rust compiler is downloaded and built automatically.

• Hardware: Xilinx VCU118 Evaluation Board Rev 2.0, a Quad Gigabit
EthernetFMCCardOP031-1V8 foranadditionalEthernetport, andanother
machine that is connected to this Ethernet port.

• Execution: The experiments will run for about 1 hour.
• Metrics: We use execution time, latency, and throughput as metrics.
• Output: The scripts produce files with raw numbers and plots. The ex-
pected results are included.

• Howmuch time is needed to prepare workflow?: 1 hour
• Howmuch time is needed to complete experiments?: 1 hour
• Publicly available?: The source of the complete software part and the
vDTU and NoC of the hardware part are publicly available. The FPGA
bitfiles are also publicly available.

• Code licenses: M3v is available underGPLv2. Please refer to the LICENSE
file in root directory for the licenses of the other contained components.

• Archived: 10.5281/zenodo.5863686.

A.3 Description

A.3.1 How to Access. Both the hardware and software platform
are available on Zenodo (10.5281/zenodo.5863686) and on Gitlab
(https://gitlab.com/Nils-TUD/m3bench).

A.3.2 Hardware Dependencies. M3v requires a custom hardware
platform, which we provide in form of bitfiles for the Xilinx VCU118
FPGA. Additionally, the FPGA board needs an Ethernet FMC card
(Quad Gigabit Ethernet FMC Card OP031-1V8) for an additional
Ethernet port besides the port to load programs onto the FPGA. This
additional port should be connected to another machine to host the
communication partners for our benchmarks. In our benchmarks,
we connected the FPGA to an AMD Ryzen 7 2700Xwith a Realtek
RTL8111/8168/8411 1Gb/s NIC and Linux 5.4.0.

A.3.3 Software Dependencies. Both M3v and Linux require specific
C/C++ and Rust compilers for RISC-V. These will be downloaded
and built automatically. Vivado Lab is used to program the FPGA
with the provided bitfiles.

A.4 Installation

The repository needs to be cloned as follows:

git clone https://gitlab.com/Nils-TUD/m3bench.git --recursive

The repository contains a README.mdwith all instructions to build
everything and run the experiments.

A.5 Evaluation and Expected Results

The expected raw results are contained in the expected-results
directory and can be compared with the raw results produced by
the evaluation in the results directory. For example, the following
commands can be used to compare the results:

tail results/*.dat > res.txt

tail expected-results/*.dat > expected.txt

vimdiff res.txt expected.txt

A.6 Notes

Since the measurements are done on an FPGA platform and involve
networking, small differences between the results reported in this
paper and new runs are expected. For that reason, the plots in this
paper show the standard deviation of the measurements.

Note also that benchmarks will be automatically repeated on
failure, because some occasional failures are unavoidable (e.g., some-
times loading programs onto the FPGA fails due to UDP packet
drops). Additionally, there are still some hardware/software bugs
due to system’s complexity that we have not found yet.

A.7 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] 2017. kbknapp/cargo-count: a cargo subcommand for counting linesof code inRust

projects. https://github.com/kbknapp/cargo-count. (Accessed onAugust 11, 2021).
[2] 2019. FLAC - Free Lossless Audio Codec. https://xiph.org/flac/. (Accessed on

August 11, 2021).
[3] 2020. M3: microkernel-based system for heterogeneous manycores.

https://github.com/TUD-OS/M3. (Accessed on August 11, 2021).
[4] 2021. AXI Ethernet Linux Driver. https://github.com/Xilinx/linux-

xlnx/tree/master/drivers/net/ethernet/xilinx. (Accessed on January 25, 2022).
[5] 2021. AXI Ethernet Standalone Driver. https://github.com/Xilinx/embeddedsw/

tree/master/XilinxProcessorIPLib/drivers/axiethernet. (Accessed on January
25, 2022).

[6] 2021. brianfrankcooper/YCSB:Yahoo!CloudServingBenchmark. https://ycsb.site/.
(Accessed on August 11, 2021).

