
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

mpsym: Improving Design-Space Exploration of
Clustered Manycores with Arbitrary Topologies

Andres Goens, Timo Nicolai, and Jeronimo Castrillon, Senior Member, IEEE

Abstract—With growing numbers of cores, the memory sub-
system of manycore architectures increases in complexity. Many
modern multicores are designed in a hierarchical fashion, with
multiple clusters of processing elements. However, most algo-
rithms for design-space exploration of resource allocation in
multicores do not consider these complex topologies, which results
in poor scaling, or worse, non-functioning algorithms. In this
paper we present mpsym, a C++ library designed to alleviate
this problem in an algorithm-agnostic fashion. Using methods
from computational group theory, we present domain-specific
algorithms to improve design-space exploration in hierarchical
architecture topologies. We evaluate mpsym on multiple design-
space exploration algorithms from literature. Without modifying
the algorithm, our methods improve the execution time by a fac-
tor up to 8.6× on the E3S benchmark suite for complex, clustered
architecture topologies. Similarly, by pruning the design space,
our methods consistently improve the result of the exploration.
In particular, the results from a simulated annealing heuristic
on the Kalray MPPA3 Coolidge topology are over 30× better on
average, while requiring less time to explore.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

With the multi- and manycore revolution, hardware archi-
tectures continue to increase their complexity and numbers
of cores. A higher number of cores greatly increases peak
performance, but it also makes it harder to attain such perfor-
mance in practice. The memory subsystem becomes central
to ensuring performance. Cache coherence does not scale
to hundreds or thousands of cores, making shared memory
models significantly less viable.

Even with distributed memory, data and computation need
to be mapped to hardware resources. Since the number of
possible mappings grows exponentially with growing numbers
of cores and tasks, reasoning about mappings quickly becomes
intractable. Significant advances in the mapping to multicores
have been made, but most of them make simplistic assump-
tions about the target architecture topologies that increasingly
cease to hold in modern manycores.

In reality, not all systems are simple bus-based architectures
without hierarchy or based on Network-on-Chip (NoC) with
regular meshes. Instead, most manycores are built hierarchi-
cally, with clusters of cores arranged in a particular fashion. As
such, the methods devised for these simpler architectures cease
to work for modern manycores with hierarchical structures.

A. Goens is with the Barkhausen Institut, Dresden, Germany (email:
andres.goens@barkhauseninstitut.org). The work for this paper was done
in part with the Chair for Compiler Construction, cfaed, TU Dresden,
Germany. J. Castrillon and T. Nicolai are with the Chair for Compiler Con-
struction, cfaed, TU Dresden, Germany (emails: timo.nicolai94@gmail.com,
jeronimo.castrillon@tu-dresden.de).

The Kalray MPPA3 Cooldige [1] chip, for example, has five
clusters connected with a Network-on-Chip architecture. In
each cluster, a special-purpose and sixteen general purpose
cores share a bus-based subsystem.

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R
R

R
R

R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

Manycore

Optical
Interconnect

Wireless
inter-board

links

Fig. 1. The HAEC [2] topology with multiple levels of hierarchy.

Future architectures will probably boast even more lev-
els of hierarchy, like the proposed HAEC architecture [2]
(cf. Figure 1), where manycores are connected with high-
bandwidth optic interconnects on a PCB, and communicate be-
tween multiple PCBs with a low-latency wireless interconnect.
Improvements in interconnect technology are bound to blur the
lines between on-chip and off-chip communication, yielding
architectures with several thousands of cores that behave like
a single system-on-chip.

How do we reason about the execution of an application
spanning multiple clusters in multiple levels of hierarchy? Can
we also reason about the heterogeneity, exploiting the acceler-
ators? Multiple methods exist to reason about heterogeneity in
architectures, or the memory subsystem in multicores. How-
ever, when these two problems are combined, most methods
struggle to address both. Moreover, assumptions about the
topology of the memory subsystem implicitly or explicitly
permeate the models used for programming multicores. These
models thus struggle when the topology becomes too complex.
We need novel ways to optimize the execution of applications,
not only for these architectures, but for even more complex
ones in the future. We need a systematic approach to consider
heterogeneity and the topology of the network subsystem in
design-space exploration (DSE).

In this paper we discuss a mathematical framework pre-
cisely for reasoning about these kinds of complex architec-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

ture topologies. A central observation is how hierarchical
topologies in hardware architectures exhibit a great amount
of symmetry. Figure 2 shows this for a very simple example
of mapping two tasks on an ARM big.LITTLE-based 8-core
architecture. In the figure, PE1 to PE4 are the “little cores”,
which are slower and more energy efficient, and PE5 to PE8

are the faster, albeit more energy-hungry, “big” cores. This
is not a realistic problem size, but it allows us to visualize
this as a two-dimensional space. The two dimensions of the
graph represent the mapping of the two tasks. It is clear from
the figure that many mappings are equivalent in terms of
their performance, which are the symmetries of the mapping
space. Below we show how our method prunes this mapping
space by removing such equivalent mappings. The theoretical
underpinnings for this symmetry are described in Section III.

PE1

L1

PE2

L1

PE3

L1

PE4

L1

PE5

L1

PE6

L1

PE7

L1

PE8

L1

L2 L2

DRAM

t1t2
t1

t2

t1 t2

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
T1 mapping (PE)

T
2

m
ap

pi
ng

(P
E

)

time

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
T1 mapping (PE)

T
2

m
ap

pi
ng

(P
E

)

time

Regular

Symmetries (pruned)

Fig. 2. A simple example of the mapping space and the prunig via symmetries.

We use methods from computational group theory (CGT)
to find efficient algorithms that understand these complex
structures and their symmetries. In particular, in this paper we
present efficient algorithms tailored for DSE of arbitrary hard-
ware architectures (Section IV). Our domain-specific methods
leverage the hierarchical nature of architectures to overcome
computational limitations of the general cases from CGT.
Additionally, we present a probabilistic heuristic which signif-
icantly improves the computational overhead of our method,
while sacrificing almost no accuracy in practical applications.
We have implemented these algorithms in an open-source C++
library, mpsym.

We evaluate this framework by using mpsym to prune
the design space of three meta-heuristics from literature,
improving them both in terms of their execution time and
the results they produce (Section V). With this evaluation,
we show that these methods significantly improve DSE in
complex, hierarchical architecture topologies.

II. RELATED WORK

Diverse research methods have been proposed for exploit-
ing symmetries of hardware architectures. The approaches
described in [3], [4] also exploit symmetries in a similar
context as in this paper, but with other objectives, namely
security or run-time scheduling. Many methods for design-
space exploration also leverage symmetries [5], [6], [7], [8],
[9]. In particular, most of these methods assume a specific
topology or family of topologies, like a network-on-chip
architecture with a regular mesh structure and no clusters or
hierarchy. These methods face limitations when the topology
becomes more complex, like star-mesh topologies, or when
multiple levels of hierarchy are involved, e.g. in clustered
architectures like the Kalray MPPA3 Coolidge. In general,
these methods are embedded in full algorithms for design-
space exploration (DSE) and depend to different degrees on
the specific models used in the algorithm, e.g. the specific
topology mentioned.

The methods presented in [10] are not bound to a specific
DSE methodology; they can be used to improve basically any
DSE for mapping computation to architectures. They also tar-
get symmetries, as we do in this paper, but do so with standard
algorithms from computational group theory. In particular,
their methods do not scale to architectures with more than
a few dozen cores or multiple levels of hierarchy. Similarly,
the dynamic search-space decomposition presented in [11]
is a generalization of [9] that is non-specific to a particular
DSE methodology. As such, it is not bound to a concrete
topology model: It works for complex topologies and clustered
architectures. The basic idea behind the architecture-based
optimizations there is to restrict to certain sub-architectures
after a pre-exploration step. If this pre-exploration step is ill-
suited to deal with the architecture complexity, this approach
will not scale to thousands of cores and multiple levels of
hierarchy. As such, this work is complementary to the method
we present here, since we address specifically the complexity
of the topology and hierarchy.

III. ARCHITECTURE SYMMETRIES

In this section we introduce the techniques for describing
and managing symmetries in complex architectures. Our tech-
niques are based on the group-theoretic description of [10],
but using domain knowledge of the structure of hardware
topologies and the concrete problems to be solved in design-
space exploration. We start by reviewing the background on
symmetries for improving DSE as described in [10] and
then introduce our domain-specific methods for dealing with
hierarchical hardware topologies.

