
Secure and Efficient Tunneling of MACsec for Modern Industrial
Use Cases

Tim Lackorzynski
TU Dresden

Dresden, Germany
tim.lackorzynski@tu-dresden.de

Sebastian Rehms
TU Dresden

Dresden, Germany
sebastian.rehms@tu-dresden.de

Tao Li
TU Dresden

Dresden, Germany
tao.li@tu-dresden.de

Stefan Köpsell
Barkhausen Institute / CeTI TU

Dresden
Dresden, Germany

stefan.koepsell@barkhauseninstitut.org

Hermann Härtig
TU Dresden

Dresden, Germany
hermann.haertig@tu-dresden.de

ABSTRACT
Trends like Industry 4.0 will pose new challenges for future
industrial networks. Greater interconnectedness, higher data
volumes as well as new requirements for speeds as well as
security will make new approaches necessary. Performance
optimized networking techniques will be demanded to imple-
ment new use cases, like network separation and isolation, in
a secure fashion.

A new and highly efficient protocol, that will be vital for
that purpose, is MACsec. It is a Layer 2 encryption protocol
that was previously extended specifically for industrial envi-
ronments. Yet, it lacks the ability to bridge local networks.

Therefore, in this work, we propose a secure and efficient
Layer 3 tunneling scheme for MACsec. We design and imple-
ment two approaches, that are equally secure and consider-
ably outperform comparable state-of-the-art techniques.

KEYWORDS
Industry 4.0, Industrial IoT, Industrial Automation, Indus-
trial Communication, Networks, Security, Middlebox Security

1 INTRODUCTION
Industrial networks currently find themselves in a phase of
change. New use cases are being implemented along trends
that are variably subsumed under the terms Industry 4.0 or
the Industrial Internet of Things. At the same time compo-
nents, like industrial machines, have very long lifetimes and
high investment costs. These legacy devices will stay and
must be integrated into networks of the future. Many hetero-
geneous devices and cloud-based software components from
different vendors will be present at the same time. The con-
cept of perimeter security applied to formerly isolated factory
networks will not offer sufficient protection any longer. Hence,
factory networks have to be viewed as zero trust networks.

As updating or replacing machinery is often not possible,
these legacy devices must be integrated. Techniques like
network isolation and encryption will be used to reduce their
attack surface and to protect the data traffic that must flow
over insecure networks. Legacy industrial machines will be
protected via so-called industrial encryption gateways, like
[3]. These physical devices are put in front of an industrial

machine and transparently encrypt the traffic data before
admitting the now protected data to the network. Associated
gateways can then decrypt that traffic and hence realize a
secure connection over an insecure network.

A promising protocol for that purpose is MACsec [6]. It
is an efficient and standardized Layer 2 encryption protocol
available in the Linux kernel. Hence, it can readily be applied
to the resource-restricted embedded platforms prevalent in
industrial ecosystems. Previous works identified MACsec as
the best choice for encryption gateways [11] and already
extended it for the industrial environment [10]. Yet, one
drawback still remains. MACSec works purely on Layer 2.
While this allows to use MACsec to protect a wide variety
of established industrial protocols, it also restricts its use
to one Local Area Network (LAN). Therefore, we want to
extend MACsec with the ability to tunnel or bridge its traffic
between multiple local networks.

The state-of-the-art approach of tunneling over public
networks is to use a Virtual Private Network (VPN) protocol.
Yet, it has been shown, that this reduces the performance
considerably in encryption gateway use cases [11]. Fully re-
encrypting MACsec frames is also not actually necessary, as
the payload is already encrypted by MACsec. This results
in additional overheads without delivering any additional
benefit.

Following from that, the straightforward and naive ap-
proach would be to use a non-encrypting tunneling protocol
like L2TP [12], VXLAN [13] or GRE [8] and only rely on the
security properties of MACsec. This, however, has two main
drawbacks: a lack of confidentiality of the frame headers and
missing authentication at the tunnel end points. Both will
be discussed in detail below. We want to extend the naive
approach by providing the missing properties and by focusing
on the headers.

In this work, we want to propose two different strategies
on how to protect these headers such that a MACsec frame
can be securely tunneled over insecure networks without
touching the already encrypted payload within that frame.
The rationale hereby is, that by only working on the com-
paratively small headers, big increases in efficiency can be
gained, compared to the state-of-the-art, that just encrypts

Lackorzynski and Rehms, et al.

Figure 1: MACsec applied to unprotected MACsec frame.

the whole frame as is. The two approaches investigated are
equally secure and differ in terms of complexity. Both will
heavily focus on improving performance as much as possible.

The remainder of this work is structured as follows. Sec. 2
first introduces the header structure of MACsec in detail,
including how sensitive the individual fields inside the header
are towards attackers. Secondly, as efficiency is a key factor
in our investigations, it will discuss the topic of fast packet
processing as a means to optimize the performance of our
approaches. Sec. 3 will discuss related work. Sec. 4 presents
the two approaches and Sec. 5 details our implementation.
Results are discussed in Sec. 6. Sec. 7 gives concluding re-
marks.

2 BACKGROUND
MACsec protects Layer 2 Ethernet frames by encrypting the
frames’ payload and by integrity protecting the whole frame,
as shown in Fig. 1. It adds at maximum 32 byte of additional
header that get integrity protected as well. Destination and
source addresses of the original frame are kept. The original
EtherType is moved to the payload (data segment) and the
MACsec exclusive EtherType is set instead. MACsec is an
ideal protocol for encryption gateways that transparently
protect the data traffic of legacy industrial machines as it
encapsulates whole Ethernet frames independently of any
higher layer protocol.

As the figure shows, the payload of the MACsec frame
is already encrypted. Yet, the MACsec header fields remain
readable. To be able to tunnel these frames in a smarter way
compared to the initial approaches discussed above, we will
now investigate in detail, which of the header fields is security
sensitive and needs protection.

