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Abstract
The motivation for this study about Physical Layer Security comes from bridging the
gap between the vast theory and a feasible implementation. We propose a
Physical-Layer-Security Box as a system-level Box is a system-level solution, named
PLS-Box, to solve the key exchange between two wireless communicating parties. The
PLS-Box performs a novel key generation method named time-frequency filter-bank.
The entropy of the radio channel is harvested via a filter-bank processing, and then
turned into a reciprocal security key, at both ends. In this concept work, we also focus
on several PLS open issues, such as radio-frequency imperfections and accessibility to
the baseband communication modem. The goal is to show a wide applicability of our
PLS-Box to actual wireless systems, paving the way for an evolution of existing schemes.
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Cryptography, Internet of Things, Time-frequency analysis, UWB, OFDM, 5 G, 6 G

1 Introduction
Every year cybercrime and hacking cause a significant damage to citizens, institutions,
and companies worldwide. The total value at risk is assessed to be $5.2 trillion over the
next 5 years [1]. As confirmed by future projections [2], security and privacy are becoming
crucial for the Internet of Things (IoT) [3, 4] and 5 G [5, 6], e.g., in verticals such as e-
Health [7] or Industry 4.0 [8, 9]. The 5 G rollout [10] is also attracting more and more
attention today regarding its security [11]; especially considering the additional features,
such as reliable andmission-critical networks orMobile-Edge Computing (MEC) [12, 13],
which are particularly vulnerable.
As shown in recent reports [14, 15], new hacking threats are always on the horizon:

Internet of Things botnets (e.g., Mirai 2016 and its variants, Brickerbot 2017, Hajim
2016); ransomware attacks (e.g., WannaCry 2017, SamSam 2016, CryptoLocker 2013),
CPU side-channel attacks (e.g., Spectre 2018, Meltdown 2018, SWAPGSAttack 2019)
and even subscriber-identification-module (SIM)-card attacks (e.g. Simjacker 2019 [16]).
The importance of raising security awareness globally is clear. It is worth reminding that
most vulnerabilities and breaches are likely caused by lack of basic security awareness by
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employees or citizens themselves (e.g., the usage of weak passwords or clicking phishing
e-mails [17]). This motivates the urgent need of developing new fool-proof solutions
today for the security landscape of tomorrow. The conventional approach to design secure
communications is based on the computational intractability of cryptography primi-
tives [18], usually implemented in software. Symmetric algorithms, such as Advanced
Encryption Standard (AES), assure confidentiality between two parties, but require that
a pre-shared key is known as secret information in order to perform encryption and
decryption. On the other hand, asymmetric algorithms (such as Diffie-Hellman (DHE))
solve this key exchange problem, thanks to the mathematical intractability of factoriza-
tion and discrete logarithms. Modern elliptic-curve cryptography (ECC) belongs to this
category [19]. Generally, asymmetric algorithms are computationally expensive, slow,
and have a high energy consumption [20]. Cryptography asymmetric primitives tend to
consume three times more energy than symmetric primitives [21]. Moreover, a trusted
centralized unit, known as Public-Key-Infrastructure (PKI), is necessary to manage the
asymmetric keys.
Although cryptographic methods are constantly enhanced, they may not be applicable

in all modern mobile contexts. Because of additional device requirements, such as long
battery life, low complexity, low computing power, and small memory [22, 23], there is
in fact a whole research field dedicated to the so-called lightweight cryptography [24].
This is considered more suitable for IoT, with security schemes specifically designed for
resource-constrained devices [25].
To complete the picture, it is worth mentioning that asymmetric cryptography will be

no longer secure with the advent of quantum computers [26]. In line with the emerg-
ing paradigm of post-quantum-cryptography (PQC) [27, 28], today there is an increasing
demand for longer security keys in conventional security schemes [29]. The consequences
are likely more overhead and latency in the actual communications and databases.
Generally, across the protocol stack from application layer (APP) to the physical layer