A. Architecture Symmetries

Symmetry intuitively refers to agreements in proportions or
arrangement, or to the relationship of parts to a whole [12].
The mathematical theory of symmetries aims to capture this
intuition by describing symmetry through transformations.
Mathematically, a symmetry thus refers to a transformation
of an object which preserves its structure.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

To describe these mathematically, we need to model the
architecture as a labeled multigraph Γ. The nodes of this graph
represent the processing elements (PEs) of the architecture and
are labeled by their (micro)architectures and frequencies. The
edges, on the other hand, represent the possible communi-
cation between PEs. They are labelled with communication
primitives: an abstraction that models ways of exchanging
data in the architecture, like shared memories, caches or direct
memory access (DMA). Figure 3 shows an architecture graph
Γ for the big.LITTLE architecture (cf. Figure 2).

PE1

PE2PE3

PE4

PE5

PE6PE7

PE8

ARM Cortex A7
ARM Cortex A15

L1$
L2$

DRAM

Fig. 3. An example of the architecture graph Γ. Symmetries of the architecture
can be formalized as automorphisms of this graph.

With the description of architectures as graphs, we can
study their symmetries. Consider the architecture depicted in
Figure 4. It has 16 identical general-purpose cores and a secure
and management core. They can communicate via a shared
secure bus. This figure is in fact based one of the five clusters
of the Karlay MPPA3 Coolidge architecture [1]. The figure
depicts a transformation as an example of a symmetry. If we
change how we name the 16 identical cores, reversing their
order, the topology of the architecture remains unchanged.

PE0
Secure &
Mngt. C.

SECURE BUS

PE15PE0
Secure &
Mngt. C.

SECURE BUS

Fig. 4. Symmetries can be described as transformations that preserve the
structure.

The transformation from Figure 4 can thus be described as
a function from the graph Γ to itself:

ϕ : PE0 7→ PE15,PE1 7→ PE14, . . . ,PE15 7→ PE0,

PEsecure & mgt. 7→ PEsecure & mgt.

The transformation ϕ preserves the structure of the archi-
tecture. Formally, the edges and all labels of Γ are preserved
under ϕ. This transformation can be undone, since ϕ is a
bijection of the cores. Similarly, if we take a second transfor-
mation σ that preserves the structure of the architecture, then

Cluster1 Cluster2

Cluster3 Cluster4

Cluster5

PE0
Secure &
Mngt. C.

SECURE BUS

t3t2t1

PE0
Secure &
Mngt. C.

SECURE BUS

t3t2t1

Fig. 5. An example of an action on a mapping to the Kalray MPPA3
Coolidge Architecture. Note that clusters are connected via a NoC, which
is not explicitly depicted in this figure.

the composition ϕ ◦ σ will also preserve the structure of the
architecture. Finally, it is clear that the identity transformation
Id{PE0,...,PE15}, which changes nothing, also preserves the
structure of the architecture. Together, these properties define
a mathematical structure called a group.

In general, structure-preserving bijections like these are
called isomorphism. In other words, the symmetries of the
architecture are the isomorphisms from the architecture graph
Γ to itself. Isomorphisms from an object to itself are called
automorphisms, which we denote by Aut(Γ). For the example
of Figure 4, this group is the set of all permutations of the 17
cores (if we count the secure core) which preserve the structure
of the architecture. In the case of this simple example, this
results in precisely the permutations of the 16 identical cores,
leaving the secure core unchanged. In general, the set of all
n! permutations on n points is always a group. It is called the
symmetric group Sn.

The topology of an architecture as modeled by the graph Γ
is clearly an abstraction. If we consider the actual floorplan
of the chip, the symmetry as described in Figure 4 ceases
to hold. This can be important, e.g. when considering thermal
effects. Similarly, through process variation the cores are likely
not physically identical. From the point of view of software,
however, we cannot distinguish the 16 identical cores. As such,
we cannot distinguish any mapping of tasks to these cores
in terms of e.g. performance or energy efficiency, at least
not a priori. This observation, going from a symmetry of the
architecture to symmetries in mappings of software tasks to
it, is captured by the mathematical concept of an action.

Intuitively, a group action relates the abstract concept of a
group G with the symmetries of an object Ω, by specifying
how the abstract group elements “act” on objects of Ω. For-
mally, the (left) action of a group G on a set Ω is defined via a
function α : G×Ω→ Ω that respects the group multiplication,
i.e. with α(gh, ω) = α(g, α(h, ω)) and α(1G, ω) = ω for
all g, h ∈ G,ω ∈ Ω. Here, 1G ∈ G denotes the neutral
element of G, like the identity function Id{PE0,...,PE15} in
the example of Figure 4. In our notation we omit the α for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

simplicity and write α(g, ω) as gω. The automorphism group
of the architecture acts on the set of cores. The automorphism
depicted in Figure 4 is an example of this via α(ϕ, ω) = ϕ(ω)
for an automorphism ϕ ∈ Aut(Γ) and ω ∈ Γ. In other words,
the action of Aut(Γ) on Γ is just function application.

We can consider an automorphism ϕ of the architecture
as a renaming of the PEs, without affecting their types or
communication relationship. If we have a mapping of tasks to
the architecture, we get a new mapping by renaming the PEs
in the mapping according to ϕ. This new mapping should have
the same runtime performance characteristics. More formally,
the action of the automorphism group of the architecture also
induces an action on mappings. If we consider a mapping as
a function m : T → P from the set of tasks to the set of
cores, then an action of G on P induces an action on the set
of mappings M via gm := t 7→ g m(t). This means that
an automorphism changes the processor mapping of all tasks
according to the architectural symmetry.

Consider the full topology of the Karlay MPPA3
Coolidge [1], depicted in Figure 5. This architecture has
five identically clusters, each one like the cluster depicted in
Figure 4. The five clusters are fully connected via a Network-
on-Chip (NoC). This model is a simplified versiod of the
actual chip, which contains many additional features like
DMA units in each cluster or crypto accelerators. We consider
it for the topology. The group of automorphisms of this
architecture is the set of the permutations of the 85 cores (again
counting the secure cores) which preserve the structure of the
communication subsystem. For example, any rearranging of
the 16 identical cores in the first cluster (like in Figure 4),
or swapping the last two clusters, both preserve the structure
of the architecture. We could not, however, change the secure
cores of the first and second cluster while leaving the rest
unchanged: this changes the communication subsystem, as
communication from the secure core to a general purpose core
in the same cluster will have a higher latency if we move the
secure core to a different cluster.

Figure 5 depicts how the automorphisms of the architecture
induce symmetries of mappings via an action, as described
above. The figure depicts an example of a mapping of three
tasks to the first three cores in the fourth cluster, m : t1 7→
P4,1, t2 7→ P4,2, t3 7→ P4,3. The transformation g shown swaps
the fourth and fifth clusters. It changes this mapping to gm :
t1 7→ gP4,1 = P5,1, t2 7→ gP4,2 = P5,2, t3 7→ gP4,3 =P5,3.

B. Hierachical Architectures

A crucial observation in describing architecture topologies
is the way they are usually built. Modern manycores are almost
universally built in clusters, using multiple levels of hierarchy.
We can leverage this fact and describe the topologies of these
manycores using particular constructions in group theory. In
other words, we combine groups in certain ways to obtain
new groups, describing the symmetries of these hierarchical
architectures.

Given two groups G,H the direct product G × H is the
group on the Cartesian product G × H with a component-
wise composition, i.e. (g, h)(g′, h′) = (gg′, hh′) for all g, g′ ∈

G, h, h′ ∈ H . Intuitively, this takes two groups on n and m
points and combines them to act on n+m points, where each
of the groups acts independently of the other. For example, if
we take an architecture that has four identical cores in a single
cluster, its symmetry group is S4, the symmetric group on four
points. Consequently, if we have two clusters each with 4 cores
of different types, like in the architecture from Figure 3), then
the symmetry group of the architecture is S4 × S4, the direct
product of the symmetry groups on each cluster.