[7] 2021. Data Plane Development Kit. https://www.dpdk.org. (Accessed on August
11, 2021).

[8] 2021. google/leveldb. https://github.com/google/leveldb. (Accessed on August
11, 2021).

[9] 2021. musl libc. https://musl.libc.org/. (Accessed on August 11, 2021).
[10] 2021. smoltcp | M-Labs. https://m-labs.hk/software/smoltcp/. (Accessed on

August 11, 2021).
[11] 2022. Intel® I/O Acceleration Technology. https://www.intel.com/content/www/

us/en/wireless-network/accel-technology.html. (Accessed on January 30, 2022).
[12] 2022. RISC-V Proxy Kernel and Boot Loader. https://github.com/riscv-software-

src/riscv-pk. (Accessed on January 25, 2022).
[13] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David

Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, and John Koenig. 2016.
The rocket chip generator. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17 (2016).

[14] Nils Asmussen. 2019. A New System Architecture for Heterogeneous
Compute Units. Ph. D. Dissertation. Dresden University of Technology.
https://os.inf.tu-dresden.de/papers_ps/asmussen-phd.pdf

[15] Nils Asmussen, Michael Roitzsch, and Hermann Härtig. 2019. M3x: Autonomous
Accelerators via Context-Enabled Fast-Path Communication. In 2019 USENIX

464

https://gitlab.com/Nils-TUD/m3bench
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://github.com/kbknapp/cargo-count
https://xiph.org/flac/
https://github.com/TUD-OS/M3
https://github.com/Xilinx/linux-xlnx/tree/master/drivers/net/ethernet/xilinx
https://github.com/Xilinx/linux-xlnx/tree/master/drivers/net/ethernet/xilinx
https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/axiethernet
https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcessorIPLib/drivers/axiethernet
https://ycsb.site/
https://www.dpdk.org
https://github.com/google/leveldb
https://musl.libc.org/
https://m-labs.hk/software/smoltcp/
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://github.com/riscv-software-src/riscv-pk
https://github.com/riscv-software-src/riscv-pk
https://os.inf.tu-dresden.de/papers_ps/asmussen-phd.pdf

ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland Asmussen, Haas, Weinhold, Miemietz, Roitzsch

Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12,
2019, Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX Association, 617ś632.
https://www.usenix.org/conference/atc19/presentation/asmussen

[16] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard
Fettweis. 2016. M3: A Hardware/Operating-System Co-Design to Tame
Heterogeneous Manycores. In 21st International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’16). ACM,
189ś203. https://doi.org/10.1145/2872362.2872371

[17] Andrew Baumann, Paul Barham, Pierre-Évariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The multikernel: a new OS architecture for scalable multicore systems. In
Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009,
SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, JeannaNeefeMatthews and
Thomas E.Anderson (Eds.). ACM, 29ś44. https://doi.org/10.1145/1629575.1629579

[18] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.
1989. Lightweight Remote Procedure Call. In Proceedings of the Twelfth ACM
Symposium on Operating System Principles, SOSP 1989, The Wigwam, Litchfield
Park, Arizona, USA, December 3-6, 1989, Gregory R. Andrews (Ed.). ACM, 102ś113.
https://doi.org/10.1145/74850.74861

[19] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Computer
Architecture News 39, 2 (u 2011), 1ś7. https://doi.org/10.1145/2024716.2024718

[20] Anton Burtsev, David Johnson, JoshKunz, Eric Eide, and Jacobus E. van derMerwe.
2017. CapNet: security and least authority in a capability-enabled cloud. In Proceed-
ings of the 2017 Symposium on Cloud Computing, SoCC 2017, Santa Clara, CA, USA,
September 24-27, 2017. ACM, 128ś141. https://doi.org/10.1145/3127479.3131209

[21] Kevin Elphinstone andGernotHeiser. 2013. FromL3 to seL4what havewe learnt in
20years of L4microkernels?. InACMSIGOPS24th SymposiumonOperating Systems
Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013, Michael Kaminsky
andMike Dahlin (Eds.). ACM, 133ś150. https://doi.org/10.1145/2517349.2522720

[22] Keith G. Erickson, M. Dan Boyer, and D. Higgins. 2018. NSTX-U advances in
real-time deterministic PCIe-based internode communication. Fusion Engineering
and Design 133 (2018), 104ś109.