(PHY), layers are ideally modular and independent. In practice, security functionalities
instead might be redundant and inefficiently integrated. Therefore, cross-layer security
solutions come into play [30, 31], alternatively to conventional cryptography.
Within this evolving context, new solutions, such as Physical-Layer Security (PLS), are

currently under investigation as potential technologies to provide a complementary and
flexible layer of security. Among different methods, we can cite channel-reciprocity key
generation (CRKG), wiretap coding [32], and physical-unclonable function (PUF) [33–
36].
Originally, PLS dates back to the late 1940s [37–39]. Over the years, the PLS paradigm

has been emerging from different complementary fields, and more recently, it has been
investigated for many applications: TV/radio systems [40], ultra-wideband (UWB) sys-
tems [41], WiFi [42], Bluetooth [43, 44], power-line-communication [45], optical fibers
[46], satellite links [47], vehicular communication [48], visible light communication [49],
and underwater communication [50]. However, to the best of our knowledge, it has
not been fully commercially developed and exploited yet. In a nutshell, PLS imple-
ments some security functionalities down at the PHY, to achieve improvements in speed,
energy, resilience, and isolation. The innovative strength of PLS relies upon the exploita-
tion of the inherent randomness in the communication channel, electronic circuits
[51, 52], and radio-frequency (RF) systems [53]. PLS can in fact leverage on unpredictable
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entropy sources, such as the radio wave propagation, which varies due to mobility and
environmental changes.
In conclusion, PLS offers interesting opportunities today, but it is not completely clear

how it could be efficiently integrated in existing security frameworks. As far as we know,
so far, only few research projects (e.g., Phylaws [54], WiPhyLoc8, and Prophylaxe [55]),
and laboratory prototypes have been dedicated to PLS. All of this demands the need of
further research for practical solutions.
Our contributions in this work about PLS are:

• Addressing the open issues for implementation of PLS Key Generation, bridging the
gap between literature and practice;

• Presenting a new PLS system-level solution named PLS-Box to solve the key
exchange between two wireless communicating parties, different from conventional
cryptography algorithm;

• Presenting a novel key generation quantization method named time-frequency
filter-bank with some examples;

• Proposing a preliminary unified framework for Physical-Layer-Security Key
Generation for easy comparison and future development in the research community.

The rest of the paper is organized as follows: Section 2 describes the PLS state of the
art. In Section 3, our PLS-Box concept is presented, with implementation issues discussed
in Section 4. A novel time-frequency analysis for CRKG is described in Section 5. This
leads to Sections 6 and 7, where the filter-bank quantization method is described and
some examples are provided in line with actual wireless systems. Finally, in Section 8, a
framework to assess the PLS-Box CRKG performance is provided.

2 State of the art
In the IoT era, a mobile device is equipped with many sensors and intelligence, within an
heterogeneous architecture. Given that, it is reasonable to expect that PLS will be influ-
enced also by other fields [56], such as hardware security or biometrics [59], along its
evolution path. Potentially, CRKG and RF fingerprinting [60] techniques can be revo-
lutionary for key-exchange and authentication problems, but they still have limited and
contradicting performances, as reported in current literature. For example in [61], 1 min
is necessary to generate 128 bit of security key, whereas in [62], in theory, only 16 ms are
estimated for 256 bit of security key.
Traditionally, three entities are considered to investigate the security of a communica-

tion channel: Alice, Bob, and Eve. Alice wants to privately send messages to Bob and vice
versa. Eve is instead amalicious entity, whowants to eavesdrop on the Alice/Bobmessages
or interfere with them [31, 63].
In literature, works on PLS are numerous [64]. For the sake of simplicity, we hereby

divide them into two branches, according to [65].