Similarly, there is another construction called the wreath
product: Let G,H be groups, and further let H be a permu-
tation group on n points. Consider an element in the direct
product of n copies of G, (g1, . . . , gn) ∈ Gn = G× . . .×G.
We can apply an element h ∈ H to this element by
h
(g1, . . . , gn) = (gh1, . . . , ghn), i.e. by permuting the order

of the elements in the n-tuple. This defines an action of H
on Gn. We can use this action to construct the wreath product
GoH on the Cartesian product Gn×H , by the multiplication1:

((g1, . . . , gn), h)((g′1, . . . , g
′
n), h′)

= ((g1, . . . , gn)
h
(g′1, . . . , g

′
n), hh′)

= ((g1, . . . , gn)(g′h1, . . . , g
′
hn), hh′)

Intuitively, the wreath product works when we have copies
of a substructure arranged in a particular larger structure, by
applying the transformations at both levels. For example, the
symmetry group of the Kalray architecture is G oS5, where G
is the symmetry group of a single cluster. This can be seen in
Figure 5, which shows the two levels of hierarchy separately.
The symmetry group H of the clusters is S5, since they are
fully connected. The symmetry group G of a single Cluster
is isomorphic to S16. This means the two groups have the
same structure. However, as modeled here, G is a group on 17
points, corresponding to the 17 cores. Since the secure cores
are different to the 16 general purpose cores, the symmetry
group G of a single cluster does not permute them. As such,
the first group G acts on the smaller structures (the clusters),
and the second group H = S5 permutes the clusters.

In general, we can see how there is a correspondence
between the constructions we use to build hierarchical hard-
ware architectures and the group constructions presented here.
Table I gives an overview of the different constructions. When
all cores are interchangeable, like in a cluster with identical
cores and homogeneous communication, the symmetric group
Sn can be used to describe their symmetries. For combining
distinct resources, like the heterogeneous clusters in an ARM
big.LITTLE platform (cf. Figure 3), we use the direct product
to combine the symmetries of each sub-structure. For some
structures, like a Network on Chip (NoC) with a complex
topology2, we need to calculate their symmetry group by
solving the graph isomorphim problem. This can be done
efficiently in practice [13]. Finally, to compose the symmetries
of two different levels of hierarchies, we use the wreath
product. This is a special case of the composition of distinct
elements/clusters, since there the higher abstraction level in the

1Both this and the direct product are special cases of the semidirect product
G oϕ H for ϕ : H → Aut(G)

2assuming the differences from latencies in the NoC are not negligible

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

PE5

PE1

PE3

PE4

PE6

PE2

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Fig. 6. An example of a partial symmetry in a NoC-based architecture.

hierarchy has no symmetry. This is consistent with Table I, as
the direct product can be seen as special case of the wreath
product for a trivial group acting on two points.
C. Limitations

The symmetries described in this way are an approximation,
and as such, have some limitations. As discussed above,
there are many properties of a real system that break these
symmetries. Process variation might make nominally identical
cores behave differently. Similarly, thermal effects from the
actual physical placement in the architecture might make
equivalent mappings under this formalism non-equivalent. This
can result in dynamic frequency scaling, which also changes
the behavior of cores. If the dynamic scaling is not managed
identically on the different cores, as might be the case, e.g.
because of thermal effects, our symmetries become invalid.
Similarly, the execution of the application depends on access to
peripherials and the latency to this access is not homogeneous,
this also breaks the symmetries as described here.

These limitations can be summarized as the level of abstrac-
tion at which the models operate. Our symmetries are valid at
the system level, at the level at which our simulations work.
Since the effects outlined above are commonly not considered
in the simulation either, the results of a system-level simulation
will be identical for equivalent mappings.

A special case that warrants discussion is the on-chip
interconnect. Bus-based architectures might exhibit different
latencies for the different cores depending on the logic inside
the interconnect. This is normally not considered in system-
level simulations.

On the other hand, Network on Chip (NoC)-based architec-
tures sometimes are explicitly considered in simulations. The
latency can sometimes be predictably different for different
routes in the NoC. Our methods model this as was described
above (cf. Table I).

The formalism as described here is not well-suited to
describe the symmetries within a NoC. Consider the archi-
tecture depicted in Figure 6, a regular 4 × 4-mesh NoC. The
transformation depicted in the figure rotates the cores in the
lower-left 2 × 2 sub-mesh. This is transformation does not
preserve the structure of the NoC (is not an automorphism of
Γ), since it breaks the labels of the edges. This is depicted
in the figure by comparing the distance between PE1 and
PE3. As marked in the figure, the distance increases with this
transformation. However, for a mapping that only uses the

lower-left sub-architecture, describing this symmetry will find
additional equivalent mappings. Additionally, the architecture
graph as defined here does not consider the concrete route in
the NoC. This not only disregards contention, it also fails to
model more complex routing strategies, like dynamic routing
methods or wormhole switching. This type of symmetry
can be modeled with a generalization of group called inverse
semigroups [12], [10], modeling the transformation in Figure 6
as a partial function. In this context, a different graph model
has to be used to properly describe the architecture topology,
such that it includes the routes.

In this paper we choose to ignore partial symmetries and
model only global ones, as groups. While this is a limitation
of our model, we argue it is not decisive. This decision is
based on the observation that the differences in the latency
between different routes in a NoC are usually just a handful of
cycles, and thus not very large in comparison to the execution
times or the overall communication costs. Approximating
a NoC as being a uniform system of communication when
finding mappings is not common in practice. It might not be
well-suited for all use-cases, like very tightly constrained hard
real-time systems. However, for best-effort scenarios or even
some soft or firm real-time systems, we argue it is a good
approximation. It is the hierarchy in the memory subsystem
that dominates communication costs, not the routing with a
NoC. We have confirmed this approximation to be good in
preliminary results, where we showed the geometry of the
mapping in the NoC is mostly irrelevant for mappings in
practice [14]. Future work should continue to investigate this
issue. For now, the issue of modeling NoCs should still be
considered a potential limitation of our approach.

IV. THE MPSYM LIBRARY

In this section we describe the implementation of mpsym,
an open-soruce3 C++ library for accelerating DSE for com-
plex architecture topologies, using the methods described in
Section III. The core design principle of mpsym is to use
domain-specific knowledge for modeling complex architecture
topologies (cf. Table I), while leveraging the machinery of
CGT. Figure 7 shows the general flow of using mpsym. It
works as a light-weight library that can be readily added to
any DSE algorithm, improving it by leveraging the symmetries
of the problem. By changing the mapping representation to
factor out the symmetries [15], mpsym works without having
to modify the DSE algorithms at all, only changing the un-
derlying design space (cf. Section IV-B). mpsym implements
multiple algorithms from CGT as well as our domain-specific
extensions. This section explains the algorithmic design of
mpsym.

A. The Schreier-Sims algorithm

A very important concept in CGT is that of a generating set.
For a group G, a set X ⊆ G is a generating set of G if every
element g ∈ G can be written as a word in the elements4 of X ,

3https://github.com/tud-ccc/mpsym
4in general, we also need the inverses, but for finite groups as is the case

here, the elements suffice

https://github.com/tud-ccc/mpsym

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Hardware Architecture Group Theory
Homogeneous substructure (n identical PEs or clusters) Symmetric Group Sn

Distinct elements/clusters Direct product G1 × . . .×Gn

NoC Connection with topology graph Γ (identical elements) Automorphism group of Γ Aut(Γ)
Hierarchical composition Wreath product G oH

TABLE I
CORRESPONDANCE OF ARCHITECTURE AND GROUP-THEORETIC CONSTRUCTIONS.

Application
description

Architecture
description

Design-space
exploration

Result (e.g.
mapping)

mpsym

Regular DSE Flow

Fig. 7. The mpsym Software Flow

i.e. x1, . . . , xn = g for x1, . . . , xn ∈ X and n ∈ N. We can
think of a generating set as a lazy data structure that represent
the group G. Not every generating set is equally good as a
data structure, however, and the Schreier-Sims algorithm can
be used for finding particularly efficient generating sets.

The Schreier-Sims algorithm is indeed a central pillar of
CGT [16]. Given a generating set X for a permutation group
G ⊆ Sn, it computes a special data structure called base and
strong generating set (BSGS) which is a special generating
set and represents G. The details of this data structure and
the algorithm are beyond the scope of this paper. Important
is, however, how it makes several computations required by
mpsym’s DSE approach feasible. In particular, given a BSGS
for G, it is possible to efficiently determine |G|, uniquely
enumerate all g ∈ G and to check whether s ∈ G for some
s ∈ Sn.

