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Abstract—In this paper we consider the problem of comput-
ing the capacity of multi-user Gaussian MIMO systems under
multiple linear transmit covariance constraints (LTCCs). These
LTCCs are general enough to include many transmit power
constraints such as sum power constraint (SPC) or per-antenna
power constraint (PAPC) as special cases. For the considered
MIMO systems with multiple LTCCs, existing solutions are
based on subgradient or gradient descent methods, which are
known to have slow convergence in general and are therefore not
applicable to massive MIMO systems. In contrast, we propose
a low-complexity semi-closed-form approach to computing the
MIMO capacity for the system of interest. To this end, the
considered problem in the broadcast channel is transformedinto
an equivalent minimax problem in the multiple access channel.
The special structure of the minimax problem allows us to derive
water-filling-like algorithms based on a novel combination of
alternating optimization and concave-convex procedure. For the
important case of joint SPC and PAPC, we also propose analytical
expressions to find the optimal covariance matrix. Extensive
analytical and numerical results are provided to demonstrate
the effectiveness of our approach under various massive MIMO
system settings.

Index Terms—massive MIMO, linear transmit covariance con-
straints, sum power constraint, per-antenna power constraint,
minimax duality, concave-convex procedure.

I. I NTRODUCTION

The capacity of a Gaussian multiple-input multiple-output
(MIMO) channel is commonly investigated under either a
sum power constraint (SPC) or per-antenna power constraint
(PAPC) [1]–[8]. In practice, a system can be not only subject
to a power budget i..e, a SPC, but also a PAPC in order to
satisfy the linearity requirements of the power. In cognitive
radio networks, we can also impose interference temperature
constraints on a secondary user (SU) to limit the interference
generated at a primary user (PU) [9]–[11]. Therefore, the
research on joint power constraints [9] is of practical relevance
and an important issue in MIMO systems.

In general, all of the constraints above can be modeled as
linear transmit covariance constraints (LTCCs) [9]. In recent
years, there has been growing interest in the general case
of LTCCs [12]–[18]. In fact, the majority of these research
works investigate single-user MIMO (SU-MIMO) under the
special case of joint SPC and PAPC in which either closed-
form or algorithmic solutions can be efficiently derived. The
determination of the capacity and optimal transmit covariance

matrices for both Gaussian SU- and multi-user MIMO (MU-
MIMO) channels subject to the general form of LTCCs have
remained relatively open problems. For MU-MIMO systems,
preliminary studies utilized interior-point and subgradient
methods to compute optimal transmit covariance matrices for
dirty paper coding (DPC) [9] and zero-forcing (ZF) [10] ap-
proaches. However, these methods do not scale favorably with
the system size. In fact, it was demonstrated in [19] that these
high-complexity methods are not useful for massive MIMO
systems. To the best of the authors’ knowledge, only [16]
has proposed an efficient low-complexity approach relying on
alternating optimization (AO) and convex-concave procedure
(CCP) to solve the problem of maximizing the MU-MIMO
systems with zero-forcing under multiple power constraints.

In this paper we propose an approach to computing the
capacity of an MU-MIMO system with DPC under multiple
LTCCs in general, and under joint SPC and PAPC in particular.
More specifically, we show that the approach in [16] is also
applicable to the problem of interest. First, the considered
problem in the broadcast channel (BC) is transformed into
an equivalent minimax problem in the dual multiple access
channel (MAC), generalizing several results on the BC-MAC
duality in the previous studies of [7], [9], [20]. The problem
then boils down to finding a saddle point of the equivalent
minimax formulation. Towards this end, we combine alternat-
ing optimization (AO) and concave-convex procedure (CCP)
to arrive at an iterative algorithm, where each iteration isbased
on closed-form expressions. More importantly, we propose
a semi-closed-form solution to the important case of joint
SPC and PAPC, which has been never reported before. Our
contributions are summarized as follows:

• For the general case, we express the capacity of the BC
with multiple LTCCs as a minimax optimization problem
in the dual MAC, utilizing several results regarding BC-
MAC duality. The objective of the minimax problem is a
concave-convex function of transmit and noise covariance
matrices, respectively.