2.1 Key-less

Key-less PLS is based on information theory, leveraging on the secrecy capacity con-
cept, given by the pioneering works of Shannon [37] and Wyner [38]. As explained in
[62], the key-less PLS consists of building codes for secrecy, without using security keys:
Alice and Bob encode the data to communicate in such a way that Eve cannot be able
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to decode [66], thanks to the performance gap between the legitimate channel and the
eavesdropper’s channel. The so-called secrecy capacity characterizes the maximal rate at
which this successful coding between Alice and Bob may work. Today, the literature is
vast [67, 68], including multi-antenna and multi-user PLS schemes, developed in parallel
to Multiple-Input-Multiple-Output (MIMO) communications over the last decades. For
example, artificial noise techniques [69–71] or wiretap coding [72] fall into this branch.
In a nutshell, key-less PLS has some advantages:

• Bit-stream security, with no key generation;
• Suitability for time division duplex (TDD) and frequency division duplex (FDD).

and disadvantages:

• Partial reduction of communication capacity (i.e., data rate);
• Assumptions on channel state information (CSI) and/or radio channel statistics;
• Required knowledge about eavesdropper capabilities, such as number of antennas

and noise level.

2.2 Key-based

Key-based PLS (named CRKG in the following) extracts keys from a common source of
randomness, as suggested initially in [39, 73]. In wireless communication systems, the
channel itself is the source, as it varies randomly in time, space, and frequency. Basically,
there are two fundamental assumptions:

1. The radio channel is reciprocal, such that Alice and Bob experience the same
wireless medium and so can share the same secret. Unfortunately, this is not
practically true for frequency-division duplex (FDD) systems, where uplink (UL)
and downlink (DL) occur in separated bands. This is possible however in TDD,
which is increasingly the duplexing scheme of choice for wireless systems.

2. The scenario offers a spatial protection (i.e., spatial decorrelation) against attackers.
Eve’s radio channel is probably very different from Alice’s and Bob’s, because Eve
cannot be superimposed to Alice’s or Bob’s positions. However, the well-known
assumption of a correlation distance equal to half-wavelength (i.e., λ/2) [40] may
not hold in reality, as demonstrated by [61, 74, 75].

One way to accomplish key-based PLS is by processing the received-signal-strength
indicator (RSSI) [75–77]. RSSI is a PHY metric computed as an average received power
over a certain time of the communication signal. Since it depends on the RF chain as well
as the analog-digital conversion (ADC) and so is vendor-dependent. Since it is generally
available in most wireless modems/interfaces, RSSI has been widely adopted for key-
based PLS experimental works. RSSI-based CRKG primarily benefits from a time-variant
scenario: since the terminals are moving (or there are significant mobile objects/people in
the surrounding), the security key is generated from received power fluctuations (i.e., fad-
ing). In general, the acquisition rate of RSSI limits the key quality and size. For instance,
in a scenario with limited mobility, the fading has little temporal variation, and so, RSSI
methods become generally very slow and inefficient. For example, in [76] 8 min are nec-
essary to generate 256 bit of secret key. Moreover, in [78], the RSSI key-based scheme [79]
is demonstrated to suffer from sabotaging of key generation that reveals up to 47% of the
generated secret bits.
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Differently, the CSI CRKGmethods generate secret keys fromwideband observations of
the channel, such as channel impulse response (CIR) or channel transfer function (CTF)
(e.g., OFDM sub-carriers) [80]. This is the approach we follow in this work.
In a nutshell, key-based PLS has some advantages:

• Easy experimental set-up [43, 76], for instance using software-defined-radio (SDR),
Zigbee or WiFi cards;

• Compatibility with modern encryption methods, since only the key distribution
method is addressed;

• Peer-to-peer key exchange without a centralized control.

and disadvantages:

• Suitability only for TDD systems, as it requires a reciprocal channel;
• Constraints from the radio channel characteristics.

2.3 Key-less vs key-based comparison

Practically, key-less PLS addresses confidentiality directly encoding the data thought the
channel. Then, the performance directly depends on the knowledge of the channel charac-
teristics, such as signal-to-noise ratio (SNR), and Eve’s capabilities. However, the profile of
an attacker is usually difficult to estimate a priori. If Eve is more powerful than expected,
(e.g., by having a very large number of antennas or a low-noise receiver), then, the effec-
tive security capacity may be effectively lower than the employed data rate. The system
might become intrinsically insecure.
Key-based PLS, on the other hand, may rely on existing and well-established symmetric

encryption schemes to ensure confidentiality, addressing only the CRKG key generation.
This decoupling aspect allows to flexibly renovate the encryption key on demand or to
change the key strength if necessary.
Because of these considerations, we argue that key-based PLS is more likely to be

integrated more easily into a realistic overall security concept.