MACsec defines communication relationships as Secure
Channels (SC). These are configured unidirectional one-to-
many, meaning that a sender can send data to multiple
receivers. A corresponding SC has to be configured on all
receivers and when two MACsec entities want to communicate
to each other, two SCs must be configured where both are
respectively sender and receiver. A SC is identified by the
64 bit Secure Channel Identifier (SCI). It consists of the 48
bit MAC address of the MACsec device plus a 16 bit port
number. The configuration of ports allows to have multiple
MACsec instances on the same device. The SCI can also be

omitted if sender and receiver are directly connected. This
reduces the overall MACsec header size, but it also is a special
case that requires direct cabling between MACsec devices.
This case is ignored here.

The 32 bit Packet Number (PN) is used to establish an
order of sent frames and also acts as the counter for the
AES-GCM cipher that is used for encryption. Galois Counter
Mode (GCM) dictates that for security reasons a key may
never be used with the same counter (PN) twice. Therefore,
when the PN overflows, the old encryption key is discarded
and a new key is selected. These keys are hence ephemeral.

MACsec allows for a certain amount of asynchrony within a
defined replay window. To guarantee this window even when
the PN overflows, the concept of Security Associations (SAs)
is introduced. The actual encryption keys are not bound to
an SC but to a security association. An SA is defined by the
SCI plus a 2 bit Association Number (AN). When the PN
reaches its maximum value, the next AN is chosen, resulting
in a reset of the PN to 0 and a different encryption key being
selected. To allow for smooth rollover two ANs can be active
at the same time and a receiver can choose which key to use
for decryption based on the AN number found in the header.
Keys can either be configured by hand for a specific SA or
be provided by the MACsec Key Agreement protocol (MKA)
that manages MACsec stations automatically [1].

The 6 bit Short Length (SL) field is set to zero if the
payload is larger than 48 bytes and represents the length of
the payload otherwise.

The 6 bit Tag Control Information (TCI) field is comprised
of different single bit flags. The Version (V) bit is always (as
per the standard) set to 0, while the End Station (ES) bit
indicates that the sending MACsec station is also the source
of the frame. In effect a set ES flag means that the frames’
Ethernet source address is identical to the first 48 bits of the
SCI. The SCI present (SC) flag shows presence of the SCI.
As described above, there might be cases, when the SCI can
be omitted. The Single Copy Broadcast (SCB) flag is used in
fiber tree topologies to toggle single copy broadcasts without
the explicit use of the SCI. This scenario is also not relevant
to this work. The Encrypted payload (E) flag indicates that
the payload is additionally encrypted instead of only being
integrity-protected. In this work, we always assume that this
is the case. The Changed text (C) flag indicates whether the
data segment is simple payload or management information
addressed to the MKA client running on the station. Two
bits (0) exist in the header that are as of yet undefined in the
MACsec standard and therefore are always set to 0. They are
reserved for future use. A 16 bit Integrity Check Value (ICV)
is calculated over the whole frame and is appended at the
end. This value provides integrity protection for all headers
and the payload of the frame, irrespective if they originate
from the original frame or additions by MACsec. This value is
always calculated and, in contrast to the payload encryption,
not optional.

After this short introduction of the MACsec header fields,
we will now look at them individually on how sensitive to-
wards security they are. Specifically, what information could

Secure and Efficient Tunneling of MACsec for Modern Industrial Use Cases

an attacker derive when observing the headers when they are
tunneled in an unprotected fashion, as described with our
"naive" tunneling approach discussed above.

First, an attacker would see the Ethernet source and des-
tination addresses of the tunneled frame. These are the ad-
dresses of the original machines that needed protection in
the first place. This would allow the attacker to attribute
communication partners and relationships as well as data
flows between them. He would also learn about the traffic
patterns of the communication, including volume and fre-
quency. Additionally, Ethernet addresses (MAC addresses)
typically include information about the vendor of the network
card. This might give clues to identify the specific industrial
machine or type of machine that is communicating.

An attacker would also learn the EtherType of the tunneled
frame (MACsec) and hence would learn how to interpret the
following byte fields (that may otherwise look random).

The SCI allows to identify the MACsec devices (the en-
cryption gateways). This would give insights on the structure
of the internal network by showing which industrial machines
are grouped behind the same gateway. Recording observed
SAs and PNs would reveal traffic patterns of the communica-
tion. These values on themselves would also make it possible
to discern individual flows.

In contrast, the SL field does not offer information to
the attacker that he cannot learn anyhow by just observing
the length of the frames. The TCI field also does not leak
any new information, as the attacker can infer flags anyway
based on what is observable. The only interesting flag is the
C flag, that determines whether ordinary payload or MKA
traffic is transmitted. As MKA traffic will be handled dif-
ferently in our design, it can be ignored here. The payload,
including the original EtherType, is encrypted anyhow, so
the attacker cannot learn anything, except the length. The
ICV is a cryptographically strong Message Authentication
Code (MAC), that is for the attacker not discernible from
mere random bits. He especially is not able to use this value
to create bogus frames that would pass the integrity check or
derive information about the encryption key from it. Fig. 3a
summarizes the above and depicts which header fields of a
MACsec frame we consider sensitive.

MACsec-tunneling will be facilitated by a single device
that will sit at the edge of the local network. Hence, it must
handle the traffic flows of all encryption gateways in that
domain in parallel. And as network performance demands
in general will only grow in future industrial networks, we
also aim to be as efficient as possible. Therefore, we will now
focus on the topic of fast packet processing.

In contemporary general purpose systems, the performance
is limited by the architecture of the network software stack
and not by the data rates of the physical network interfaces
[4]. Additionally, most transmission overheads typically stem
from per-packet processing steps. This means that the size
of a packet or frame has only a secondary influence on the
processing times. It additionally means, that small packets,

that are prevalent in industrial scenarios, can also profit
greatly from optimizations from that direction.

The networking performance in general can be enhanced by
various software- and hardware-based approaches. Hardware-
based approaches include network cards that are equipped
with special Field-Programmable Gate Arrays (FPGAs),
so-called SmartNICs (Smart Network Interface Controller).
These are special integrated circuits that can be directly
programmed by the user. These programs run directly on
hardware, increasing their performance considerably, com-
pared to implementations running on-top of the operating
system. Yet, these approaches depend on specific hardware
extensions as well as interfacing software that integrates these
features with the general purpose operating system that is
still needed. Additionally, these techniques are, as of yet, only
found in cloud computing environments and not in the sphere
of industrial computing.