[23] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano. 2008. SecureMemory
Accesses on Networks-on-Chip. IEEE Trans. Comput. 57, 9 (Sept 2008), 1216ś1229.
https://doi.org/10.1109/TC.2008.69

[24] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau,
Assaf Schuster, and Dan Tsafrir. 2012. ELI: Bare-Metal Performance for I/O
Virtualization. In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems (London,
England, UK) (ASPLOS XVII). Association for Computing Machinery, New York,
NY, USA, 411ś422. https://doi.org/10.1145/2150976.2151020

[25] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and
Jean Wolter. 1997. The Performance of 𝜇Kernel-Based Systems. In Proceedings
of the Sixteenth ACM Symposium on Operating System Principles, SOSP 1997, St.
Malo, France, October 5-8, 1997, Michel Banâtre, Henry M. Levy, andWilliamM.
Waite (Eds.). ACM, 66ś77. https://doi.org/10.1145/268998.266660

[26] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanen-
baum. 2006. MINIX 3: a highly reliable, self-repairing operating system. ACM
SIGOPSOper. Syst. Rev.40, 3 (2006), 80ś89. https://doi.org/10.1145/1151374.1151391

[27] Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Härtig.
2019. SemperOS: A Distributed Capability System. In 2019 USENIX An-
nual Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12,
2019, Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX Association, 709ś722.
https://www.usenix.org/conference/atc19/presentation/hille

[28] Tung Thanh Hoang, Amirali Shambayati, Calvin Deutschbein, Henry Hoffmann,
and Andrew A. Chien. 2014. Performance and energy limits of a processor-
integrated FFT accelerator. In IEEE High Performance Extreme Computing
Conference, HPEC 2014, Waltham, MA, USA, September 9-11, 2014. IEEE, 1ś6.
https://doi.org/10.1109/HPEC.2014.7040951

[29] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, GordonMacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, RichardWalter, WalterWang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a

Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (Toronto, ON, Canada) (ISCA’17). ACM, New York, NY,
USA, 1ś12. https://doi.org/10.1145/3079856.3080246

[30] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated, Emmett
Witchel, and Mark Silberstein. 2014. GPUnet: Networking Abstractions
for GPU Programs. In 11th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014,
Jason Flinn and Hank Levy (Eds.). USENIX Association, 201ś216. https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/kim

[31] Seonbong Kim and Joon-Sung Yang. 2018. Optimized I/O determinism for
emerging NVM-based NVMe SSD in an enterprise system. In Proceedings of the
55th Annual Design Automation Conference, DAC 2018, San Francisco, CA, USA,
June 24-29, 2018. ACM, 56:1ś56:6. https://doi.org/10.1145/3195970.3196085

[32] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and SimonWinwood. 2009. seL4: Formal
Verification of an OS Kernel. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (Big Sky, Montana, USA) (SOSP’09). ACM, New
York, NY, USA, 207ś220. https://doi.org/10.1145/1629575.1629596

[33] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, StefanMangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018.
Spectre Attacks: Exploiting Speculative Execution. meltdownattack.com (2018).
https://spectreattack.com/spectre.pdf

[34] Jeffrey Kuskin, David Ofelt, Mark A. Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, MarkHorowitz,
Anoop Gupta, Mendel Rosenblum, and John L. Hennessy. 1994. The Stanford
FLASHMultiprocessor. In Proceedings of the 21st Annual International Symposium
on Computer Architecture. Chicago, IL, USA, April 1994, David A. Patterson (Ed.).
IEEE Computer Society, 302ś313. https://doi.org/10.1109/ISCA.1994.288140