• We then propose a low-complexity approach to comput-
ing a saddle point of the minimax problem by efficiently
combining AO and CCP. The idea is to alternately opti-
mize the transmit and noise covariance matrices following



the general methodology of AO. For minimax problems,
the convergence of a pure AO is not guaranteed in general
[7], [21]. The novelty of our proposed method is to
optimize a bound of the objective obtained from the CCP
when optimizing the noise covariance matrix. The pro-
posed approach is also based on closed-form expressions,
and thus outperforms known solutions relying on either
subgradient or interior-point methods in [9], [10] in terms
of complexity.

• For the special case of MU-MIMO capacity under joint
SPC and PAPC, we derive a closed-form solution to
computing the noise covariance matrix. In fact, this
closed-form solution has not been previously reported in
the literature.

• We provide numerical results on the capacity of massive
MU-MIMO systems with joint SPC and PAPC and dif-
ferent precoding methods which have not been reported
previously.

The remainder of the paper is organized as follows. We present
the system model of MU-MIMO with multiple LTCCs in
Section II. Section III provides an algorithm to solve this
general case. In Section IV we derive closed-form expressions
for the special case of joint SPC and PAPC. We present the
numerical results in Section V and conclude the paper in
Section VI.

Notation: Standard notations are used in this paper. Bold
lower and upper case letters represent vectors and matrices,
respectively.IN defines an identity matrix of sizeN ; I and
0 define identity and zero matrices respectively, of which the
size can be easily inferred from the context.CM×N denotes
the space ofM × N complex matrices;tr(H) denotes the
trace ofH; H† andHT are Hermitian and ordinary transpose
of H, respectively. Furthermore, we denote the expected value
of a random variable byE[.], and [x]+ = max(x, 0). The ith
unit vector (i.e., itsi-th entry equal to one and all other entries
equal to zero) is denoted byei.

II. SYSTEM MODEL

Consider aK-user MIMO BC where the base station and
each userk = 1, 2, . . . ,K are equipped withN and Mk

antennas, respectively. LetHk denote the channel matrix for
userk, and lets denote the composite signal that combines
the data for all users in the downlink. Then, we can express
the received signal at userk as

yk = Hks+ zk (1)

wherezk is the Gaussian noise with distributionCN (0, IM ).
For Gaussian input, it was proved that dirty paper coding is
capacity achieving [22]. The problem of finding the capacity
region is usually formulated as a weighted sum rate maximiza-
tion (WSRMax), which is written as

maximize
{Sk�0}

∑K
k=1 wk log

|I+Hk

∑k
i=1

SiH
†

k
|

|I+Hk

∑k−1

i=1
SiH

†

k
|

subject to
∑K

k=1
tr(EikSk) ≤ Pi, ∀i

(2)

whereEik andSk are theith predefined positive semidefinite
matrix and input covariance matrix for thekth user,Pi is the
ith power constraint, andwk is the weighting factor assigned
to user k. Note that eachEik represents a general linear
constraint on the transmit covariance and it can include several
types of transmit power constraints as special cases. Some
examples are given below:

• If, for some i, Ei is an identity matrix, the resulting
constraint becomestr(S) ≤ Pi, representing a SPC.

• If, for some i, Ei = diag(ei), the constraint reduces to
[S]i,i ≤ Pi, denoting a maximum power constraint on the
ith antenna. In this paper, a PAPC means imposing this
constraint for all antennas.

• If, for some i, Ei = G†G, whereG is the effective
channel between a SU and a PU, then the resulting
constraint limits the overall interference experienced by
the PU [23], [24].

Without loss of generality, we assume in the rest of the paper
that 0 < w1 ≤ w2 ≤ ... ≤ wK and

∑K
k=1

wk = 1. We
remark that the work of [22] proved that the capacity region
given in (2) is achievable in the case of PAPC, i.e., in the case
whereEik = diag(ei) for k = 1, 2, . . .K. Following similar
arguments, it can also be shown that the capacity region for
the case of multiple LTCCs is also achievable.

III. A LGORITHM DESCRIPTION

In this section, we extend the minimax duality approach
in [16] and [21], to find the capacity region of the Gaussian
MIMO BC with multiple LTCCs. In fact, some approaches
relying on either subgradient or interior-point methods have
been proposed for this problem [9], [10]. However, these
methods were only applicable to small-scale MIMO or MISO
because their computational complexity is not appealing for
large-scale scenarios such as massive MIMO. Herein, we
propose an efficient solution to this problem, which follows
the same idea as that of [16], and in which each iteration is
based on closed-form expressions.