Therefore, we focussed on a software-based approach in-
stead. There are different software frameworks available that
implement various techniques that optimize networking per-
formance, like for example reducing kernel interrupts and
system calls, zero-copy and memory mapping or batch pro-
cessing and parallelism.

The most prominent frameworks for this purpose are
netmap, PF_RING_ZC and DPDK. According to [7], DPDK
shows the best performance of the three, while PF_Ring is
a close second. It additionally provides better access to hard-
ware features and offloading. Therefore, we based our design
on DPDK.

The Data Plane Development Kit (DPDK)1 provides an
extensive software library for high-speed packet processing
and tightly integrates with other functions that are useful in
this context, like hash table management. And while DPDK
is mainly supported by and traditionally focussed on NICs
from Intel, support for network controllers from other vendors
is steadily increasing2. After loading a DPDK driver into
the system and binding it to a specific NIC, the network
controller is then invisible to the kernel and hence outside
the standard Linux kernel stack. This makes it easily possible
to dedicate the physical device to one use case and not suffer
from overheads introduced by secondary services provided
by the general purpose operating system.

3 RELATED WORK
The use case of bridging or tunneling networks, so that par-
ticipants can connect to each other as if they were in the
same network, is well researched. The L2 Tunneling Protocol
(L2TPv3) is a standard tool for that purpose, that allows
to transmit Layer 2 Ethernet frames over Layer 3 IP-based
networks [12]. It encapsulates the Ethernet frames into UDP
packets, but does not protect its payload in any way. No en-
cryption or integrity protection takes place. Therefore, L2TP
should only be used in public networks (the Internet) to-
gether with the IPsec protocol. IPsec adds the necessary data

1https://www.dpdk.org/
2https://core.dpdk.org/supported/

Lackorzynski and Rehms, et al.

encryption and integrity protection. This approach is canoni-
cally called L2TP/IPsec [15]. Other standard VPN(Virtual
Private Network) protocols, that could be used likewise, are
OpenVPN3 and Wireguard [5].

In contrast to our intended use case, these approaches only
offer point-to-point connectivity. Multiple end points are not
supported. Virtual Extensible LAN (VXLAN) on the other
hand offers such point-to-multipoint connectivity [13]. It was
specifically designed for this purpose, but also does not offer
any protection of the tunneled traffic data.

The bridging of industrial networks will only become a
more important subject in the future, for the reasons intro-
duced above. Many concrete proposals have been published.
Yet, even newer approaches lack security considerations (like
[9]) and hence cannot be applied to our use case, where
we assume zero trust networks. Other works consider secu-
rity but employ new technologies and disregard the need for
backwards compatibility for legacy components [14].

MACsec on the other hand was previously enhanced and
optimized for the industrial environment. What it is missing
is specifically the ability to bridge networks. Just adding a
state-of-the-art VPN solution for that purpose, would incur
unnecessary overheads, as already mentioned. Since no pre-
vious approach addresses all requirements, this work wants
to add the feature of network bridging to MACsec to make
MACsec a complete protocol that can be generally applied
to our setting.

4 DESIGN
To successfully implement tunneling of already encrypted
MACsec frames, we designed two approaches. One is a more
simple one that only encrypts the headers, while the second
one is more complex, but optimized towards performance as
much as possible. In the following, we will first describe our
scenario in more detail and discuss requirements as well as
some further necessary concepts. Based on that, we will first
discuss the more complex identifier-based approach, which is
then followed by the encryption-based approach.

4.1 Scenario and Requirements
Fig. 2 shows the scenario, we based our designs on. We as-
sume an untrusted Layer 3 IP network, which multiple Local
Area Networks (LANs) are attached to. Tunnel gateways act
as interfaces in between. The LANs are populated by devices
that speak MACsec. These devices are, just as introduced
above, actually encryption gateways protecting legacy indus-
trial machinery. Yet, for the sake of clarity, we abstract from
that and just assume, they are devices that emit MACsec
frames.

The basic idea of tunneling is to enable the local devices
(in blue) to transparently communicate among each other,
irrespective in which concrete local network both partners
reside. A remote MACsec device should appear as if it was
part of the own local network.

3https://openvpn.net/

Figure 2: Local networks bridged by tunnel gateways.

The tunnel gateways do not act as MACsec communica-
tion partners and only facilitate the tunneling. Only one
tunnel gateway can be configured per LAN, as loops would
be possible otherwise. We assume the tunnel gateways to be
preconfigured, so that they have knowledge of each other and
can transmit data in between.

Tunnel gateways maintain two distinct channels. The first
is the tunnel over which actual MACsec frames are transmit-
ted (in red), while the second is a management channel (in
green) that is used for the exchange of information that is
necessary to synchronize the gateways. Since the management
channel is not supposed to transport performance-critical
traffic, we just assume it is protected using a standard VPN
protocol, for example Wireguard. Although MACsec can in
principle be configured to not encrypt, we assume encryption
is always enabled.

Based on this scenario, our designs are required to imple-
ment certain aspects. As discussed above, the security-critical
parts of a MACsec frame are its headers. Hence, they must be
protected, so that an attacker eavesdropping on the untrusted
network cannot gain any information. Second, our designs
must authenticate the tunnel traffic. This means that it be-
comes possible for a tunnel gateway to discern between real
and fake traffic including replays. Without that requirement,
an attacker could run a Denial of Service (DoS) attack on the
MACsec devices inside the local networks, as the traffic would
only be checked for integrity by them. We assume the MAC-
sec devices to be of the type of typical industrial embedded
platforms. This means, they are somewhat resource-restricted
or rather on the lower end of the performance scale and hence
easily overwhelmed by even moderate DoS attacks. Further-
more, we require our designs to allow for point-to-multipoint
tunneling, meaning that it is possible for MACsec devices
to communicate to remote devices in more than one other
LAN, just as depicted in the figure. As a last requirement,
we demand the tunnel connections that bridge the MACsec
frames to be optimized for performance (in contrast to the
management channel).

