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Abstract—In this paper we consider the problem of comput-
ing the capacity of multi-user Gaussian MIMO systems under
multiple linear transmit covariance constraints (LTCCs). These
LTCCs are general enough to include many transmit power
constraints such as sum power constraint (SPC) or per-antara
power constraint (PAPC) as special cases. For the considere
MIMO systems with multiple LTCCs, existing solutions are

matrices for both Gaussian SU- and multi-user MIMO (MU-
MIMO) channels subject to the general form of LTCCs have
remained relatively open problems. For MU-MIMO systems,
preliminary studies utilized interior-point and subgei

methods to compute optimal transmit covariance matrices fo
dirty paper coding (DPC) [9] and zero-forcing (ZF) [10] ap-

based on subgradient or gradient descent methods, which are proaches. However, these methods do not scale favoraliy wit

known to have slow convergence in general and are thereforeoh
applicable to massive MIMO systems. In contrast, we propose
a low-complexity semi-closed-form approach to computing e
MIMO capacity for the system of interest. To this end, the
considered problem in the broadcast channel is transformednto
an equivalent minimax problem in the multiple access chanrle
The special structure of the minimax problem allows us to deive
water-filling-like algorithms based on a novel combination of
alternating optimization and concave-convex procedure. & the
important case of joint SPC and PAPC, we also propose analydal
expressions to find the optimal covariance matrix. Extensie
analytical and numerical results are provided to demonstrae
the effectiveness of our approach under various massive MI@
system settings.

Index Terms—massive MIMO, linear transmit covariance con-
straints, sum power constraint, per-antenna power constrant,
minimax duality, concave-convex procedure.

I. INTRODUCTION

the system size. In fact, it was demonstrated in [19] thagehe
high-complexity methods are not useful for massive MIMO
systems. To the best of the authors’ knowledge, only [16]
has proposed an efficient low-complexity approach relying o
alternating optimization (AO) and convex-concave procedu
(CCP) to solve the problem of maximizing the MU-MIMO
systems with zero-forcing under multiple power constiaint

In this paper we propose an approach to computing the
capacity of an MU-MIMO system with DPC under multiple
LTCCs in general, and under joint SPC and PAPC in particular.
More specifically, we show that the approach in [16] is also
applicable to the problem of interest. First, the considere
problem in the broadcast channel (BC) is transformed into
an equivalent minimax problem in the dual multiple access
channel (MAC), generalizing several results on the BC-MAC
duality in the previous studies of [7], [9], [20]. The probie

The capacity of a Gaussian multiple-input multiple-outpyhen poils down to finding a saddle point of the equivalent

(MIMO) channel is commonly investigated under either

thinimax formulation. Towards this end, we combine alternat

sum power constraint (SPC) or per-antenna power constrajfy optimization (AO) and concave-convex procedure (CCP)
(PAPC) [1]-[8]. In practice, a system can be not only subjegd arrive at an iterative algorithm, where each iteratiobased
to a power budget i..e, a SPC, but also a PAPC in order §g closed-form expressions. More importantly, we propose

satisfy the linearity requirements of the power. In cogeiti

a semi-closed-form solution to the important case of joint

radio networks, we can also impose interference temp@atdfpc and PAPC, which has been never reported before. Our
constraints on a secondary user (SU) to limit the interfegencqntributions are summarized as follows:

generated at a primary user (PU) [9]-[11]. Therefore, the

research on joint power constraints [9] is of practicalvalee
and an important issue in MIMO systems.