In practice, there are variants of the Schreier-Sims algorithm
that can be significantly faster in some cases. The random
Schreier-Sims algorithm, for example, is a very fast Monte
Carlo algorithm which can fail with a given probability,
controllable via a parameter. There exist more advanced al-
gorithms to guarantee the correctness of its result, such as the
Todd-Coxeter Schreier-Sims algorithm. It is not obvious in
general which algorithm is best-suited to construct a BSGS
from a given generating set. Computer-algebra systems, like
GAP [17], use heuristics to decide which algorithm or combi-
nation of algorithms to apply. The mpsym library implements
the deterministic and random variants. A reasonable “default”
approach to constructing a BSGS for a large group is to run the
random Schreier-Sims algorithm followed by a correction step,
e.g. running the deterministic Schreier-Sims on the resulting
BSGS, which is the naive approach employed by mpsym.

B. Finding canonical forms
For several use-cases in DSE, e.g. optimizing for perfor-

mance or energy consumption, two mappings that are equiva-
lent via symmetries can be considered as identical. To leverage
this, we want to “factor out” the symmetries. Formally, we
want to explore the sets of orbits M\G, instead of the mapping
space M . An orbit is the set of all mappings that are equivalent
via symmetries. For m ∈M :

Gm = {m′ ∈M | ∃g ∈ G : gm = m′}
= {gm | g ∈ G} ∈M \G

To work with orbits, we consider a canonical representative
of every orbit, i.e. an element m̂ ∈ Gm for every Gm ∈
M \ G. We sort the cores P (e.g. alphabetically by name)
and tasks T , and define an order on the set of mappings M
by the lexicographic ordering5 on the tuples (p1, . . . , p|T |),
where task ti is mapped to the processor pi ∈ P .

This factorization of orbits is precisely what Figure 2 from
the introduction depicts. In the figure, all mappings with
the same color are exactly the mappings in each orbit. The
elements that remain in the pruned space in the lower part of
the figure are the canonical representatives, the lexicographic-
minimal elements of each orbit.
mpsym can find these representatives by completely enu-

merating Gm. In practice this is achieved either by enumer-
ating all g ∈ G or by using the orbit algorithm described
in Section IV-C. The latter is usually more efficient when
|Gm| � |G|. In mpsym, we denote the first of these two
approarches as iterate and the second one as orbit. Note
that iterate refers to iteration on the group itself, whereas
the iteration in orbit is based on the mapping space that the
group acts on.

Alternatively, we can use some form of local search, e.g.
by initially setting m(1) = m and then, given a generating
set X for G, iteratively considering sm(i) for all s ∈ X .
We can then set m(i+1) = sm(i) if sm(i) < m(i), until we
reach a (local) minimum. This approach can be enhanced by
employing heuristic techniques such as simulated annealing. It
can potentially be much faster than complete enumeration, but
this is not guaranteed to yield the actually lex-minimal element
of the orbit m̂. However, if we want to consider G \M for
pruning in DSE, it is not very problematic that the local-search
heuristic can fail. In the worst-case, the design space is not
pruned as much as it could be. In mpsym, this approach is
denoted by local search.

Using either complete enumeration or local search, mpsym
is furthermore able to determine m̂ especially well for certain

5This is an arbitrary choice, any ordering that is easy to compute should
work as well.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

decomposable automorphism groups, see Section IV-D. Both
local search and optimizations for decomposable automor-
phism groups were first used in [18] in the context of model
checking. Leveraging this decomposition is what makes our
domain-specific approach more efficient.

C. Finding orbits

Other uses in the context of mappings to manycores require
to explore the orbits themselves, like in hybrid mapping
approaches [4]. For this, we want to lazily calculate elements
of the orbit Gm = {gm | g ∈ G}. We do this by applying
all generators s ∈ X of the generating set X obtained by
the Schreier-Sims algorithm to the mapping m. By iteratively
doing this on all the points obtained this way, we get the
full orbit Gm. This is a standard algorithm called the orbit
algorithm.

We also expose this as a lazy enumeration in mpsym by
only applying the generators when additional elements of the
orbit are required, and keeping a hash function of the elements
found, to only return new elements obtained. Note however
that completely enumerating orbits can often be impracticable
with respect to available memory. This is because |Gm| ≤ |G|
can be very large (e.g. for Sn up to n!). Additionally, the
chosen hash function must be perfect to ensure correctness,
meaning that we usually require several bytes to represent each
orbit element’s hash.

D. Wreath-Product Decomposition

Finally, a central optimization of our domain-specific ap-
proach is the use of wreath products to describe hierarchical
architecture topologies, like the HAEC or Kalray MPPA3
Coolidge architectures.

If we have an automorphism group given as a wreath
product G oH , we can accelerate the relevant algorithms for
finding canonical representatives for some mapping m. This
is possible by formulating an equivalent problem in which
we need to find canonical representatives for a number of
groups σ1(G), σ2(G), . . . , σdeg(H)(G) and σ(H) which are
trivially constructible from G and H . This is usually much
less computationally expensive than directly determining them
from G oH , especially when |G oH| is very large.

This algorithm, as well as an algorithm that can automati-
cally decompose groups into wreath products (where possible)
are described in [18]. While mpsym implements the latter
algorithm, usually it is not needed, as we can determine the
decomposition directly from the construction correspondence
described in Table I.

E. Architecture Description Language

As explained above, we leverage the correspondence from
Table I to generate an efficient data structure and optimized
algorithms for this case. To facilitate this correspondence, we
have developed a domain-specific language in Lua. The lan-
guage can be used to easily describe topologies and derive their
symmetries automatically from this description. An example
for the HAEC architecture presented in Figure 1 is given

in Listing 1. It showcases our wreath product construction,
which works by using two structures, proto and super.
The proto structure corresponds to the group G in G o H ,
while H is the symmetry group of the super structure. In
the listing, the proto structure are the optical interconnects
of each of the four layers in the HAEC topology (cf. Fig-
ure 1). The functions mpsym.identical_processors
and mpsym.grid_channels are used to describe this NoC
mesh with 16 identical processors. Similarly, the super
graph represents the higher level of hierachy, where each
of the elements represented is one of the four clusters
or layer in the architecture. The functions used here like
identical_processors, identical_clusters and
ArchUniformSuperGraph implement the constructions
described in Table I.

Listing 1. HAEC.lua - Topology Description

local mpsym = require 'mpsym'

local super_graph_clusters =
mpsym.identical_clusters(4, 'SoC')

local super_graph_channels =
mpsym.linear_channels(super_graph_clusters,

'wireless')

local proto_processors =
mpsym.identical_processors(16, 'P')

local proto_channels =
mpsym.grid_channels(proto_processors,

'optical')

return mpsym.ArchUniformSuperGraph:create{
super_graph = mpsym.ArchGraph:create{

directed = false,
clusters = super_graph_clusters,
channels = super_graph_channels

},
proto = mpsym.ArchGraph:create{

directed = false,
processors = proto_processors,
channels = proto_channels

}
}

These architecture-description scripts can be parsed via
mpsym’s C++ or Python interface. mpsym is then able to
determine a topolgy’s automorphism group as well as canon-
ical representatives for arbitrary mappings to that topology.
Internally, mpsym makes use of the well known program
nauty [13] to determine generating sets for the automorphism
groups of architecture graphs. Listing 2 showcases how to
parse and utilize the architecture description in mpsym using
the python interface pympsym. The call from_lua_file
parses the file from Listing 1 and initalizes mpsym with
the symmetries of the HAEC architecture. The next call,
r = ag.representative calculates the canonical repre-
sentative for the mapping (12,13,14,15). This mapping
is equivalent to (0,1,2,3), which is the lexicographical
minimal mapping in its orbit. Thus, r will have this (canonical)
mapping stored after the call.

The code in Listing 2 showcases how our approach can be
used in an algorithm-agnostic fashion, in any meta-heuristic.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Calling ag.representative every time an operation will
be made with a mapping effectively prunes the design space.
This can thus be used in any meta-heuristic. Alternatively,
by using ag.representative to generate a key for a
simulation cache, we can create a symmetry-aware cache that
reduces the number of simulations in a mapping algorithm
without changing its behavior nor results.

Listing 2. HAEC.py - Use Topology Description to Find Canonical Repre-
sentatives

import mpsym

ag = pympsym.ArchGraphSystem.\
from_lua_file("haec.lua")

r = ag.representative((12, 13, 14, 15))
#r = (0, 1, 2, 3)

F. Limitations

We have argued how mpsym can be used for DSE in a
variety of settings. The DSE settings in which mpsym can
be used is still limited by some general assumptions of our
method. As discussed in Section III, our symmetries work at
a system-level. In particular, for a DSE approach to benefit
from mpsym, it has to operate at this level of abstraction.