Secure and Efficient Tunneling of MACsec for Modern Industrial Use Cases

As already mentioned, we assume the attacker to sit on the
network over which the MACsec frames are being tunneled.
The attacker can read, modify or drop packets. We do not
assume an attacker can drop all packets because this would
result in completely different countermeasures and exceed
the abilities of networking protocols in general. Yet, we of
course assume that some packet loss is possible, as this must
not necessarily stem from a deliberate attack but from some
random temporary network failure. We also assume the at-
tacker to be able to replay and forge bogus messages. Yet, in
our model, the attacker cannot break strong cryptographic
primitives.

Finally, we will define the concept of flows more detailed, as
they are necessary to understand the remainder of our designs.
The necessity to define flows in the first place stems from
the fact that the MACsec frames being relayed between the
tunnel gateways are not addressed from and to the MACsec
devices but the actual end nodes (industrial machines) that
they protect. The MACsec devices as well as the tunnel
gateways do not know the destination and hence the target
LAN of any frame that it sees. When MACsec is rolled out
only inside a single LAN, this is not a problem, because all
stations are part of the same shared medium or broadcast
domain. A MACsec station would see every frame and check
the SCI, whether some action was necessary. But, since we
do not want to stupidly broadcast all frames between LANs,
we need to define some notion of data flows, so that once
a frame is identified to belong to a certain flow, it can be
relayed directly, analogous to how switches learn outgoing
ports to reduce network load.

We define a flow as unidirectional traffic from one MACsec
device to another. This is in contrast to MACsec itself, where
a SC is defined between one sender and multiple receivers.
We identify a flow by the SCI and SA fields in the MACsec
header together with the destination MAC address.

4.2 Identifier-based Approach
Both approaches build on the “naive” approach discussed
in the introduction, where a simple and insecure tunneling
protocol was used. Hence, in the following, we will assume an
underlying protocol, that actually facilitates the tunneling,
meaning a Layer 2 Ethernet frame is repackaged into Layer
3 IP packets and sent to the remote tunneling gateway. All
modifications discussed below assume, that the resulting
modified frame is transmitted over the untrusted network
using some unprotected tunneling protocol, like L2TP or
VXLAN.

The problem with the naive approach is, that security
sensitive MACsec header information is sent in plain text.
The identifier-based approach wants to solve this by replacing
these parts of the headers by a random identifier. On first
sight, the identifier would not reveal any information to a
potential attacker and at the same time would not require
any costly cryptographic operations. Simple table lookups
suffice at the uplink (sending gateway) and downlink (receiv-
ing gateway) and the necessary mappings between identifier

(a)

(b)

(c)

Figure 3: Standard and proposed MACsec frame structures.
Field lengths are not to scale.

and header contents can be exchanged via the management
channel.

We classify frames into flows according to the concept intro-
duced above. This results in most fields being constant inside
of a flow class. Subsequently, every flow can be represented
by one identifier, effectively masking and compressing these
fields. The PN is a field that is security-critical and which
changes on each frame, but since it is predictable, there is
no need to send it in each frame. The TCI and SL fields may
change, but as discussed above, they are not critical towards
security and hence can just be transmitted without additional
measures. Fig. 3a gives an overview on the MACsec header
fields that are deemed critical.

A tunnel gateway needs to register a new flow when it
occurs and share that information with the remote gateways.
Then each time a frame of a respective flow needs to be
tunneled, the sensitive header fields are removed and the
identifier is added instead. This can be done very fast and
efficient and hence results in only a small overhead for the
tunneling operation. All valuable information is either re-
moved or masked (the payload is already encrypted by the
MACsec devices).

Yet, the result of these first considerations is still insecure.
The core problem is, that no strong form of authentication
is included. All packets of the same flow share the same
identifier, making it easy for an attacker to forge valid traffic
as it is trivial to predict a valid identifier after having observed
one, opening the possibility of DoS attacks. This also makes
it easy for an attacker to link packets to flows, which can
be considered a confidentiality violation. Additionally, this
approach does not assume packets getting lost or blocked in

Lackorzynski and Rehms, et al.

transit. The receiving gateway can not know if a packet is
missing and therefore might reconstruct the wrong PN.

Hence, we improve on this idea by using rotating identifiers
and by adding a receive window. Now, flows are still bound
to a base identifier bidf, that is also sent to the remote gate-
ways via the management channel. Yet, this identifier is not
used directly to replace the header fields. Instead, it is used
to derive a rotating identifier ridf using a secure derivation
function F (e. g. a hashing function) that takes the respective
PN as input: ridfP N = F

(
bidf, P N

)
. The resulting ridf is

different for each tunneled frame and looks random for an
attacker. Additionally, all ridfs can be calculated indepen-
dently of each other as they are only based on the bidf and
the predictable PN. F should be a cryptographically strong
function, meaning attackers should not be able to recover the
original bidf. Further, it should be collision resistant, meaning
it should be very improbable to arrive at the same ridf using
different inputs. Fig. 3b shows the resulting frame.

Replacing sensitive header fields with rotating identifiers
makes the protocol more complicated. The flows are managed
in tables (Tab. 1).

The uplink procedure (putting an incoming frame into the
tunnel) is the following: the flow, an incoming frame belongs
to, is checked based on the SCI, SA and destination Ethernet
address and if a new flow is identified, a bidf is generated.
This base identifier is a simple random number and is sent via
the management channel together with the MACsec header
fields, it is supposed to replace, to all remote gateways. This
includes the PN. Then an appropriate ridf is calculated and
then used to replace the respective MACsec header fields in
the frame. The new frame is then sent to the remote gateway.

The downlink procedure includes additional steps. First,
when a tunnel gateway receives information about a new
flow, it adds that flow to the so-called Flow Table. This table
is a key-value list, where the key is the bidf and the value
consists of other necessary state information, like header
values etc. Additionally, the gateway will use the received
PN to precalculate a window of next expected possible ridf,
based on the received bidf and PN. These are added to the
so-called Identifier Table, where the key is the ridf and the
value is further information, like the PN. One of those values
is a pointer back to the respective Flow Table entry, the ridf
belongs to.