3 PLS Box
We present hereby the PLS-Box with a high-level description of its functionalities. The
PLS-Box is conceptually similar to hardware-security-module (HSM) [81] or Trusted-
Platform-Module [82, 83]. The goal of the PLS-Box is to performCRKG from the received
communication data, as depicted by the block diagram in Fig. 1.
The important point here is the interaction between our PLS-Box and the wireless base-

band communication modem. In reality, as shown by [84], it is hard to claim if a given
modem is trustable or not, since is the only point of access to the radio channel. Therefore,
we define 3 ideal configurations:

• The box is implemented as part of the modem and so has low-level access to all PHY
features. This is the usual assumption in literature. This way is called “modem-aided”
in the following;

• The box bypasses the modem and operates independently (Fig. 1). In this case, the
box needs only a minimum amount of information from the modem, such as a
trigger signal of incoming received frame, for example. This way is called “blind” in
the following.
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Fig. 1 System-level description of the PLS-Box at receiver side. The PLS-Box is independent form the
baseband modem, providing a security path for the key generation. The data decryption is performed
externally with AES-128, for example

However, there is a general trade-off between security and efficiency: the modem needs
the box to encrypt and decrypt the data, whereas the box needs the modem to access the
radio channel or the received signal. Practically, replicating all the modem functionalities
(such as synchronization, mixing, sampling and channel estimation) in the box is costly
and redundant, while adding the PLS blocks in the modem requires its full re-design.
However, considering the overall security on a device, it is worth adopting a principle of
isolation among the chips preventing the spread of a malicious attack, even at PHY.
Finally, in terms of cross-layer security, the PLS-Box could pass the generated key

to perform conventional encryption (see Fig. 1). Alternatively, the PLS-Box itself can
perform decryption (and encryption) of the communication data already at PHY.
Before describing the novelties of the PLS-Box in details, it is necessary to

define the CRKG protocol which the PLS-Box is supposed to perform, in line with
[31, 67, 68, 85, 86].

3.1 CRKG protocol
• Authentication: Alice and Bob must trust each other before performing CRKG. This

preliminary stage could be achieved in a conventional way [85], by exploiting, for
example, secret keys stored by the devices manufacturer and challenge-response
authentication methods. Alternatively, there are PLS techniques, such as PUF [87],
vicinity-solution [61], or radio-signature authentication [85, 88, 89]. RF fingerprinting
can be implemented today with good results [60, 90–95], thanks to the power of
classification and clustering of machine and deep learning [96–98]. At this stage, Eve
can try to impersonate Bob or Alice, playing a man-in-the-middle attack [85].
Authentication is out of scope of this work.

• Channel probing: While Alice and Bob exchange frames for communication, their
PLS-Boxes work for security. If the modem access is granted to the PLS-Box, the
focus could be on the frame preamble of the received signal. Such preamble contains
sounding sequence (e.g., Zadoff-Chu) which are commonly available for
communication tasks (e.g., channel estimation [99], carrier recovery, and
synchronization) and therefore suitable to probe the radio channel for CRKG.
Differently with no modem support, the PLS-Box can acquire the received full frame
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and process it for CRKG. During this stage of the protocol, Eve can perform several
attacks [100]. For example, in [74], a stalking attack is performed by Eve in proximity
of Bob, obtaining successfully up to 97% of the CRKG key. In IoT scenarios, Eve can
be represented by a multitude of nodes (e.g., botnet), which can cooperate passively
to wiretap the Alice-Bob link in multiple positions, even simultaneously at both ends.
Being part of the network, Eve is likely to be similar to Alice and Bob. Anyway, it can
also have more powerful hardware, and with that, it can produce intentional
interference, namely jamming [40, 85]. The negative consequences of this attack
could be unbalanced-reciprocity in Alice and Bob signals, or a forced repetition of the
CRKG scheme, as sort of denial-of-service. This could be harmful, because Eve might
attempt to trigger multiple CRKG sessions and crack the key.