To interface with the library, we need a model of the
architecture that can produce the architecture graph Γ. While
this is not a strong limitation, it can represent a moderate
implementation overhead to use our library.

Finally, we have discussed how our methods in mpsym can
work with any meta-heuristic. While this is technically correct,
without any assumptions on the meta-heuristic, pruning the
design space might not be beneficial. In particular, mpsym
and symmetries are useful when the meta-heuristic works by
systematically exploring the design space e.g. by iteratively
changing the mapping in some way and evaluating it to guide
the search. Since for most practical instances the design space
is extremely large, even after pruning, a uniformly random
sample of the design space will behave identically after the
pruning. In other words, without structure in the search,
symmetries might not make a large difference, as we shall
see in the evaluation in Section V.

V. EVALUATION

In this section we evaluate our mpsym library. We do
this by first demonstrating that the performance of the basic
BSGS construction algorithms utilized by mpsym is compa-
rable to those implemented by the state-of-the-art computer-
algebra system GAP [17]. We then demonstrate mpsym’s
ability to perform fast mapping normalization, especially for
hierarchical architectures. Finally, we use mpsym to improve
the execution time and the quality of the design points found
during an end-to-end DSE task.

A. Comparison to GAP

mpsym implements a small set of well known CGT algo-
rithms that are relevant to the DSE task, as described in Section
IV. These algorithms are also implemented by well-established

computer-algebra systems such as GAP. We thus investigate
whether the performance of mpsym can measure up to that of
GAP with respect to BSGS construction.

We emphasize that GAP is not a DSE tool, but rather, a
general purpose computer-algebra system with a special focus
on CGT. It combines an interpreted programming language
and a large ecosystem of libraries. It would have been entirely
possible to implement mpsym in the GAP language, making
use of its various highly optimized CGT functions. However,
this approach would have had a number of drawbacks. In-
terfacing with GAP code is cumbersome. While mechanisms
like OS pipes can be used for communicating with other
programs (e.g. a multicore compiler), they require the full GAP
interpreter to be executing. Furthermore, running interpreted
GAP code can result in long startup times. In our setup,
just starting the GAP interpreter took around a second (this
overhead is not included in our evaluations).

We implemented mpsym from the ground up in C++,
with bindings to Python. We believe that this will result in
significantly easier adoption and reuse of our code. In this
context, we only aim to achieve a performance that is compa-
rable to that of GAP. The latter employs more sophisticated
BSGS construction heuristics and algorithms. Adding these
to mpsym, while feasible, would not have had a significant
impact on the findings in this work.

MPPA3 Coolidge HAEC

Exynos Simple cluster

generic C++
generic GAP

wreath C++
generic C++

generic GAP
wreath C++

1e+01

1e+03

1e+05

1e+07

1e+01

1e+03

1e+05

1e+07

tim
e

[µ
s]

(l
og

)

Fig. 8. Comparison between GAP- and C++ (mpsym)-based implementations
(Schreier-Sims).

Figure 8 shows a comparison of BSGS construction ex-
ecution times for four different architectures: Exynos (cf.
Figure 2), Simple cluster, MPPA3 Coolidge (cf. Figure 5) and
HAEC (cf. Figure 1). Exynos refers to the Samsung Exynos
5 and 7 families with an octacore big.LITTLE (4+4) archi-
tecture. Its topology is the only non-hierarchical one among
these four. Simple Cluster is an architecture comprised of two
identical clusters, each with two identical cores. Its topology is
the smallest non-trivial hierarchical example that benefits from
our novel methods. For the variants, generic refers to generic
group algorithms as presented in [10], while wreath refers
to the domain-specific decomposition using wreath products.
Note that while GAP implements wreath products, we did
not re-implement mpsym in GAP, which is why we omit the
wreath GAP variant.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

We repeat the construction 100 times and report the arith-
metic means. Note that we omit the variance since it is
small enough that it would not be visible in the figure. All
experiments were executed on an Intel© Core™ i7-9700T
CPU @ 2.00GHz.

The deterministic Schreier-Sims algorithm for wreath-
product decompositions, as implemented in mpsym, is gen-
erally the fastest variant in the evaluation, except for the
Coolidge topology. Constructing a BSGS for this particular
topology is computationally expensive due to the large order
of the corresponding automorphism group (> 10214). Here,
GAP outperforms mpsym. This is likely because of the more
advanced heuristics and BSGS construction algorithm variants
it employs.

There exist more sophisticated BSGS correction algo-
rithms such as the Todd-Coxeter-Schreier-Sims algorithm [19].
Through the use of such algorithms, GAP can efficiently
construct a BSGS for groups of very large order explaining
its orders of magnitude better performance for the Coolidge
topology. Currently, mpsym does not implement any such
algorithm. However, we argue this is only a minor limitation.
Figure 8 only serves to show that BSGS construction as
implemented in mpsym is reasonably fast. For large hier-
archical topologies like Coolidge or HAEC, constructing a
full BSGS is not necessary for DSE as described in section
IV, such that the overall overhead incurred by integrating
mpsym into a DSE flow remains small as we will see in
the following. Finding automorphism group generators using
Nauty and subsequent BSGS construction are only necessary
once per topology. Because of this, mpsym implements a
mechanism for precomputing BSGS(s) and storing them in
a JSON file that can later be parsed prior to DSE.

B. Mapping Normalization

We investigate the execution times of the mapping normal-
ization with the three approaches presented in Section IV for
the same four architectures. Since the difficulty of normalizing
a mapping depends on its size (i.e. number of tasks) we
compare the execution time for mappings of increasing sizes
(1, 2, 4, 8, 16 and 32). We normalize 100 randomly generated
mappings for each of those mapping sizes. Figure 9 shows
the average execution times with standard deviation estimators
depicted as error bars.

Note that while local search is not guaranteed to yield
correct results, its accuracy was perfect in our tests. This is
likely because all relevant automorphism groups are relatively
small, in part thanks to wreath product decomposition. We
applied the latter whenever possible, i.e. for all architectures
except Exynos. For large hierarchical architectures, performing
mapping normalization can otherwise be outright infeasible,
i.e. for the Coolidge architecture where normalizing just a
single mapping is otherwise not possible even with several
minutes of computing time.

Notice that even for the large Coolidge architecture, nor-
malization is very fast. In particular, it is only slightly slower
than normalization for the small Exynos architecture when
using the iterate approach and even faster for larger

MPPA3 Coolidge Simple cluster

Exynos HAEC

1 3 10 30 1 3 10 30

1 3 10 30 1 3 10 30

0.02

0.03

0.05

0.01

0.02

0.03

0.001

0.010

0.100

1.000

0.2

0.3

0.4

No. of tasks (to be mapped)

R
un

tim
e

[m
s]

(l
og

)

iterate local search orbits

Fig. 9. Comparison between the three mapping normalization heuristics.

mappings when using the orbit algorithm. For this particular
architecture, decomposition is particularly effective because
its clusters exhibit a topology whose corresponding automor-
phism group is isomorphic to a symmetric group, for which
normalization is trivial. This demonstrates that our approach
scales very well to large hierarchical architectures. For the
three hierarchical architectures all normalization algorithms
perform similarly, with orbit enumeration tending to slow
down with increasing mapping size and local search generally
being the fastest option. We use local search for the remainder
of this evaluation.

C. Design Space Exploration

Having shown that mpsym is on-par with an equivalent im-
plementation utilizing state-of-the-art CGT algorithm imple-
mentations, we will now examine how it fares in its intended
use. For this, we evaluate our methods on an end-to-end DSE
task. For our evaluation we consider the Embedded System
Synthesis Benchmark Suite [20] (E3S). This benchmark suite
consists of 20 benchmarks with up to 9 task each, coming from
multiple embedded domains: automotive/industrial, telecom-
munications, networking, consumer and office automation.
We use a methodology similar to [8], where we consider
different architecture topologies with the resources described
in the E3S benchmarks. For simulation and DSE, we employed
mocasin [21], an open-source python DSE framework with a
discrete-event simulator, and use mpsym’s Python interface.
With this integration, mpsym can automatically derive the
symmetries from any architecture format supported by mo-
casin, like the ones based on IEEE Standard 2804-2019.