When a packet arrives from the tunnel, the ridf found
inside the frame is looked up in the Identifier Table. If the
identifier is found, the PN entry and the pointer into the Flow
Table is used to reconstruct the original frame. Additionally,
the old Identifier Table entry is removed and a new one is
calculated and added. The next expected identifier is updated
as well.

We took the approach of allowing for multiple possible next
ridfs to account for packet loss inside a defined sliding window.
The Identifier Table is managed so that it always holds the
appropriate ridfs corresponding to the sliding window.

As described above, tunnel gateways are initially oblivious
to behind which remote tunnel gateway the destination of a

new flow is. We account for that with a two step process. First,
incoming frames from new flows are broadcasted to all remote
gateways. When the destination MACsec device answers,
that triggers the flow discovery process on the remote tunnel
gateway. As a result the first gateway learns the destination
of the new flow. It registers this information in its Flow Table
and sends future frames from that flow only in this direction.

MKA automatically establishes one-to-one SCs with ev-
ery participant. Consequently, a broadcast message is then
sent multiple times over each SC. This behavior results in a
problem for our flow-based design. Independently of whether
a frame is sent to a specific destination address or to the
Ethernet broadcast address, the same PN is increased at
the sender’s SA. Yet, our tunneling gateways would see dif-
ferent destination addresses (unicast or broadcast address)
and would hence attribute this frame to different flows. The
increase of the PNs would only be registered at one of those
flows. As a result a wrong PNs would be included in subse-
quent reconstructed frame.

To confront this issue, we need to bind both flows together.
This is done by registering both flows separately on the tunnel
gateways, but by updating the PN as well as the sliding
window, when a new frame arrives also on the respective
other flow to keep both synchronous.

Finally, we will discuss the fact, that the ridfs can be
guessed by an attacker. If that occurs, a resulting properly
reconstructed false frame will still be dropped by the MACsec
device in the local network, because of MACsec’s integrity
check. This means that the only possible type of attack on the
local device, is a DoS attack. The success of such an attack
depends on the possible rate with witch an attacker could
guess correctly. With a sufficient length of the ridf, such
an attack becomes very inefficient and hence improbable.
In general terms, using random identifiers like our ridfs is
comparable to using cookies for DoS attack mitigation, like
for example Wireguard does. This is an established approach
and considered a good defence against this type of attack.

4.3 Encryption-based Approach
The previous approach tried to improve performance by avoid-
ing cryptographic operations like encryption and integrity
checks and replacing them with a message-independent cal-
culable single derivation function. Yet, it requires additional
steps for flow attribution and binding, which increases com-
plexity of the protocol.

The approach discussed in this section on the other hand
will be much simpler by relying on encryption of the MAC-
sec headers. We still assume a secure management channel
between tunnel gateways. This allows to use symmetric en-
cryption and we assume appropriate key material has been
exchanged when the tunnel gateways were set up.

The sensitive header fields that need to be encrypted are
source and destination address, PN, SCI and AN. These
amount to 194 bits. As we chose the block cipher AES for
encryption and as it has a block size of 128 bits, this results
in two cipher blocks of overall 256 bits length. This is more

Secure and Efficient Tunneling of MACsec for Modern Industrial Use Cases

Table 1: Tables necessary for management of Flows.

Flow Table Entry Uplink
Key SCI | SA
Values - Unicast bidf

- Broadcast bidf
- Remote Gateways
- Timeout
(a) Uplink.

Flow Table Entry Downlink
Key bidf
Values - Header Data

- Window
- Next expected PN
- Bound

(b) Downlink.

Identifier Table Entry
Key ridf
Values - PN

- Seen (Replay detection)
- Pointer to Flow

Table Entry
(c) Downlink.

space than necessary and in fact allows to bluntly encrypt the
first 256 bits of the frame. This includes all MACsec headers
and 32 bits of the payload segment, as is depicted in Fig. 3c.

We encrypt the second block first and then use its plaintext
as well as the resulting ciphertext as additional input for
the encryption of the first block. This is corresponds to
the PCBC (Propagating Cipher Block Chaining) mode of
operation. We chose this mode in order to provide integrity
and confidentiality without additional initialization vectors
or integrity check values. This reduces the frame size and
saves expensive cryptographic operations. This is possible
due to the unique properties of our approach.

As described, the second block includes 32 bits of payload
that is already encrypted by MACSec. These 32 bits are
always unpredictable for the attacker. MACsec ensures this
by using a different initialization vector (the PN) for each
frame. These 32 bits are enough to make our second block
unpredictable as well. This is due to the diffusion property of
AES (which we use for encrypting our blocks). It means, that
a single bit change in the plaintext results in a completely
different ciphertext.

Consequently, the ciphertext of the first block also becomes
unpredictible through the mode of operation though it could
contain identical plaintexts across multiple MACsec messages,
as we use the encrypted second block to construct it. As
a result, both blocks of ciphertext are different for every
frame, independently of the repeating header fields. The
only requirement hereby is, that the symmetric encryption
keys have to change, when any of the tunneled SAs changes,
because then the ciphertext of the MACsec payload might
repeat.

We assume the gateways to maintain Flow Tables similar
to the identifier-based approach above. Hence, the tunnel
gateway can send the frame to the remote gateway, which
then decrypts it with previously exchanged keys. The remote
gateway looks up the header information in the Flow Table
and if the entry matches to the decryption result, the frame
is put onto the internal network. Otherwise it is discarded.

Finally, we again do not explicitly add integrity protection
to our encrypted headers. Instead, the lookup in the Flow
Table facilitates that, as a single bit flip during transit would
result in a completely different decrypted plaintext. The
attacker is not able to generate ciphertext which decrypts to

Figure 4: Setup used for implementation and evaluation.

valid plaintext (i.e. resulting in a successful lookup), without
knowing the secret key.