[35] Adam Lackorzynski and AlexanderWarg. 2009. Taming Subsystems: Capabilities
As Universal Resource Access Control in L4. In Proceedings of the SecondWorkshop
on Isolation and Integration in Embedded Systems (Nuremburg, Germany) (IIES’09).
ACM, New York, NY, USA, 25ś30. https://doi.org/10.1145/1519130.1519135

[36] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Liran
Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017. Page Fault Support for
Network Controllers. SIGARCH Comput. Archit. News 45, 1 (apr 2017), 449ś466.
https://doi.org/10.1145/3093337.3037710

[37] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. 2020. LeapIO: Efficient and Portable Virtual NVMe Storage on ARM
SoCs. Association for Computing Machinery, New York, NY, USA, 591ś605.
https://doi.org/10.1145/3373376.3378531

[38] Jochen Liedtke. 1995. On micro-Kernel Construction. In Proceedings of the
Fifteenth ACM Symposium on Operating System Principles, SOSP 1995, Copper
Mountain Resort, Colorado, USA, December 3-6, 1995, Michael B. Jones (Ed.). ACM,
237ś250. https://doi.org/10.1145/224056.224075

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. 2018. Meltdown. meltdownattack.com (2018).
https://meltdownattack.com/meltdown.pdf

[40] Dao-Fu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Temam, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. PuDianNao:
A Polyvalent Machine Learning Accelerator. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2015, Istanbul, Turkey, March 14-18, 2015,
Özcan Özturk, Kemal Ebcioglu, and Sandhya Dwarkadas (Eds.). ACM, 369ś381.
https://doi.org/10.1145/2694344.2694358

[41] Weichen Liu, Wenyang Liu, Yichen Ye, Qian Lou, Yiyuan Xie, and Lei Jiang. 2019.
HolyLight: A Nanophotonic Accelerator for Deep Learning in Data Centers. In
Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence,
Italy, March 25-29, 2019, Jürgen Teich and Franco Fummi (Eds.). IEEE, 1483ś1488.
https://doi.org/10.23919/DATE.2019.8715195

[42] Stephen Mallon, Vincent Gramoli, and Guillaume Jourjon. 2018. DLibOS:
Performance and Protection with a Network-on-Chip. In Proceedings of the 23rd
International Conference on Architectural Support for Programming Languages and
Operating Systems (Williamsburg, VA, USA) (ASPLOS’18). ACM, New York, NY,
USA, 737ś750. https://doi.org/10.1145/3173162.3173209

[43] Ilias Marinos, Robert N. M.Watson, Mark Handley, and Randall R. Stewart. 2017.
Disk |Crypt |Net: rethinking the stack for high-performance video streaming. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, SIGCOMM. ACM, 211ś224. https://doi.org/10.1145/3098822.3098844

[44] Mellanox Technologies. [n. d.]. RDMA Aware Networks Programming User
Manual.

[45] ZeyuMi, Dingji Li, Zihan Yang, XinranWang, and Haibo Chen. 2019. SkyBridge:
Fast and Secure Inter-Process Communication for Microkernels. In Proceedings
of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019,
George Candea, Robbert van Renesse, and Christof Fetzer (Eds.). ACM, 9:1ś9:15.
https://doi.org/10.1145/3302424.3303946

465

https://www.usenix.org/conference/atc19/presentation/asmussen
https://doi.org/10.1145/2872362.2872371
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/74850.74861
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3127479.3131209
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1109/TC.2008.69
https://doi.org/10.1145/2150976.2151020
https://doi.org/10.1145/268998.266660
https://doi.org/10.1145/1151374.1151391
https://www.usenix.org/conference/atc19/presentation/hille
https://doi.org/10.1109/HPEC.2014.7040951
https://doi.org/10.1145/3079856.3080246
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim
https://doi.org/10.1145/3195970.3196085
https://doi.org/10.1145/1629575.1629596
https://spectreattack.com/spectre.pdf
https://doi.org/10.1109/ISCA.1994.288140
https://doi.org/10.1145/1519130.1519135
https://doi.org/10.1145/3093337.3037710
https://doi.org/10.1145/3373376.3378531
https://doi.org/10.1145/224056.224075
https://meltdownattack.com/meltdown.pdf
https://doi.org/10.1145/2694344.2694358
https://doi.org/10.23919/DATE.2019.8715195
https://doi.org/10.1145/3173162.3173209
https://doi.org/10.1145/3098822.3098844
https://doi.org/10.1145/3302424.3303946