1) Genetic Algorithms: We start by reproducing the evalua-
tion from [10] by applying our method to a genetic algorithm.
The genetic algorithm follows the general approach used by
Sesame [22]. The basic idea of this evaluation method is to
replace a simulation cache with a symmetry-aware simulation
cache. Two mappings that are equivalent by symmetries pro-
duce the same result in the simulator. Thus, when the genetic

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

algorithm evaluates a mapping, if it has already evaluated
another mapping which is equivalent to it, it can retrieve the
result from the symmetry-aware cache. Since only the cache
is aware of the symmetries, the genetic algorithm behaves
identically with this symmetry-aware cache and with a regular
one: it produces exactly the same results.

For each architecture topology, we do a DSE for each appli-
cation of the E3S benchmark suite, once using a regular and
once a symmetry-aware cache. We run the genetic algorithm
for 10 generations with 10 offspring each. To account for
the randomness in the algorithms, we execute each algorithm
with 10 different random seeds. Figure 10 shows the effect
of a symmetry-aware cache for pruning the design-space
exploration for the different architectures. We normalize the
execution times for each execution of the DSE algorithm
(with a concrete random seed, application and architecture),
such that the time of the execution with a regular cache
is 1. The figure shows the (geometric [23]) mean of the
relative execution time of the whole benchmark suite over all
runs with the symmetry-aware cache. Note that this refers to
the execution time of the DSE itself, not the results of the
simulation. The results are identical when using a symmetry-
aware or a regular cache. We also disambiguate the execution
time of the exploration with a symmetry-aware cache in the
actual exploration time, and the overhead from the symmetry
calculations. The error bars in the figure show the estimated
variance from the multiple random executions and different
benchmarks.

0.00

0.25

0.50

0.75

1.00

Exynos Simple cluster MPPA3 Coolidge HAECR
el

at
iv

e
ex

pl
or

at
io

n
tim

e
(n

or
m

ed
) runtime overhead simulation time

Fig. 10. Exploration time reduction via symmetry-aware caching.

We can see in Figure 10 that using mpsym improves the
execution time in all cases, especially in the case of complex
topology of the Kalray MPPA3 Coolidge. Here, our algorithm
improves the execution time by a factor of 5.6×. The DSE
for the Exynos architecture is also considerably faster with a
symmetry-aware cache, reducing the time to slightly less than
half, on average. The results are less impressive for the HAEC
architecture, which is similarly complex to the Kalray MPPA3
Coolidge, yet using mpsym still yields a net improvement.
The symmetries of the NoC topology in the HAEC clusters
are not completely captured by its automorphism group [12],
[10]. The NoC mesh in the HAEC architecture also has partial
symmetries that can be leveraged in a non-trivial fashion (cf.
Section III). The same is true for the topology of the stacked
clusters, where the topmost cluster cannot communicate di-

rectly via the wireless inter-board links to the one in the bottom
(cf. Figure 1). We expect that using computational methods
in inverse semigroups [24] could yield greater improvements
this case, but these are not fully implemented in mpsym yet.
Moreover, the computational overhead for these methods is
considerably higher than for the special case of groups. It is
less clear that the trade-off would be beneficial for DSE, at
least not without algorithmic innovations in the comparatively
less-studied computation of partial symmetries.

Using the generic methods of [10], the runtime of the DSE
was several orders of magnitude higher than the regular cache
for the complex architectures (Coolidge, HAEC). As such,
we excluded them from the figure for readability and since
executing them on the whole benchmark suite for multiple
random seeds would require several weeks of computation. As
an example, a single evaluation of the genetic algorithm for
the MPPA3 Coolidge takes around a minute with the methods
presented here, while it might take over an hour with the
methods from [10]. This is in part because the implementation
in mpsym is more optimized. For the smaller architectures, the
methods are more comparable (and in fact, identical, for the
Exynos architecture without hierarchy). It is worth mentioning
that we do not include application symmetries, e.g. considering
data-level parallelism for the mapping symmetries. We cannot
extract these from the E3S suite, since it does not include
the source code for the tasks, nor do we have methods to
do this automatically. This omission stands in contrast to
the evaluation in [10], where application symmetries were
shown to significantly improve the effectiveness of the meth-
ods. Including application symmetries is orthogonal to our
contribution in this paper and the methods we present here
would also benefit from doing so.

0

50

100

0 2 4 6 8 10
No. of generations

R
el

at
iv

e
m

ap
pe

r
re

su
lts

No symmetries Symmetries (mpsym)

Fig. 11. The effect of symmetry normalization on genetic algorithms on the
MPPA3 Coolidge topology as a function of the number of generations.

We can use mpsym to improve the results of the algo-
rithm, not only its runtime. For this, we expose only the
(lexicographically-minimal) canonical representatives to the
algorithms as a mapping representation [15]. In this way
we can explore the set of orbits M \ G as described in
Section IV-B, instead of exploring the whole set M . With
the same basic setup as in Figure 10 we now compare the
regular variant (without symmetries) with a variant executing
the exploration on a pruned design space.

In contrast to the symmetry-aware cache, this does change
the results of the DSE. As such, we also consider the simulated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

runtime of the best mapping found, on the target architecture,
which quantifies the quality of the result. In contrast, we
also compared the exploration time for the DSE on the
host machine. Note that these two values are fundamentally
not comparable, since they refer to different times. One is
simulated and pertains the benchmark, while the other one is
measured and refers to the DSE itself. Nevertheless, lowering
both times is relevant to improving DSE.

Since the times are different for the different applications,
we again consider relative times, showing the relative im-
provement on the quality of the result by using mpsym. The
results are shown in Figure 11, which reports the relative
improvement of the results. For each generation, we show a
box-and-whiskers plot with the partial results of the meta-
heuristic at that point. The figure only shows the results for
the MPPA3 Coolidge. For all other three achitectectures, there
was no (statistically significant) difference between the quality
of the results. Overall, the results show clearly that larger
design spaces benefit more from our method. On average,
using mpsym improved the quality of the results in the Kalray
MPPA3 Coolidge topology by 24.7%.

2) Extending to other Algorithms: A central property of
our methods is that they are, to an extent, algorithm-agnostic.
In principle, they can be used to improve any meta-heuristic
that has a regular structure in its search. To show this, we
implemented two additional mapping algorithms: a simulated
annealing algorithm based on [25] and tabu-search, following
the method proposed in [26]. We also implemented a simple
random walk search as a baseline. Both setups evaluated in
the previous section can be readily used for other algorithms.
We start by evaluating if mpsym can accelerate these other
algorithms by using a symmetry-aware cache. Other than
the symmetry-aware cache, the algorithms are completely
unmodified and produce the exact same results when using
mpsym.

Figure 12 shows the results of a symmetry-aware cache to
the other algorithms. This figure is analogous to Figure 10, ex-
tended to the other algorithms. For the random walk heuristic,
adding a symmetry-aware cache with mpsym did not change
the simulation time. With the additional overhead from the
symmetries computations, this algorithm performed worse by
using mpsym. This is to be expected, since a random walk
is a very unstructured search. Algorithms like tabu search or
simulated annealing, on the other hand, work on the basis of
a local search and will tend to compare similar mappings in
the process. In this setting, a symmetry-aware cache is more
profitable, as can be seen in the figure. Again, the results are
best in the complex and hierarchical topology of the Kalray
MPPA3 Coolidge architecture. Concretely, the execution time
of the simulated annealing heuristic was improved by a factor
of 8.55×.

When exploring the HAEC topology, on the other hand, the
marginal improvements in execution time are not enough to
offset the overhead from mpsym’s symmetry calculations. As
explained above, we believe this to be a consequence of the
missing partial symmetries in the current implementation. For
the smaller architectures (Exynos, multi cluster) we see that
changing operations made a modest difference only for the

simulated annealing tabu search

genetic random walk

Exy
no

s

Sim
ple

clu
ste

r

M
PPA

3 Coo
lid

ge

HAEC

Exy
no

s

Sim
ple

clu
ste

r

M
PPA

3 Coo
lid

ge

HAEC

0

1

2

0

1

2

Cache Type
R

el
at

iv
e

tim
e

runtime overhead simulation time

Fig. 12. The effect of caching on multiple algorithms.

algorithms. Most importantly, the experiment shows how our
method indeed works for multiple algorithms, benefiting three
completely different meta-heuristics without changing them at
all.

In some cases, like tabu search on the MPPA 3 Coolidge,
the cache overhead surpasses the simulation time. The figure
shows, however, that despite the overhead, the method yields
an overall improvement, reducing the total exploration time.