Denote byq = [q1, q2, . . . , qL]
T the vector of the La-

grange multipliers for the power constraints and letp =
[P1, P2, . . . , PL]

T be the corresponding power constraints.
Extending the result of minimax duality in [16], we can
equivalently rewrite (2) as

min
q≥0

max
{S̄k�0}

∑K
k=1

∆k log |Qk +
∑K
i=kH

†
i S̄iHi|

−wK log |Qk| , f (q, {S̄k})

subject to
∑K

k=1
tr(S̄k) = P ;pTq = P

(3)

where∆k = wk − wk−1 ≥ 0, Qk =
∑

i

qiEik, P =
∑L

i=1 Pi,

{S̄k} and{Qk} are considered as input covariance and noise
covariance matrices in the dual MAC, respectively. Note that
when we only consider a PAPC, the above formulation reduces
to the one in [20] and [21]. We also note that the objective in
(3) is convex withq ≥ 0 and concave with{S̄k � 0}. Thus,
there is a saddle point for (3). Let(q∗, {S̄∗

k}) be the saddle



point of (3). Then the optimal covariance matrices that achieve
the capacity region in the BC are given by

S∗
k = M

−1/2
k UkV

†
kB

1/2
k S̄∗

kB
1/2
k VkU

†
kM

−1/2
k (4)

whereUk,Vk are achieved from the economy-size SVD of
(M

−1/2
k H

†
kB

−1/2
k );Mk = Q∗

k+
∑K
j=k+1

H
†
jS̄

∗
jHj ,Bk = I+

∑k−1

j=1
HkS

∗
jH

†
k.

Remark 1. We discuss three benefits of using the minimax
problem in (3) in computing the capacity region of a Gaussian
MIMO BC. Firstly, theSk-maximization hasthe same struc-
ture for all types of LTCCs. Secondly,the q-minimization does
not scale with the number of users. Thirdly, projection onto
the feasible sets ofq and{S̄k} can be done using closed-form
expressions. We exploit these properties to derive efficient
solutions to the MIMO capacity region.

The proposed method for solving (3) follows the approach
in [16], [21], which is described next. Denote(qn, {S̄nk})
as the obtained values of(q, {S̄k}) after n iterations of
the proposed iterative algorithm. For a givenqn, S̄n is the
solution to the maximization problem under an SPC to which
gradient-projection-based methods are numerically shownto
be efficient (see [21], [25], [26] for details). Moreover, ifthe
sum capacity is of interest, i.e.∆k = 0 for all k ≥ 2, it is
easy to see that the maximization in (3) admits a water-filling
solution.

Turning now to the problem of findingqn+1, we solve the
optimization problem below:

minimize
q≥0

∑K
k=1

∆k log |Qk +
∑K

i=kH
†
i S̄iHi|

−wK log |Qk|
subject to pTq = P.

(5)

In light of CCP, we choose to minimize an upper bound of the
objective instead of optimizing the original objective in (5). To
this end, by invoking the concavity of thelogdet function, we
obtain the following inequality

log |Qk +
∑K

i=kH
†
i S̄
n
i Hi| ≤ log |Φn

k |+tr
(

Φ−n
k

(

Qk−Qn
k

))

(6)
whereΦn

k = Qk +
∑K

i=kH
†
i S̄
n
i Hi,Φ

−n
k , (Φn

k )
−1. Thus,

qn+1 is found to be the optimal solution to the following
problem

minimize
q≥0

∑K
k=1

∆k

wK
tr
(

Φ−n
k Qk

)

− log |Qk|

subject to pTq = P.
(7)

We remark that the problem (7) has a similar form to [17,
Eq. (10)]; thus a gradient-projection-based algorithm canbe
easily customized to apply here. The algorithm description
to solve (3) is summarized in Algorithm 1. The convergence
proof is similar to those of [16], [17], [21] and thus skipped
for the sake of brevity.

IV. MIMO C APACITY REGION WITH JOINT SPCAND

PAPC

In this section we deal with the specific case of the MIMO
capacity region with joint SPC and PAPC. We remark that

Algorithm 1: The Proposed Algorithm for Solving (3).

Input: q0, ǫ > 0.
1 Initialize n := 0, andτ = 1 + ǫ.
2 while τ > ǫ do
3 ComputeQn

k =
∑L

i=1 q
n
i Eik.