• Quantization: After gathering enough frames, the PLS-Box must transform signals
into security keys. This is the crucial stage called quantization. It is of course a lossy
operation. PLS key-based methods commonly use thresholding or level-crossing
algorithms [79, 101]. The ideal goals are:

– Alice and Bob agree on the same key, regardless of additive white Gaussian
noise (AWGN), interference, RF impairments and TDD delays, and Eve’s
attacks;

– The quantized-generated key is random;
– Quantization is fast and adaptive to radio channel conditions.

In this work, we propose a filter-bank processing as basis for quantization in Section 6.
• Reconciliation: Even though Alice and Bob experience the same channel, they may

end up with different keys, as aforementioned. The reconciliation stage corrects these
mismatching errors. For example, forward error correction (FEC) schemes, such as
Bose Chaudhuri Hocquenghem (BCH) codes or Secure-Sketch [102, 103] can be set
to refine the quantized key and fix up to 20% of the bits [61]. Unfortunately, the
reconciliation imposes an additional data exchange between Alice and Bob, and so,
Eve can perform other attacks. It is worth reminding that reconciliation is a delicate
stage, because the whole PLS CRKG scheme collapses if Alice and Bob do not match
the generated key perfectly. Reconciliation is out of scope of this work.

• Privacy amplification: Privacy amplification is usually included as the last stage in
order to maximize the entropy of the reconciled key, thanks to one-way
cryptography, such as hash functions. Amplification is out of scope of this work.

• Symmetric encryption: Once the Alice/Bob key is ready, any symmetric encryption
scheme (e.g., AES) can provide confidentiality. It can be implemented by hardware or
software, by the PLS-Box or externally.

4 PLS-Box implementation issues
Figure 2 represent the first step towards a broad PLS implementation inside a wire-
less transceiver. In details, the PLS authentication methods might acquire unique RF
fingerprints (i.e., signatures) from the transmission path, such as local oscillator (LO),
mixer, and power amplifier (PA) blocks. Instead, the key-less PLS might operate digitally
beyond the ADC, as part of the channel coding.
On the other hand, the key-based PLS works on the data obtained from the receiver

path. Considering practical implementation, it is not defined yet at which section would
be better to operate: ideally, the best option is the modem-aided way, where the PLS-Box



Zoli et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:114 Page 8 of 24

Fig. 2 Block diagram of RF transceiver with PLS extensions: PLS blocks in green and RF impairments in red

has at disposal the full received frame at baseband, with RF impairments compensated
and the data payload decoded. On the other hand, in a blind way, a possible solution is to
perform only down-conversion and sampling on the received signals, without any intent
of data demodulation or decoding.
In the end, the compensation of RF impairments remains a big open issue, because

they represent, in fact, the constraints to Alice-Bob reciprocity and key matching. For
instance, a base station (BS) has better equipment than any user equipment (UE) (e.g.,
number of antennas, better LNA, and better ADC). The differences in RF transceivers are
hence reflected in signal imperfections, asymmetrically. The same frame in UL and in DL
is differently influenced by the diverse RF hardware [104], even in TDD systems, although
the radio channel has not changed at all.
We list here several hardware non-idealities that should be taken into account for PLS

CRKG realistic results:

• PA distortion: Caused by the non-linearities present in the transmission PA
[105–107]. The distortion consequences are represented by the growth of undesired
harmonics (out-of-band and in-band), named inter-modulation effects;

• Phase noise: Caused by imperfections in the LO [105, 106, 108]-generating small
phase drifts in the mixing stage, during up/down-conversion;

• Carrier frequency offset (CFO): The CFO are frequency shifts of the incoming
signals, with respect to expected carrier frequency [105, 108], due to LO skew (i.e.,
thousands of Hz) and Doppler effect (i.e., hundreds of Hz at most);

• I/Q imbalance: Caused by differences between the in-phase and quadrature
components and by non-idealities of the LO [105, 106, 108, 109];

• ADC non-idealities: ADC imperfections, such as clipping, bias, and jitter, may
negatively contribute to alter synchronization and sampling between Alice and Bob
[105, 107];

• Noise: AWGN thermal noise power level can differ between Alice and Bob, due to
different receiver temperatures and different hardware.