We also extend the evaluation of the improved exploration
in the factor space to the other mapping meta-heuristics. We
cannot directly extend Figure 11 to the other meta-heuristics.
The iterations of the different algorithms like generations,
or iterations of the tabu search and simulated annealing, are
fundamentally different and not comparable. Moreover, the
number of mappings evaluated by the heuristics is dynamic
and depends on the concrete values of the exploration. As
such, we cannot set the numbers of explorations to be identical
for the different heuristics. Nevertheless, we set the parameters
to attempt to have a similar number of simulations per meta-
heuristic. We set the number of random walk iterations to 300.
For the tabu search algorithm, we set the maximum number
of iterations to 5, each of size 5, with a tabu tenure of 5
and a move set of size 10. The simulated annealing heuristic
was the one with the least predictable iteration numbers. To
attenuate this, we set the initial temperature equal to the final
temperature as 0.1, and a temperature proportionality constant
of 0.5.

Figure 13 gives an overview of the improvements of using
mpsym in the different algorithms. This includes the results
in terms of the goodness of mappings. It also includes the
changes in relative exploration time, for reference between
the algorithms. The values are all normed such that the genetic

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

1

2.3
1.7

11

2.3 2.1

1

1

2

0.4

1.7

0.7

2.2

0.4

0.8

1

34.3

1 11

34.5

1 1

1

2.7

0.2

1.4

0.5

2.9

0.1

0.6

1

36.7 31.2

58.3

0.8

36.7

1

31.3

1
1.5

13.5

1.5
1

1.9

6.6

1

1

2.5

5.2 5.1

0.8

2.5

5.2 5.2

1
1.4

1
1.31.4

1.8
1.3 1.5

Exynos Simple cluster MPPA3 Coolidge HAEC

B
est

m
apping

E
xploration

tim
e

ge
ne

tic

ran
do

m
walk

sim
ula

ted
an

ne
ali

ng

tab
u sea

rch

ge
ne

tic

ran
do

m
walk

sim
ula

ted
an

ne
ali

ng

tab
u sea

rch

ge
ne

tic

ran
do

m
walk

sim
ula

ted
an

ne
ali

ng

tab
u sea

rch

ge
ne

tic

ran
do

m
walk

sim
ula

ted
an

ne
ali

ng

tab
u sea

rch

1

3

10

30

0.3

1.0

3.0

10.0

Mapping algorithm

R
el

at
iv

e
tim

e
(l

og
)

Regular Pruned (mpsym)

Fig. 13. Overall improvements of symmetry normalization on multiple algorithms.

algorithm without the symmetry pruning has a (relative) time
of 1, both for the simulated time of the best mapping and for
the exploration time of the DSE. This also allows us to com-
pare between the different mapping algorithms. The (relative)
exploration times reported for the standard algorithms include
the symmetry-aware cache and are thus still mostly faster than
the completely unmodified algorithms.

The overall improvement of using mpsym in terms of the
quality of the results is modest for the simpler topologies
(Exynos, simple cluster), yet consistent. Even for these ar-
chitectures, the methods are useful. However, the results are
most impressive for the Kalray MPPA3 Coolidge architecture,
where the simulated annealing heuristic found solutions which
were, in average, 32.4× better than without mpsym. In other
words, in less time as the unmodified version and without
changing the algorithm, our methods improved this algorithm
by an average of 32.4 ×. The mapping meta-heuristics consid-
ered perform extremely poorly on the enormous design-space
that arises from complex topologies like that of the MPPA3
Coolidge architecture. In that light, the strength of the results
is perhaps primarily an indication of the problem posed by
complex topologies in design-space exploration.

D. Scaling

The focus of this paper is the complexity in the architec-
tures, more so than the applications. Nevertheless, discussing
how the size of the application affects the usefulness of the
methods is still a relevant question, albeit not the central one.

simulated annealing tabu search

genetic random walk

2.5 5.0 7.5 2.5 5.0 7.5

1e-02

1e-01

1e+00

1e+01

1e+02

1e-02

1e-01

1e+00

1e+01

1e+02

Number of tasks

B
es

t
m

ap
pi

ng
(r

el
.,

lo
g)

Fig. 14. The effect of symmetry normalization on multiple algorithms on the
MPPA3 Coolidge topology.

Figure 14 shows the relative results of the DSE, in terms of
the simulated time achieved by the best mapping found, as a
function of the number of tasks in the benchmark. We see that
the improvements are less pronounced for larger numbers of
tasks. However, the largest benchmark in the suite has 9 tasks,
which is less than the number of cores in a single cluster of
the MPPA3 Coolidge (17). Thus, the E3S suite, while useful
for having multiple benchmarks from different domains, is not
ideal for evaluating the limits of our method.

To evaluate how our approach scales with larger applica-
tions, we used the open-source tool SDF3 [27] to generate
random Synchronous Data Flow (SDF) graphs. These graphs
can also be read and simulated by mocasin [21]. We generated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

graphs of increasing sizes, 2, 4, 8, 16, 32, 64 and 128 actors6.
We executed a DSE flow for each of these sizes on the Kalray
MPPA3 Coolidge model to evaluate the scalability of the
method for larger task graphs.

simulated annealing tabu search

genetic random walk

3 10 30 100 3 10 30 100

3 10 30 100 3 10 30 100
0.950

0.975

1.000

1.025

1.050

0.00

0.25

0.50

0.75

1.00

1.25

0.0

0.5

1.0

1.5

0.00

0.25

0.50

0.75

1.00

1.25

No. of tasks (log)

R
el

at
iv

e
m

ap
pi

ng
re

su
lts

Fig. 15. Scaling of symmetries to the relative mapper performance of random
SDF graphs on the MPPA3 Coolidge Platform.

Figure 15 shows the relative results of the DSE for the
random SDF graphs, in terms of the best mapping found
(simulated time). A dotted line at 1 shows the point where
the algorithms on the pruned space are equal to the regular
algorithms without symmetries. We can see that for moderate
amounts of tasks, between 16 and 32, using mpsym results in
an improvement. The method stops improving, and in fact at
some points being detrimental, for very large graphs (64−128
actors). It is safe to assume that for these very large graphs
both variants perform poorly, since the unmodified variant
already does so for low numbers of actors. An important
point to note here is that it is very likely that applications
with hundreds of tasks will probably have some data-level
parallelism, for which we could use application symmetries
as described and demonstrated to be useful in [10].

Figure 16 shows the effect of the number of tasks on the
other metric of DSE improvement, the relative exploration
time on the host machine. For the genetic algorithm, the
symmetries continue to be useful even for very large graphs,
while for the other algorithms there is at least no detrimental
effect. These results indicate that the methods scale better with
the architecture complexity than the application size. As men-
tioned above, we believe including application symmetries can
make the methods scale also well with increasing application
complexity.

When considering the scalability from the architecture’s
perspective, specifying concrete time complexities is difficult,
particularly for local search. This is the case because there
is a runtime/accuracy trade-off involved. For iteration, which
seems to be better than orbit enumeration, space complexity
is basically constant, since the size of the BSGS size does not

6The tasks in the SDF model, as in many dataflow models, are usually
called actors

simulated annealing tabu search

genetic random walk

3 10 30 100 3 10 30 100

3 10 30 100 3 10 30 100
0.75

1.00

1.25

1.50

1.75

0.25

0.50

0.75

1.00

1.25

0.7

0.8

0.9

1.0

0

1

2

3

4

5

No. of tasks (log)

R
el

at
iv

e
ex

pl
or

at
io

n
tim

e

genetic random walk simulated annealing tabu search

Fig. 16. Scaling of symmetries to the relative exploration time of random
SDF graphs on the MPPA3 Coolidge Platform.

really scale with group order for the groups involved. In this
case, we only need to store a BSGS for each proto/super graph
and generators are created from these. Time complexity is a
function of O(|H|) and O(|G|), for G oH . More importantly
though, the actual complexity as a function of the number of
PEs depends on the symmetries themselves. Nevertheless, the
results of this evaluation seem to indicate that the approach
does scale in practice to large and complex hierarchical
architectures.

VI. CONCLUSION AND OUTLOOK

In this paper we have presented mpsym, a C++ library im-
plementing novel domain-specific algorithms for accelerating
and improving DSE of complex, hierarchical architectures. We
have seen how our design integrates with existing algorithms
without modification, improving them both in terms of runtime
and the quality of the results. An evaluation on the E3S
benchmark significantly improved the DSE in the clustered
topology of the Kalray MPPA3 Coolidge, by an order of
magnitude in terms of exploration time, and three orders of
magnitude in terms of the quality of results. This is probably
mostly a testament of how regular algorithms struggle to deal
with complex topologies with multiple levels of hierarchy.