4 Solve
{S̄n

k} = argmax
{S̄k�0,

∑
K
k=1

tr(S̄k)=P}

∑K

k=1 ∆k log |Qk +

∑K

i=k
H

†
i S̄iHi|.

5 For n ≥ 1, compute
τ = |f(qn, {S̄n

k})− f(qn−1, {S̄n−1
k })|.

6 Solve (7) to findqn+1 using [17, Alg. 1].
7 n := n+ 1.
8 end

Output: {S̄n
k}

K
k=1 and apply (4) to compute optimal

{Sn
k}

K
k=1.

no efficient solutions have been reported for this important
case previously. For the SU-MIMO case, it is possible to find
closed-form solutions based on solving the KKT conditions
for some specific scenarios as shown in [15], [17]. However,
such a method appears to be impossible for the MU-MIMO
case.

Our main point is to demonstrate that the equivalent min-
imax formulation in the MAC allows for efficient solutions
to this special case. In particular, for the case of joint SPC
and PAPC considered in this paper, we show that solving (7)
admits a closed form-solution.

Notice that the number of constraints isL = N + 1 for
the considered problem ;EN+1 = IN and Ei = diag(ei)
for i = 1, 2, . . . , N are associated with the SPC and PAPC,
respectively. As a consequence,Pi(i = 1, 2, , . . . , N) is the
power constraint for the individual antenna andPN+1 , PT
is the power budget. In the following, we only consider the
non-trivial case in whichmin{Pi} < PN+1 <

∑N
i=1

Pi.
We begin by rewriting (7) as

minimize
q≥0

qN+1ψn,N+1 +
∑N
i=1

(qiψn,i − log(qN+1 + qi))

subject to
∑N+1

i=1
Piqi = P

(8)
where ψi = [

∑K
j=1

∆j

wK
Φ−n
j ]i,i; qN+1 and qi for i =

1, 2, . . . , N are the Lagrange multipliers for the SPC and
PAPC, respectively.

Theorem 1. The solution to (7) in the special case of joint
SPC and PAPC is given by

qN+1 =
N − k̄

(ψN+1 −
∑k̄
i=1

ψi) + γ(PT −
∑k̄

i=1
Pi)

, (9)

qi = 0, i = k̄ + 1, k̄ + 2, . . . , N (10)

qi =
1

ψi + γPi
−

N − k̄

(ψN+1 −
∑k̄

i=1
ψi) + γ(PT −

∑k̄
i=1

Pi)
,

i = 1, . . . , k̄ (11)
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Fig. 1: Comparison of capacity regions with different precoding
methods and different power constraints for a massive MIMO system
with N = 128 transmit antennas,M = 2 receive antennas and
K = 2 users. The sum power constraint isPT = 16 dBW for the
SPC case, the sum of PAPCs is equal toPA = 16 dBW for the PAPC
case, and for the case of joint SPC and PAPC we setPA = 16 dBW
andPT = 0.8PA.

where k̄ is the largest k̄ ≤ N − 1 such that

1

ψi + γPi
≥

N − k̄

(ψN+1 −
∑k̄
i=1 ψi) + γ(PT −

∑k̄
i=1 Pi)

(12)

and γ is the solution of the equation

k̄
∑

i=1

Pi

ψi + γPi
+

(N − k̄)(PT −
∑k̄
i=1

Pi)

(ψN+1 −
∑k̄
i=1

ψi) + γ(PT −
∑k̄

i=1
Pi)

= P.

(13)

Proof. See the Appendix.

V. NUMERICAL RESULTS

In this section, we take advantage of our low-complexity
algorithms to study the performance of massive MIMO sys-
tems under the important case of joint SPC and PAPC.
For notational convenience, we denote the sum of PAPCs
as PA =

∑N
i=1

Pi. Unless explicitly stated otherwise, we
consider here the most common case encountered in practice,
where each transmit antenna is subject to the same power
constraint, i.e.,Pi = P0 = PA

N , for i = 1, 2, . . . , N . As
mentioned earlier, we are interested in the nontrivial case
wheremin{Pi} < PT < PA. In fact, if min{Pi} ≥ PT ,
then the PAPC can be removed without loss of optimality.
Similarly, if PT ≥ PA, then the SPC can be eliminated. All
users are equipped with the same number of receive antennas,
i.e., Mk = M . Unless stated otherwise, the error toleranceǫ

is set to10−6 for all simulations. Other relevant simulation
parameters are specified for each setup.