« For the general case, we express the capacity of the BC
with multiple LTCCs as a minimax optimization problem

In general, all of the constraints above can be modeled as in the dual MAC, utilizing several results regarding BC-

linear transmit covariance constraints (LTCCs) [9]. Ineneic

MAC duality. The objective of the minimax problem is a

years, there has been growing interest in the general case concave-convex function of transmit and noise covariance
of LTCCs [12]-[18]. In fact, the majority of these research  matrices, respectively.

works investigate single-user MIMO (SU-MIMO) under the « We then propose a low-complexity approach to comput-
special case of joint SPC and PAPC in which either closed- ing a saddle point of the minimax problem by efficiently
form or algorithmic solutions can be efficiently derived.eTh combining AO and CCP. The idea is to alternately opti-
determination of the capacity and optimal transmit covaréa mize the transmit and noise covariance matrices following



the general methodology of AO. For minimax problemsyhereE;; andS; are theith predefined positive semidefinite
the convergence of a pure AO is not guaranteed in genenatrix and input covariance matrix for thgh user,P; is the

[7], [21]. The novelty of our proposed method is tath power constraint, andy, is the weighting factor assigned
optimize a bound of the objective obtained from the CC® user k. Note that eachE;; represents a general linear
when optimizing the noise covariance matrix. The praonstraint on the transmit covariance and it can includersgv
posed approach is also based on closed-form expressidyppes of transmit power constraints as special cases. Some
and thus outperforms known solutions relying on eithexamples are given below:

subgradient or interior-point methods in [9], [10] in terms If, for some i, E, is an identity matrix, the resulting

of complexity. _ o constraint becomes(S) < P;, representing a SPC.
« For the special case of M.U-MIMO capacity under. joint it for somei, E; = diag(e;), the constraint reduces to
SPC and PAPC, we derive a closed-form solution to [S];.; < P;, denoting a maximum power constraint on the

computing the noise covariance matrix. In fact, this iy antenna. In this paper, a PAPC means imposing this
closed-form solution has not been previously reported in  ~gnstraint for all antennas.

the literature. _ e If, for somei, E; = G'G, where G is the effective

« We provide numerical results on the capacity of massive channel between a SU and a PU, then the resulting
MU-MIMO systems with joint SPC and PAPC and dif-  constraint limits the overall interference experienced by
ferent precoding methods which have not been reported e py [23], [24].
previously.

) ) _ Without loss of generality, we assume in the rest of the paper
The remainder of the paper is organized as follows. We ptesgiat 0 < w, < wy < ... < wx and K w = 1. We

the system model of MU-MIMO with multiple LTCCs in remark that the work of [22] proved that the capacity region

Section II. Section IIl provides an algorithm to solve thigen in (2) is achievable in the case of PAPC, i.e., in thecas

general case. In Section IV we derive closed-form expressiqyhere E;;, = diag(e;) for k = 1,2, ... K. Following similar

for the special case of joint SPC and PAPC. We present thgyuments, it can also be shown that the capacity region for
numerical results in Section V and conclude the paper ffe case of multiple LTCCs is also achievable.

Section VL.

Notation: Standard notations are used in this paper. Bold I1l. ALGORITHM DESCRIPTION
lower and upper case letters represent vectors and matrices ) o )
respectivelyIy defines an identity matrix of siz&/; I and _ [N this section, we extend the minimax duality approach

0 define identity and zero matrices respectively, of which tH8 [16] and [21], to find the capacity region of the Gaussian
size can be easily inferred from the conte®t/*"N denotes MIMO BC with multiple LTCCs. In fact, some approaches
the space of\f x N complex matricestr(H) denotes the relying on either subgradient or interior-point methodseha
trace of H; H andHT are Hermitian and ordinary transpos€€€n proposed for this problem [9], [10]. However, these
of H, respectively. Furthermore, we denote the expected valfi¢thods were only applicable to small-scale MIMO or MISO
of a random variable b[], and[z]; = max(z,0). Theith because their com_putanonal compIeX|.ty is not appeallrrg fo
unit vector (i.e., its-th entry equal to one and all other entrie42rge-scale scenarios such as massive MIMO. Herein, we

equal to zero) is denoted by. propose an efficient solution to this problem, which follows
the same idea as that of [16], and in which each iteration is
Il. SYSTEM MODEL based on closed-form expressions.