In conclusion, there are several open issues: where to allocate the PLS blocks along the
RF chain, whether to trust or not the basebandmodem, and how to account for the impact
of non-reciprocal hardware impairments.
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5 Time-frequency CRKG
Regarding the channel probing and the quantization stages of the CRKG protocol, we
introduce here the considerations which lead to the idea of the filter-bank. Table 1 shows
important radio channel parameters for a time and frequency analysis, as explained in the
following.

5.1 Time-domain

Wireless links are often quasi-static. Channel fluctuations in time (i.e., time-selectivity) in
communications are a secondary issue in many scenarios, such as home, office, shopping
mall, restaurants, and city center. To assess such channel time variations, the well-known
coherence time Tcoh [110, 111] is used to describe a time window where two channel real-
izations (i.e., frames) are correlated along time. In reality, apart from high-speed trains,
satellite, or flying objects, Tcoh ranges from 1 ms up to 250 ms. With reference to Table 1,
the Tcoh is inversely proportional to the Doppler spread (νDPS), which is the dispersion
metric that accounts for the frequency shifts in the communication bandwidth, due to the
mobility of terminals.We define tp as the PLS-Box probing time, defined as the time inter-
val between two received frames (Fig. 3). Tcoh can be many orders of magnitude larger
than the channel probing interval tp, depending on the PHY specifications. This means
that Alice and Bob are likely to sound the channel in a reciprocal way before it changes
irreversibly and so extract the same key.
With this in mind, it is possible to make important considerations on the limits of RSSI-

based CRKG. Generally, at the baseband, a narrowband radio channel is modeled as a
complex Gaussian stochastic process (with Rayleigh amplitude and uniform phase dis-
tribution), representing a model for NLOS small-scale fading. Given the received signal
envelope and a threshold set for its level crossing, the well-known level-crossing ratio
(LCR) and the average fade duration (AFD) are expressed by the following Eqs. (1 ,2), as
fading parameters:

LCR = √
2π fDρe−ρ2

(1)

AFD = e(ρ
2)−1 / (

√
2π fDρ), (2)

where fD is the maximum Doppler shift and ρ is the ratio between the LCR thresh-
old and the root-mean-squared level of the signal envelope [110]. The ideal situation is
given by the scenario where the channel fading has large LCR and short AFD, meaning,
respectively, that the keys are likely to have 0s and 1s uniformly distributed (i.e., no long
consecutive sequence of 0s or 1s). According to the above equations, this can be achieved
by increasing the parameter fD. This can be experienced only with fast moving terminals
(or at very high carrier frequency), as confirmed experimentally by [44]. fD is not a design
parameter, and, essentially, it limits the RSSI methods. The same conclusions are sup-
ported by [112], where the RSSI CRKG upper bound is computed with Nakagami fading.
For an extension of the above equations with non-Rayleigh fading see [113, 114]. For sake

Table 1 Time-frequency parameters

Domain Dual CRKG Channel

Time, t
F−→ ν Doppler tp Tcoh ∝ 1/νDPS

Frequency, f
F←− τ Delay fp Bcoh ∝ 1/τDS

F indicates Fourier transform
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of brevity, we focus in the following on our novel filter-bank approach which is by-design
independent on the kind of fading. It is worth stressing that Rayleigh-fading assumption
across literature [100] might not be found in real systems, where the radio channel statis-
tics are usually not known, must be estimated and are likely to be ruled by Rice-fading
(e.g., in indoor environments). As well as for communications, it is worth recommending
realistic channel models as shown in [115].