In the first experiment, we characterize the capacity region
of the optimal nonlinear precoding method (DPC) and the
common linear precoding (ZF) [16] in a realistic massive
MIMO scenario under joint SPC and PAPC. In particular, we
consider the typical urban micro-cell WINNER II B1 channel
model [27] where two users are distributed around a centered
base station in a single cell. In addition, we only consider
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Fig. 2: Average sum rate of different precoding methods i.e., ZF,
DPC and SZFDPC under joint SPC and PAPC withM = 2 receive
antennas,K = 4 users. Here the sum power constraint isPT =
0.8PA.

the path loss and ignore shadowing. The noise power is set to
−94 dBm over a bandwidth of 100 MHz. The base station and
each user are equipped with 128 and 2 antennas, respectively.
We can see clearly from Fig. 1 that the capacity of ZF with
joint SPC and PAPC is close to that of DPC in massive MIMO
settings. Both are less than the capacity of DPC with PAPC
and the feasible region is still bounded by the SPC.

In Fig. 2 we study the performance of the average sum
rate of different precoding methods, including ZF, successive
zero-forcing DPC (SZFDPC) [16] and DPC under joint SPC
and PAPC. For the same set of power constraints, the average
sum rate of ZF is lower than that of suboptimal precoding
SZFDPC, while DPC remains the optimal solution with the
highest sum rate. We can also see that when the number
of transmit antennas increases, the performance of ZF and
SZFDPC methods approaches that of DPC.

VI. CONCLUSIONS

We have proposed an efficient approach to computing
the MIMO capacity and characterizing the capacity region
under an arbitrary combination of linear transmit covariance
constraints. The approach is based on minimax duality and
CCP to derive water-filling-like algorithms. For the special
case of the MIMO capacity with joint SPC and PAPC, we
have also provided an analytical solution. In the numerical
results, we have, for the first time, studied the performance
of massive MIMO systems under joint power constraints as
well as different precoding methods. In fact, our solutions
help to overcome the computational difficulties of previously
published algorithms which mostly rely on subgradient or
interior-point methods.
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APPENDIX

We can write the KKT conditions for the considered prob-
lem as

µiqi = 0 (14)

ψi −
1

qN+1 + qi
+ γPi − µi = 0, i = 1, 2, . . . , N (15)

ψN+1 −
∑N

i=1

1

qN+1 + qi
+ γPT − µN+1 = 0, i = N + 1.

(16)
From (14), if qi > 0 for i = 1, 2, . . . , N then the correspond-
ing µi = 0 which results in

µN+1 = γ(PT −
∑N

i=1
Pi). (17)

In this paper, we only consider the case where the sum power
constraint is less than the total power of PAPC i.e.,PT <
∑N

i=1
Pi, thereforeµN+1 = 0, qN+1 > 0.

Without loss of generality, we can sort{ 1

ψi+γPi
} in decreas-

ing order. From (15), ifPi is active, we obtain

qN+1 + qi =
1

ψi + γPi
. (18)

As a result, we haveqi > qj if qi > 0 and qj > 0 where
i < j. In addition, we can easily prove that ifqj = 0 for some
j thenqk̄ = 0 for k̄ > j. Hence, we can find an integerk̄ such
that

q1 ≥ q2 ≥ · · · ≥ qk̄ > 0 (19)

and
qk̄+1 = qk̄+2 = · · · = qN = 0. (20)

Based on these results, combining (15) and (16) results in

qN+1 =
N − k̄

(ψN+1 −
∑k̄
i=1

ψi) + γ(PT −
∑k̄

i=1
Pi)

(21)

qi =
1

ψi + γPi
−

N − k̄

(ψN+1 −
∑k̄

i=1
ψi) + γ(PT −

∑k̄
i=1

Pi)
.

(22)
Substituting these values ofqi into the power constraint
∑N+1

i=1
Piqi = P , we obtain

k̄
∑

i=1

Pi

ψi + γPi
+

(N − k̄)(PT −
∑k̄
i=1

Pi)

(ψN+1 −
∑k̄
i=1

ψi) + γ(PT −
∑k̄

i=1
Pi)

= P

(23)
whose value ofγ can be solved easily by the Newton method
or bisection method.
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