Denote byq = [g1,¢2,...,q.]" the vector of the La-
Consider aK-user MIMO BC where the base station an@range multipliers for the power constraints and jet=
each userk = 1,2,...,K are equipped withV and My [P, P,,..., P;]” be the corresponding power constraints.
antennas, respectively. L&, denote the channel matrix for Extending the result of minimax duality in [16], we can
userk, and lets denote the composite signal that combinesquivalently rewrite (2) as
the data for all users in the downlink. Then, we can express

the received signal at uséras min max Y1 Aplog|Qr + SN, HIS,H,|
a>0 {S, >0}

yi = His + zg (1) —wg log LQIC| £ f(q7 {Sk}) (3)
subject to Zszl tr(Sg) = P;pfq=P
wherez, is the Gaussian noise with distributiabVv'(0, I;).
For Gaussian input, it was proved that dirty paper coding here A, = wy, — w1 > 0, Qx = >¢;Eu, P = X1, P,
capacity achieving [22]. The problem of finding the capacit '
region is usually formulated as a weighted sum rate maximi
tion (WSRMax), which is written as

Si} and{Qy} are considered as input covariance and noise
variance matrices in the dual MAC, respectively. Notd tha
when we only consider a PAPC, the above formulation reduces
o K log THHE Sk sHi| to the one in [20] and [21]. We also note that the objective in
m&ilgg)lfe 21 Wi log L, P S ]| 2) (3)is convex withq > 0 and concave wit Sy = 0}. Thus,
subject to Zszl tr(EixSy) < P, Vi there is a saddle point for (3). Léty*, {S;}) be the saddle



point of (3). Then the optimal covariance matrices thateahi Algorithm 1: The Proposed Algorithm for Solving (3).
the capacity region in the BC are given by

 _ np—1/2 tol/2arml/2 Far—1/2 Input: q°, € > 0.
k=M, ULV BTSE BTV UM, (4) 1 Initialize n:=0, and7 =1 +e.

where Uy, V;, are achieved from the economy-size SVD of While 7> ¢ do

1/2 1/2 3 ComputeQ} = Y5 | ¢"Ejy.
(M / H|B,_ %)My, = Qk+zj k+1HTS H;, By =1+ | SolvéO £ 2 *

Zj:l HkS;HT- {Sp1 = i arg max Zle Aglog |Qr +
Remark 1. We discuss three benefits of using the minimax K g okE0 R =P
problem in (3) in computing the capacity region of a Gaussian 2 iy, HiSiHL|.
. o 5 Forn > 1, compute
MIMO BC. Firstly, the Si-maximization haghe same struc- 7= f(a@" {STY) — f(a™ L, {SP )
ture for all types of LTCCs. Secondlyhe_ q—minimi_zati_on does Solve (7) to ﬁn'aqn+1 using fl?,kAIg. 1].
not scale with the number of users. Thirdly, projection onto 7 n:=n+1.
the feasible sets af and{S;.} can be done using closed-forms end
expressions. We exploit these properties to derive efficien Output: {S"}k 1 and apply (4) to compute optimal

solutions to the MIMO capacity region. {Sk}izs.

The proposed method for solving (3) follows the approach

in  [16], [21], which is described next. Denote™, {St})

as the obtained values diq,{S;}) after n iterations of no efficient solutions have been reported for this important
the proposed iterative algorithm. For a givegit, S™ is the case previously. For the SU-MIMO case, it is possible to find
solution to the maximization problem under an SPC to whigHosed-form solutions based on solving the KKT conditions
gradient-projection-based methods are numerically shmvnfor some specific scenarios as shown in [15], [17]. However,
be efficient (see [21], [25], [26] for details). Moreovertife such a method appears to be impossible for the MU-MIMO
sum capacity is of interest, i.é\, = 0 for all £k > 2, itis case.