5 IMPLEMENTATION
The setup used to test and evaluate our implementation is
shown in Fig. 4. All involved NICs are Gbit Ethernet devices.
The tunnel gateways were implemented using Netgate MBT-
4220 appliances. They are equipped with an Intel Atom E3845
CPU with 1.91 GHz, 2 GB RAM and two on-board Intel I210
Gigabit NICs. The management channel was realised by USB-
Ethernet adapters attached to the tunnel gateways. These
interfaces are rather slow due to the USB interface, but as
they only processed management traffic, the tunneling traffic,
we actually wanted to optimize, was not affected. The tunnel
traffic was exclusively transmitted through the on-board
network interfaces. Both gateways ran CentOS Linux 8 with a
kernel version of 4.18. The MACsec devices were implemented
using ODROID-H2 minicomputers from Hardkernel. These
come with a quad-core Intel Celeron J4105 with 1.50 GHz
and ran Ubuntu 20.04.1 LTS with a Linux kernel in version
5.8. The performance-critical network interfaces in pink were
bound to DPDK, in effect hiding them from the Linux kernel.
No other system service had access to these interfaces and
could interfere with the measurements. We used the igb_uio
kernel module driver to manage the NICs.

We required a TCP stack for the Management channel for
reliable transmission, but existing implementations on top
of DPDK did not prove to be flexible enough. Instead, we
decided to use DPDK for the tunnel connection only and add
an additional interface through a USB-Ethernet adapter for
the management channel. It was not bound to DPDK and
therefore allowed to be managed by the Linux kernel. We
used Wireguard as security layer.

We used DPDK in version 19.11.2, OpenSSL in version
1.1.1g and libsodium in version 1.0.18. Our DPDK application

Lackorzynski and Rehms, et al.

was compiled using GCC in version 8.3.1 and we always used
the compiler flags, recommended by the DPDK manual. Note
that our setup is a reduced version of the scenario introduced
above. Yet, we of course implemented the steps of the protocol
that are concerned with remote gateway management and
selection.

To implement our tunneling approaches, we created a
MACsec parsing library using DPDK that allowed for ex-
tracting information from incoming frames and to construct
outgoing ones. To actually transport the frames, we also
implemented a prototypical tunneling protocol in DPDK
that mirrors the functionality of e. g. VXLAN. The Flow and
Identifier Tables described in Tab. 1 were implemented using
DPDK hash tables. While MACsec frames that transported
payload were transmitted using the tunnel connection, MKA
(management) traffic was transmitted over the management
channel. MKA sends synchronization frames only every sec-
ond and hence does not strain the channel much. Additionally,
MKA traffic is generally not performance-critical.

The derivation function F is the central cryptographic
primitive of the identifier-based approach. Hence, it had
to be chosen with special care. The main requirement was
that it must be keyed, meaning an additional value can be
inserted to make it nondeterministic. Function classes that
could fulfill this requirement, are encryption and hashing
functions. We chose SipHash [2]. It describes a family of
hashing functions that is optimized for performance and
short inputs and has been designed for use in hash tables and
message authentication codes. This corresponds perfectly to
our use case and can be considered state-of-the-art. We use
SipHash-2-4 as these parameters provide maximum security
according to the authors. For input, we use a base identifier
(bidf) of 128 bit length, with the 32 bit PN as hash key. The
output is our rotating identifier ridf with a length of 64 bit.

The encryption-based approach was simpler to implement
compared to the identifier-based one. For flow discovery, flow
management and lookup of remote gateways, we used the
same DPDK hash table implementation from above. The
header encryption was implemented using AES provided by
the OpenSSL library. The decryption step at the remote
tunnel gateway was implemented equally straight forward. It
includes a lookup to verify that the frame belongs to a valid
flow.

During all experimental runs, MACsec was used in encryp-
tion mode and it was made sure that, although handling was
implemented into the protocol, no MKA traffic happened
during the experiments.

6 EVALUATION
This section will first discuss our proposed protocol designs
and then present results of performance measurements done
on our experimental implementation.

6.1 Protocol Designs
The main goal of the proposed approaches was to ensure the
confidentiality of header information when MACsec frames

are being tunneled over insecure networks. Both approaches
accomplish that. The encryption-based approach by sim-
ply encrypting the whole header and the identifier-based
approach by replacing the sensitive fields with a random
identifier.

Timing information from traffic patterns are still observ-
able. Yet, this is out of scope as it requires different coun-
termeasures like buffering and sending in regular intervals.
These measures would also destroy the performance.

We did not consider the possibility of attacks from the in-
side, meaning an attacker that sits in one of the local networks.
He could for example inject random MACsec frames that
would each time create a flow entry on the tunnel gateway.
This would eventually lead to memory exhaustion, because
the gateways in our scenario do not know which flows are
benign. Yet, there are countermeasures available, that could
be added to our protocols. For example, if MKA was avail-
able, gateways could analyze the MKA traffic and derive the
benign flows. Another possible approach could be quotas for
SCIs or source Ethernet addresses or shorter timeout times,
when no remote gateway signals a successful answer to that
frame.

Performance-wise, the approaches mainly differ in the
cryptographic operations used. For each transport of a frame
within the identifier-based approach, 3 times the crypto-
graphic hash function has to be called. Once on the uplink
to create the ridf and two times on the downlink to adjust
the sliding window by calculating new expected ridfs. The
encryption-based approach on the other hand needs to en-
crypt and decrypt two AES blocks. The first approach indeed
works with the fewest amount of cryptographic operations
possible and through the header replacement it even reduces
the effective size of the packets, allowing for bigger payloads.
Therefore, on paper, there should be some difference between
the performance results.

The other operation which might impact performance,
is the Flow Table lookup. Both approaches used DPDK
hash tables for that purpose. A lookup takes constant time,
independently of the table’s size, assuming enough memory
is available for them. In our experiments this was always the
case, no swapping happened.

In any case, some kind of table lookup is not avoidable
anyhow if the scenario considers more than two gateways, as
the destination gateway has to be looked up, and considering
that broadcasting to all remote gateways is not an option.
Furthermore, the lookups realize authorization of incoming
traffic on the downlink and provide DoS protection, as we
described above.