The methods presented here are well-suited to deal with
multiple levels of hierarchy by using a wreath-product de-
composition of the symmetry group. However, they still do
not achieve maximal performance on topologies with non-
trivial partial symmetries, like regular mesh NoC topologies.
In future work, we plan to use partial symmetries and the
theory of inverse semigroups to improve these cases as well.

The evaluation showed how the methods scale well with
increasing architecture complexity, yet they struggle with
increasing application sizes. We believe including application
symmetries should mitigate this, helping with scalability also
for complex applications.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

ACKNOWLEDGMENT

This work was funded in part by the German Research
Council (DFG) through the TraceSymm project (number
366764507) and the Studienstiftung des deutschen Volkes.

REFERENCES

[1] Kalray. (2020) Mppa3 coolidge. [Online]. Available: https://www.
kalrayinc.com/download/mppa-processor-flyer/

[2] G. Fettweis, M. Dörpinghaus, J. Castrillon, A. Kumar, C. Baier,
K. Bock, F. Ellinger, A. Fery, F. H. P. Fitzek, H. Härtig, K. Jamshidi,
T. Kissinger, W. Lehner, M. Mertig, W. E. Nagel, G. T. Nguyen,
D. Plettemeier, M. Schröter, and T. Strufe, “Architecture and
advanced electronics pathways towards highly adaptive energy-efficient
computing,” Proceedings of the IEEE, vol. 107, no. 1, pp. 204–231, Jan.
2019. [Online]. Available: https://ieeexplore.ieee.org/document/8565890

[3] A. Weichslgartner, S. Wildermann, J. Götzfried, F. Freiling, M. Glaß, and
J. Teich, “Design-time/run-time mapping of security-critical applications
in heterogeneous mpsocs,” in Proceedings of the 19th International
Workshop on Software and Compilers for Embedded Systems, 2016, pp.
153–162.

[4] A. Goens, R. Khasanov, M. Hähnel, T. Smejkal, H. Härtig,
and J. Castrillon, “Tetris: a multi-application run-time system
for predictable execution of static mappings,” in Proceedings of
the 20th International Workshop on Software and Compilers for
Embedded Systems (SCOPES’17), ser. SCOPES ’17. New York,
NY, USA: ACM, Jun. 2017, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/3078659.3078663

[5] A. K. Singh, A. Kumar, and T. Srikanthan, “Accelerating throughput-
aware runtime mapping for heterogeneous mpsocs,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 18, no. 1,
pp. 1–29, 2013.

[6] M. Thompson and A. D. Pimentel, “Exploiting domain knowledge
in system-level mpsoc design space exploration,” Journal of Systems
Architecture, vol. 59, no. 7, pp. 351–360, 2013.

[7] R. Piscitelli, “An examination of keystroke dynamics for continuous
user authentication,” Ph.D. dissertation, University of Amsterdam,
2014. [Online]. Available: https://hdl.handle.net/11245/1.430852

[8] T. Schwarzer, A. Weichslgartner, M. Glaß, S. Wildermann, P. Brand, and
J. Teich, “Symmetry-eliminating design space exploration for hybrid
application mapping on many-core architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 2, pp. 297–310, 2017.

[9] V. Richthammer, T. Schwarzer, S. Wildermann, J. Teich, and M. Glaß,
“Architecture decomposition in system synthesis of heterogeneous
many-core systems,” in Proceedings of the 55th Annual Design Automa-
tion Conference, 2018, pp. 1–6.

[10] A. Goens, S. Siccha, and J. Castrillon, “Symmetry in software synthesis,”
ACM Transactions on Architecture and Code Optimization (TACO),,
vol. 14, no. 2, pp. 20:1–20:26, Jul. 2017.

[11] V. Richthammer, F. Fassnacht, and M. Glaß, “Search-space decompo-
sition for system-level design space exploration of embedded systems,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 25, no. 2, pp. 1–32, 2020.

[12] M. V. Lawson, Inverse semigroups: the theory of partial symmetries.
World Scientific, 1998.

[13] B. D. McKay and A. Piperno, “Practical graph isomorphism, {II},”
Journal of Symbolic Computation, vol. 60, no. 0, pp. 94 – 112,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0747717113001193

[14] A. Goens, C. Menard, and J. Castrillon, “On compact mappings for mul-
ticore systems,” in Proceedings of the IEEE International Conference on
Embedded Computer Systems Architectures Modeling and Simulation
(SAMOS), D. Pnevmatikatos, M. Pelcat, and M. Jung, Eds., vol. 11733,
IEEE. Springer, Cham, Jul. 2019, pp. 325–335. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-27562-4 23

[15] ——, “On the representation of mappings to multicores,” in Pro-
ceedings of the IEEE 12th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC-18), Vietnam National
University, Hanoi, Vietnam, Sep. 2018, pp. 184–191.

[16] Á. Seress, Permutation group algorithms. Cambridge University Press,
2003, vol. 152.

[17] GAP – Groups, Algorithms, and Programming, Version 4.11.0, The
GAP Group, 2020. [Online]. Available: https://www.gap-system.org

[18] A. F. Donaldson and A. Miller, “On the constructive orbit problem,”
Ann Math Atrif Intell, vol. 57, pp. 1–35, 2009.

[19] D. F. Holt, Handbook of Computational Group Theory. CRC Press,
2005.

[20] R. Dick. (2008) Embedded systems synthesis benchmark suite (e3s).
[Online]. Available: http://ziyang.eecs.umich.edu/∼{}dickrp/e3s/

[21] C. Menard, A. Goens, G. Hempel, R. Khasanov, J. Robledo, F. Teweleitt,
and J. Castrillon, “Mocasin — rapid prototyping of rapid prototyping
tools: A framework for exploring new approaches in mapping software
to heterogeneous multi-cores,” in Proceedings of the 2021 Drone Sys-
tems Engineering and Rapid Simulation and Performance Evaluation:
Methods and Tools Proceedings, 2021, pp. 66–73.

[22] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective op-
timization and evolutionary algorithms for the application mapping
problem in multiprocessor system-on-chip design,” IEEE Transactions
on Evolutionary Computation, vol. 10, no. 3, pp. 358–374, 2006.

[23] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the
correct way to summarize benchmark results,” Communications of the
ACM, vol. 29, no. 3, pp. 218–221, 1986.

[24] J. East, A. Egri-Nagy, J. D. Mitchell, and Y. Péresse, “Computing finite
semigroups,” Journal of Symbolic Computation, vol. 92, pp. 110–155,
2019.

[25] H. Orsila, T. Kangas, E. Salminen, T. D. Hämäläinen, and
M. Hännikäinen, “Automated memory-aware application distribution
for multi-processor system-on-chips,” Journal of Systems Architecture,
vol. 53, no. 11, pp. 795–815, 2007.

[26] S. Manolache, P. Eles, and Z. Peng, “Task mapping and priority
assignment for soft real-time applications under deadline miss ratio con-
straints,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 2, pp. 1–35, 2008.

[27] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in
Application of Concurrency to System Design, 6th International
Conference, ACSD 2006, Proceedings. IEEE Computer Society Press,
Los Alamitos, CA, USA, June 2006, pp. 276–278. [Online]. Available:
http://www.es.ele.tue.nl/sdf3

https://www.kalrayinc.com/download/mppa-processor-flyer/
https://www.kalrayinc.com/download/mppa-processor-flyer/
https://ieeexplore.ieee.org/document/8565890
http://doi.acm.org/10.1145/3078659.3078663
https://hdl.handle.net/11245/1.430852
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://www.sciencedirect.com/science/article/pii/S0747717113001193
https://link.springer.com/chapter/10.1007/978-3-030-27562-4_23
https://www.gap-system.org
http://ziyang.eecs.umich.edu/~{}dickrp/e3s/
http://www.es.ele.tue.nl/sdf3

	Introduction
	Related Work
	Architecture Symmetries
	Architecture Symmetries
	Hierachical Architectures
	Limitations

	The mpsym Library
	The Schreier-Sims algorithm
	Finding canonical forms
	Finding orbits
	Wreath-Product Decomposition
	Architecture Description Language
	Limitations

	Evaluation
	Comparison to GAP
	Mapping Normalization
	Design Space Exploration
	Genetic Algorithms
	Extending to other Algorithms

	Scaling

	Conclusion and Outlook
	References