easy to see that the maximization in (3) admits a watergjllin Our main point is to demonstrate that the equivalent min-

solution. imax formulation in the MAC allows for efficient solutions
Turning now to the problem of finding™**, we solve the to this special case. In particular, for the case of joint SPC
optimization problem below: and PAPC considered in this paper, we show that solving (7)
inimize ZkKZI Ay log |Qr + Zfik HZTSiHZ-| admit§ a closed form-solution. _
q>0 Notice that the number of constraints is= N + 1 for
—wg log |Qy| ®) the considered problemEx,; = Iy and E; = diag(e;)
subject to p'q=P. fori = 1,2,..., N are associated with the SPC and PAPC,
In light of CCP, we choose to minimize an upper bound of trf@spectlvely As a consequencg(i = 1,2,,...,N) iS the

objective instead of optimizing the original objective B)(To Power constraint for the individual antenna afg 1 = Pr
this end, by invoking the concavity of tHegdet function, we is the power budget. In the following, we OH% consider the
obtain the following inequality non-trivial case in whichmin{F;} < Py11 < > ;2 Pi.

We b b iti 7
log |Qy, + Z HTS”H | < log |®7| +tr(<I>,j”(Qk—Q};)) e begin by rewriting (7) as
(6) L
where ®? = Q, + K, HISTH, &, 2 (®7)~L. Thus,  "HIpe AN 1Pn N1 + 2oy (@tn,: — log(an+1 + @)

q"*t! is found to be the optimal solut|on to the following subject to SN1' Pigi =P

problem A (8)
where ¢; = [} 00, —L®"];;; qvy1 and ¢; for i =
E A -n =1 w i >
e Zk 1w tr(‘l)k Qk) — log |Q4| 7 L2..,N are the Lagrange multipliers for the SPC and
subjegt to pTq=P. PAPC, respectively.

We remark that the problem (7) has a similar form to [17;heorem 1. The solution to (7) in the special case of joint
Eq. (10)]; thus a gradient-projection-based algorithm ban SPC and PAPC is given by
easily customized to apply here. The algorithm description

to solve (3) is summarized in Algorithm 1. The convergence N—k ©)
roof is similar to those of [16], [17], [21] and thus skipped IN+1 = 2 2 ’
?or the sake of brevity. ol 117l 124 i (W = Lic ) +1(Pr = 2ie )
=0 i=k+1,k+2,...,N (10)
IV. MIMO CAPACITY REGION WITH JOINT SPCAND 1 N—Fk

PAPC g =

In this section we deal with the specific case of the MIMO
capacity region with joint SPC and PAPC. We remark that

wi+7Pi_(¢N+l_Zzlwz ) +~(Pr lep)
i=1,....k (11)
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Fig. 1: Comparison of capacity regions with different prdiog Fig. 2: Average sum rate of different precoding methods ¢,
methods and different power constraints for a massive MiM&esn DPC and SZFDPC under joint SPC and PAPC with= 2 receive
with N = 128 transmit antennas) = 2 receive antennas and antennas K = 4 users. Here the sum power constraintAs =
K = 2 users. The sum power constraintis: = 16 dBW for the 0.8Pa.

SPC case, the sum of PAPCs is equaPtp= 16 dBW for the PAPC

case, and for the case of joint SPC and PAPC we%set 16 dBW

and Pr = 0.8Pa. the path loss and ignore shadowing. The noise power is set to
—94 dBm over a bandwidth of 100 MHz. The base station and
_ - each user are equipped with 128 and 2 antennas, respectively
<N — . . .
where f: is the largest k< V' — 1 ?UCh that We can see clearly from Fig. 1 that the capacity of ZF with
1 . N —k (12) joint SPC and PAPC is close to that of DPC in massive MIMO
v, +vP; — (Yng1 — Z i) +~(Pr Z ' P) settings. Both are less than the capacity of DPC with PAPC

and the feasible region is still bounded by the SPC.
In Fig. 2 we study the performance of the average sum

rate of different precoding methods, including ZF, suciess
= P. zero-forcing DPC (SZFDPC) [16] and DPC under joint SPC
(13) and PAPC. For the same set of power constraints, the average

sum rate of ZF is lower than that of suboptimal precoding
SZFDPC, while DPC remains the optimal solution with the
Proof. See the Appendix. O highest sum rate. We can also see that when the number
of transmit antennas increases, the performance of ZF and