6.2 Performance
All of the measurements described in the following were
conducted on the setup depicted in Fig. 4. The measurements
were taken after initializing the connection with a simple ping.
This includes the establishment of flows at the gateways as
well as necessary ARP resolution at the MACsec devices.

Secure and Efficient Tunneling of MACsec for Modern Industrial Use Cases

Table 2: Performance measurements including standard devia-
tion (mdev) of regular experimental setup.

Scenario RTT ± mdev Throughput ± mdev
1 VXLAN 3 ± 0.13 ms 837 ± 9 Mbit/s
2 VXLAN +

Wireguard
4.85 ± 0.55 ms 245 ± 16 Mbit/s

3 Identifier-
based

1.3 ± 0.07 ms 842 ± 3 Mbit/s

4 Encryption-
based

1.3 ± 0.05 ms 837 ± 3 Mbit/s

We measured different scenarios. First, we bridged MAC-
sec frames using standard VXLAN. No protection of MACsec
headers occurs, as VXLAN just repackages frames and trans-
mits them using UDP. This state-of-the-art approach should
incur the least amount of overhead and the measurement
results of this scenario shall serve as an indicator of what
performance is actually achievable. In the second scenario,
MACsec frames were tunneled using a standard VPN proto-
col. This is the state-of-the-art approach to solve the problem
this work is based on. We implemented the tunnel in this
scenario using Wireguard, because it is considered highly
efficient. Finally, we also measured both the Identifier-based
as well as the Encryption-based approaches in scenarios three
and four.

For each scenario, we measured the latency as well as the
throughput of the tunnel between the two MACsec devices.
Results are listed in Tab. 2. The latency was measured as
the mean of 65,535 individual ping round trip times (RTT)
with a frame size of 64 bytes. The throughput was measured
using the tool iperf3 (using an interval of 10 seconds).

The results of the first two scenarios show expected be-
havior. The tunneling gateways are in principle capable of
fully saturating the line speed of the 1 Gbit/s line (scenario
one). As the whole data stream had to be additionally en-
crypted, scenario two showed a huge decrease in performance.
While latency was not so much affected, the throughput was
reduced to one third.

The results of our approaches showed superior behavior
compared to the first two. Round trip times were reduced by
half, even compared to the scenario without additional protec-
tion measures. Both approaches also managed to saturate the
line. Yet, differences between our approaches were minimal
and performance-wise we could not decide on a winner.

General learnings from the results are, that latency can
be greatly improved by circumventing the Linux network
stack and that cryptographic operations have big influence
on the performance if applied to whole frames. Offloading
functionality to DPDK improved the (latency) performance
considerably. The results show, that our approaches greatly
reduce the overheads when tunneling MACsec frames com-
pared to the state-of-the-art.

Yet by how much exactly, we could not determine, as the
bottleneck in our measurement setup was not, as expected,
the CPUs of the tunnel gateways but rather the Gigabit
Ethernet interfaces. Therefore, we measured all scenarios a
second time using different hardware for the tunnel gateways.
This time we used two server platforms that were equipped
with 16-Core Intel Xeon CPUs at 3 GHz, 64 GB RAM and
four 10 Gigabit Ethernet NICs on-board. Fig. 5 shows the
results. Experiments were conducted in the same fashion as
before. We additionally measured the latency for different
frame sizes, to see how that parameter might affect the results.
The jump at high sizes happens when the input frame size
exceeds the maximum payload size, resulting in a packet
split.

Scenarios one and two show mostly expected behavior. Ad-
ditional encryption incurs immense overheads. The through-
put gets halved, while the latency shows erratic behavior
for scenario two. This probably stems from the fact that on
top of the Linux networking stack two nested protocols are
running. A single frame gets queued and dequeued many
times during transit. Frame size clearly has no influence on
the latency results and the unpredictable behavior may stem
from cache misalignments, yet we cannot be certain.

Our approaches in scenario three and four on the other
hand show superior performance. Both compare vastly better
than the state-of-the-art approach of scenario two and even
better by some margin compared to the insecure scenario
one. And while both approaches show same latency behavior,
the identifier-based approach achieves 10% more through-
put compared to the encryption-based approach. This stems
from the different header lengths of the approaches. The
identifier-based approach effectively shortened the header
by replacing the fields with the shorter rotating identifier.
Whether the performance margin is enough to justify the
increased complexity of the approach is probably dependent
on the ultimate use case and cannot be decided here.

7 CONCLUSION
This work investigated two approaches how MACsec frames
can be tunneled in a secure and efficient way. One approach
was optimized for performance as much as possible, while the
second could be implemented much simpler. Results showed
both approaches to be significantly better compared to the
state-of-the-art.

Our work offers many pointers for future research. A non
DPDK version running inside the Linux kernel might yield
acceptable performance and at the same time increase the
applicability of our approach and allow for better comparison.
MKA traffic could also be handled differently. We piped it
over the management channel as it was the easiest way,
yet it could also be transferred over the tunneling channel.
Further integration could also lead to detection of attackers
inside the local network. This scenario is excluded so far.
Furthermore, certain hardware acceleration features could be
researched to increase performance even more. This includes
leveraging CPU parallelism, where DPDK provides much

Lackorzynski and Rehms, et al.

(a) Round trip times with standard deviation. (b) Throughput with standard deviation.

Figure 5: Performance measurements of additional experimental setup.

potential. We used only one core so far. Finally, even more
sophisticated acceleration technologies could be investigated,
like for example FPGA-powered SmartNICs.

ACKNOWLEDGMENTS
This work was co-funded by SAB (Development Bank of
Saxony) under frameworks from ERDF (European Regional
Development Fund) and ESF (European Social Fund), by
public funding of the state of Saxony/Germany and by the
German Research Foundation (DFG) as part of Germanys
Excellence Strategy EXC 2050/1 Project ID 390696704
Cluster of Excellence Centre for Tactile Internet with Human-
in-the-Loop (CeTI) of TU Dresden.