Efficient and Scalable Core Multiplexing withM3v ASPLOS ’22, February 28 śMarch 4, 2022, Lausanne, Switzerland

[46] Mark Samuel Miller. 2006. Robust composition: towards a unified approach to
access control and concurrency control (Ph. D. thesis). Johns Hopkins Univ ersity,
Baltimore, Maryland, USA (2006).

[47] Kenneth Moreland and Edward Angel. 2003. The FFT on a GPU. In
Proceedings of the 2003 ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, San Diego, California, USA, July 26-27, 2003, Bill
Mark and Andreas Schilling (Eds.). Eurographics Association, 112ś119.
http://diglib.eg.org/handle/10.2312/EGGH.EGGH03.112-119

[48] Vincent Nollet, Paul Coene, Diederik Verkest, Serge Vernalde, and Rudy Lauwere-
ins. 2003. Designing an Operating System for a Heterogeneous Reconfigurable So.
In 17th International Parallel and Distributed Processing Symposium (IPDPS 2003),
22-26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings. IEEE Computer
Society, 174. https://doi.org/10.1109/IPDPS.2003.1213320

[49] Bo Peng, Jianguo Yao, Yaozu Dong, and Haibing Guan. 2022. MDev-NVMe: Me-
diated Pass-Through NVMe Virtualization SolutionWith Adaptive Polling. IEEE
Trans. Computers 71, 2 (2022), 251ś265. https://doi.org/10.1109/TC.2020.3045785

[50] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas E. Anderson, and Timothy Roscoe. 2014. Arrakis: The
Operating System is the Control Plane. In 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October
6-8, 2014, Jason Flinn and Hank Levy (Eds.). USENIX Association, 1ś16. https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/peter

[51] J. Porquet, A. Greiner, and C. Schwarz. 2011. NoC-MPU: A secure architecture
for flexible co-hosting on shared memory MPSoCs. In Proceedings of the
Design, Automation & Test in Europe Conference & Exhibition (DATE’11). 1ś4.
https://doi.org/10.1109/DATE.2011.5763291

[52] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos
Kozyrakis, and Mark Horowitz. 2015. Convolution Engine: Balancing Efficiency
and Flexibility in Specialized Computing. Commun. ACM 58, 4 (Mar 2015), 85ś93.
https://doi.org/10.1145/2735841

[53] Jerome Howard Saltzer. 1966. Traffic control in a multiplexed computer system.
Ph. D. Dissertation. Massachusetts Institute of Technology.

[54] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs:
integrating a file system with GPUs. In Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA,
March 16-20, 2013, Vivek Sarkar and Rastislav Bodík (Eds.). ACM, 485ś498.
https://doi.org/10.1145/2451116.2451169

[55] Hayden Kwok-Hay So and Robert W. Brodersen. 2008. File system access from
reconfigurable FPGA hardware processes in BORPH. In FPL 2008, International

Conference on Field Programmable Logic and Applications, Heidelberg, Germany,
8-10 September 2008. IEEE, 567ś570. https://doi.org/10.1109/FPL.2008.4630010

[56] Livio Soares andMichael Stumm. 2010. FlexSC: Flexible System Call Scheduling
with Exception-Less SystemCalls. In 9th USENIX Symposium onOperating Systems
Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada,
Proceedings, Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX Association,
33ś46. http://www.usenix.org/events/osdi10/tech/full_papers/Soares.pdf