V. NUMERICAL RESULTS SZFDPC methods approaches that of DPC.
In this section, we take advantage of our low-complexity

algorithms to study the performance of massive MIMO sys- VI. CONCLUSIONS

tems under the important case of joint SPC and PAPC.We have proposed an efficient approach to computing
For notational convenience, we denote the sum of PAP@®& MIMO capacity and characterizing the capacity region
as Py = Y1, P,. Unless explicitly stated otherwise, weunder an arbitrary combination of linear transmit covazin
consider here the most common case encountered in practigmstraints. The approach is based on minimax duality and
where each transmit antenna is subject to the same po@@P to derive water-filling-like algorithms. For the spécia
constraint, i.e..P;, = P, = %4, for i = 1,2,...,N. As case of the MIMO capacity with joint SPC and PAPC, we
mentioned earlier, we are interested in the nontrivial cagave also provided an analytical solution. In the numerical
where min{P;} < Pr < Pj. In fact, if min{P;} > Pr, results, we have, for the first time, studied the performance
then the PAPC can be removed without loss of optimalitgf massive MIMO systems under joint power constraints as
Similarly, if Pr > P4, then the SPC can be eliminated. Alell as different precoding methods. In fact, our solutions
users are equipped with the same number of receive antenimap to overcome the computational difficulties of previgus

i.e., M = M. Unless stated otherwise, the error tolerancepublished algorithms which mostly rely on subgradient or
is set to10Y for all simulations. Other relevant simulationinterior-point methods.

parameters are specified for each setup.
In the first experiment, we characterize the capacity region ACKNOWLEDGEMENTS
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and ~ is the solution of the equation

i (N = k)(Pr Z”Py
-1 +7P (1/)N+1—Zi:1¢i)+7(PT—Zi:1Pi)




APPENDIX [4]

We can write the KKT conditions for the considered prob-

lem as
[5]

(6]
(7]

Higi = 0 (14)

+~4P—p;=0,i=1,2,...,N (15)

T dN+1 + g
N 1 '
¢N+1—Z +~vPr —un41 =0, =N + 1.
(16)

=1 gNy1 + ¢
From (14), if¢; > 0 fori=1,2,..., N then the correspond- [9]
ing p; = 0 which results in

N
pNt1 =(Pr — Zi:l P).

In this paper, we only consider the case where the sum povit
constraint is less than the total power of PAPC iBp <
Zf;l P;, thereforeun 11 = 0,gn+1 > 0.

_ Without loss of gengraliﬁy, we can sqrm} in decreas- [12]
ing order. From (15), ifP; is active, we obtain

(8]

10
(17) 1ol

(18) [13]

+q= -
gN+1 T @ Vi + 7P,
As a result, we have; > q; if ¢; > 0 andg; > 0 where |14
i < j. In addition, we can easily prove thatgf = 0 for some
j theng; = 0 for k > j. Hence, we can find an integkrsuch [15]
that

>q0> > gr 19
qGuL>q>->qg>0 (19) 6]

and
(20)

Q541 = Gfyo = =qn = 0. [17]

Based on these results, combining (15) and (16) results in[18]

N —k
gN+1 = A i (21) [19]
(VN4 — 21:1 Vi) +y(Pr — Zi:l P;)
1 N —k
LT (v 2’5 i) + (P Z’; P) o
N+1 i=1 "t YT i=1 (122) 21]

Substituting these values qf; into the power constraint
Zii? Piyq; = P, we obtain
i (N—R)(Pr—XYr, P)

k
; Vit v (hyig — 25:1 Vi) +y(Pr — Zf:l P;) (23)

whose value ofy can be solved easily by the Newton method
or bisection method. [24]

[22]
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