REFERENCES
[1] 2020. IEEE Standard for Local and Metropolitan Area Networks–

Port-Based Network Access Control. IEEE Std 802.1X-2020
(Revision of IEEE Std 802.1X-2010 Incorporating IEEE Std
802.1Xbx-2014 and IEEE Std 802.1Xck-2018) (2020), 1–289.
https://doi.org/10.1109/IEEESTD.2020.9018454

[2] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash:
A Fast Short-Input PRF. In Progress in Cryptology - IN-
DOCRYPT 2012, Steven Galbraith and Mridul Nandi (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 489–508.

[3] Andreas Bluschke, Wolfgang Büschel, Philipp Rietzsch, Alexander
Senier, Peter Sieber, Volker Ulrich, Rainer Wiggers, Jean Wolter,
Michael Hohmuth, Frieder Jehring, Rainer Kaminski, Konstantin
Klamka, Stefan Köpsell, Adam Lackorzynski, Tim Lackorzynski,
and Michael Matthews. 2018. fastvpn - Secure and Flexible
Networking for Industry 4.0. In Broadband Coverage in Germany;
12. ITG-Symposium (Berlin, Germany). VDE Verlag GmbH,
Berlin, Germany, 28–35.

[4] Danilo Cerović, Valentin Del Piccolo, Ahmed Amamou, Kamel
Haddadou, and Guy Pujolle. 2018. Fast Packet Processing: A Sur-
vey. IEEE Communications Surveys and Tutorials 20, 4 (2018),
3645–3676. https://doi.org/10.1109/COMST.2018.2851072

[5] Jason A. Donenfeld. 2018. WireGuard: Next Generation Kernel
Network Tunnel. Technical Report.
https://www.wireguard.com/papers/wireguard.pdf.
Accessed: 18th Dec. 2021.

[6] Sabrina Dubroca. 2016. MACsec: Encryption for the wired LAN.
In netdev 1.1 (Sevilla, Spain). Red Hat.
https://legacy.netdevconf.info/1.1/proceedings/papers/MACsec-
Encryption-for-the-wired-LAN.pdf.
Accessed: 18th Dec. 2021.

[7] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel
Raumer, and Georg Carle. 2015. Comparison of frameworks for
high-performance packet IO. In 2015 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems
(ANCS). 29–38. https://doi.org/10.1109/ANCS.2015.7110118

[8] S. Hanks, T. Li, D. Farinacci, and P. Traina. 1994. Generic
Routing Encapsulation (GRE). RFC (Request for Comments)
1701. 1–7 pages.
https://www.rfc-editor.org/rfc/rfc1701.txt
Accessed: 3rd Oct. 2021.

[9] A. Khandelwal, I. Agrawal, M. I, S. S. Ganesh, and R. Karothia.
2019. Design and implementation of an industrial gateway: Bridg-
ing sensor networks into IoT. In 2019 3rd International Confer-
ence on Electronics, Communication and Aerospace Technology
(ICECA). 1–4. https://doi.org/10.1109/ICECA.2019.8821883

[10] T. Lackorzynski, G. Garten, J. S. Huster, S. Köpsell, and H.
Härtig. 2021. Enabling and Optimizing MACsec for Industrial
Environments. IEEE Transactions on Industrial Informatics 17,
11 (2021), 7599–7606. https://doi.org/10.1109/TII.2020.3040966

[11] T. Lackorzynski, S. Köpsell, and T. Strufe. 2019. A Compara-
tive Study on Virtual Private Networks for Future Industrial
Communication Systems. In 2019 15th IEEE International
Workshop on Factory Communication Systems (WFCS). 1–8.
https://doi.org/10.1109/WFCS.2019.8758010

[12] J. Lau and M. Townsley. 2005. Layer Two Tunneling Protocol -
Version 3 (L2TPv3). RFC (Request for Comments) 3931. 1–94
pages.
https://www.rfc-editor.org/rfc/rfc3931.txt
Accessed: 7th Jan. 2019.

[13] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T.
Sridhar, M. Bursell, and C. Wright. 2014. Virtual eXtensible
Local Area Network (VXLAN): A Framework for Overlaying
Virtualized Layer 2 Networks over Layer 3 Networks. RFC
(Request for Comments) 7348. 1–21 pages.
https://www.rfc-editor.org/rfc/rfc7348.txt
Accessed: 3rd Oct. 2021.

[14] Fergal Martin-Tricot, Cédric Eichler, and Pascal Berthomé. 2020.
An Enrolment Gateway for Data Security in Heterogeneous In-
dustrial Internet of Things. In 29th IEEE International Confer-
ence on Enabling Technologies: Infrastructure for Collaborative
Enterprises - WETICE 2020. Bayonne (Virtual Conference),
France.

[15] B. Patel, B. Aboba, W. Dixon, G. Zorn, and S. Booth. 2001.
Securing L2TP using IPsec. RFC (Request for Comments) 3193.
1–28 pages.
https://www.rfc-editor.org/rfc/rfc3193.txt
Accessed: 7th Jan. 2019.

https://doi.org/10.1109/IEEESTD.2020.9018454
https://doi.org/10.1109/COMST.2018.2851072
https://www.wireguard.com/papers/wireguard.pdf
https://legacy.netdevconf.info/1.1/proceedings/papers/MACsec-Encryption-for-the-wired-LAN.pdf
https://legacy.netdevconf.info/1.1/proceedings/papers/MACsec-Encryption-for-the-wired-LAN.pdf
https://doi.org/10.1109/ANCS.2015.7110118
https://www.rfc-editor.org/rfc/rfc1701.txt
https://doi.org/10.1109/ICECA.2019.8821883
https://doi.org/10.1109/TII.2020.3040966
https://doi.org/10.1109/WFCS.2019.8758010
https://www.rfc-editor.org/rfc/rfc3931.txt
https://www.rfc-editor.org/rfc/rfc7348.txt
https://www.rfc-editor.org/rfc/rfc3193.txt

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Design
	4.1 Scenario and Requirements
	4.2 Identifier-based Approach
	4.3 Encryption-based Approach

	5 Implementation
	6 Evaluation
	6.1 Protocol Designs
	6.2 Performance

	7 Conclusion
	Acknowledgments
	References