[57] Udo Steinberg and Bernhard Kauer. 2010. NOVA: a microhypervisor-based
secure virtualization architecture. In European Conference on Computer Systems,
Proceedings of the 5th European conference on Computer systems, EuroSys 2010,
Paris, France, April 13-16, 2010, Christine Morin and Gilles Muller (Eds.). ACM,
209ś222. https://doi.org/10.1145/1755913.1755935

[58] Lluis Vilanova, Lina Maudlej, Matthias Hille, Nils Asmussen, Michael Roitzsch,
and Mark Silberstein. 2020. Caladan: A Distributed Meta-OS for Data Center Dis-
aggregation. 10thWorkshop on Systems for Post-Moore Architectures, SPMA (2020).

[59] DavidWentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, MatthewMattina, Chyi-ChangMiao, John F. Brown III, and Anant
Agarwal. 2007. On-Chip Interconnection Architecture of the Tile Processor. IEEE
Micro 27 (10 2007), 15ś31. https://doi.org/10.1109/MM.2007.89

[60] Ziye Yang, James R. Harris, BenjaminWalker, Daniel Verkamp, Changpeng Liu,
Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma, and Luse E. Paul. 2017.
SPDK: A Development Kit to Build High Performance Storage Applications.
In IEEE International Conference on Cloud Computing Technology and Science,
CloudCom 2017, Hong Kong, December 11-14, 2017. IEEE Computer Society,
154ś161. https://doi.org/10.1109/CloudCom.2017.14

[61] Ziye Yang, Changpeng Liu, Yanbo Zhou, Xiaodong Liu, and Gang Cao. 2018.
SPDK Vhost-NVMe: Accelerating I/Os in Virtual Machines on NVMe SSDs via
User Space Vhost Target. In 8th IEEE International Symposium on Cloud and
Service Computing, SC2 2018, Paris, France, November 18-21, 2018. IEEE, 67ś76.
https://doi.org/10.1109/SC2.2018.00016

[62] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar
S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar,
Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam.
2021. The Demikernel Datapath OS Architecture for Microsecond-Scale Data-
center Systems. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for Computing
Machinery,NewYork,NY,USA,195ś211. https://doi.org/10.1145/3477132.3483569

[63] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020.
SonicBOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

466

http://diglib.eg.org/handle/10.2312/EGGH.EGGH03.112-119
https://doi.org/10.1109/IPDPS.2003.1213320
https://doi.org/10.1109/TC.2020.3045785
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://doi.org/10.1109/DATE.2011.5763291
https://doi.org/10.1145/2735841
https://doi.org/10.1145/2451116.2451169
https://doi.org/10.1109/FPL.2008.4630010
http://www.usenix.org/events/osdi10/tech/full_papers/Soares.pdf
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1109/MM.2007.89
https://doi.org/10.1109/CloudCom.2017.14
https://doi.org/10.1109/SC2.2018.00016
https://doi.org/10.1145/3477132.3483569

	Abstract
	1 Introduction
	2 Background
	2.1 The M3 Hardware/Software Platform
	2.2 Tile Multiplexing and Autonomous Accelerators with M3x
	2.3 Comparison to Existing Architectures

	3 Design
	3.1 Overall Approach
	3.2 System Architecture
	3.3 Tile-Local Multiplexer
	3.4 Virtualizing the DTU
	3.5 Endpoint Protection
	3.6 Tile-Local Memory Protection
	3.7 Waiting for Messages by Blocking Activities
	3.8 Receiving Messages for Blocked Activities
	3.9 Transparent Multiplexing

	4 Implementation
	4.1 Hardware Implementation
	4.2 TileMux
	4.3 Memory Management
	4.4 Network Stack

	5 Isolation vs. Efficiency Trade-Off
	6 Evaluation
	6.1 Hardware and Software Complexity
	6.2 Microbenchmarks
	6.3 OS Services
	6.4 Comparison with M3x
	6.5 Macrobenchmarks

	7 Related Work
	8 Discussion and Future Work
	9 Summary
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and Expected Results
	A.6 Notes
	A.7 Methodology

	References