5.2 Frequency-domain

Differently from time-domain variations, the channel multipath is instead nearly always
present, independently from terminal movements. In some situations, such as point-
to-point links, strong LOS, beamforming-based, or narrowband signals, the multipath
components (MPC) may not be noticeable. However, in most cases, particularly with
broadband communications, the channel multipath can be used for the generation of keys
(i.e., CSI-based CRKG).
Depending on the antennas, a received signal is generally composed by a multitude

of attenuated and delayed replicas of the transmitted signal, because of the propagation
interactions among the emitted electromagnetic radio waves and the surrounding envi-
ronment (e.g., buildings or walls). The channel distortion (i.e., frequency selectivity) can
be exploited for our CRKG purposes, considering to have enough bandwidth to resolve
the multipath components. This is why we deem the multipath as a more reliable feature
of the wireless communications for PLS, rather than fading. In other words, the multi-
path can be considered a signature of the channel, dependent on the environment, the
antennas, and the terminal positions.
Similarly to the previous consideration on Tcoh, the well-known coherence bandwidth

Bcoh (see Table 1) [110], describes the bandwidth at which two frequencies are likely to be
correlated. It ranges from tens of kHz up to hundreds of MHz, depending on antennas,
propagation scenario (i.e., urban, suburban, and rural) and carrier frequency, and it is
inversely proportional to the delay spread τDS. Then, we define fp as the frequency interval
at which the PLS-Box samples the bandwidth of the received signal (see Fig. 4).
There are already evidence confirming that the frequency domain offers superior per-

formance and more flexibility for PLS: in [42], a key generation of 90 bits per packet
is obtained between Alice and Bob, with only 5 ∼ 10% of key mismatch, whereas,
approximately, only tens of bit per second are generated via RSSI methods.

6 PLS-Box filter-bankmodel
A combined time-frequency analysis benefits from multipath and mobility to harvest
entropy for CRKG. The validity of this approach is additionally confirmed by how
efficiently the radio resources are commonly scheduled in a time-frequency grid (e.g.,
time slots and sub-carriers) in actual wireless networks (e.g., LTE, 5 G).
Considering a general model for the filter-bank, the starting point is represented by the

following:

y(t) = h(t) ∗ x(t) + n(t); (3)

where x is the transmitted signal, n is the AWGN component, h is the baseband radio
channel transfer function, y is the received signal, and * denotes the convolution operator.
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The channel h can be characterized by a time-variant complex impulse response [61, 116]:

h(t, τ) =
Np∑

α(t) · e−jφ(t)δ(t − τ(t)), (4)

where Np is the number of multipath components (MPC), the set of [α, φ, τ ] are, respec-
tively, the random amplitude, phase, and propagation delay and δ(t) is the Dirac delta
function.
Alternatively, Eq. (4) can be rewritten with an explicit time-frequency representation of

the channel:

h(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
S(τ , ν) · ej2π(t·ν−f ·τ)dτdν, (5)

whose parameters are summarized in Table 1. The function S(τ , ν) is the delay-Doppler
spread function [117, 118]. This describes how the energy transmitted is dispersed in
delays (τ ) and Doppler (ν) shifts through the channel, which is, in fact, the unpredictable
chaotic nature of the radio channel.
In our PLS context, the signal x(t) is the transmitted frame by Alice to Bob and vice

versa, as sketched in Fig. 3 (we assume hAB = hBA). In practice, the PHY characteristics of
the signal are constant in a short term, but the content of the frame (e.g., payload) might
change. Alice and Bob are primarily communicating and not sounding the radio channel.
So, in a modem-aided CRKG, we can assume that the PLS-Box has perfect knowledge of
x(t), being capable to detect, demodulate, and decode y(t). In a blind CRKG, the PLS-
Box operates on y(t) with limited knowledge of x(t). For example, the box knows only
when a frame starts and ends or which bandwidth is used. In the following, we assume a
blind CRKG with x(t) as a δ(t) of Dirac, negligible AWGN noise n(t) and y(t) available at
baseband.
Then, we define a filter-bank block Fb as a set of M filters which process N received

frames, sampled at intervals fp and tp, respectively. The goal is to project the received
frame y overM parallel filters in the frequency domain, providing at the endM ·N outputs
to the quantization stage of CRKG. This not only increases the key generation rate, but
also adds more degrees of freedom to the key generation.
Figure 4 depicts the filter-bank outputs, represented by the matrix C in a time-

frequency plane, derived according to the following equations:

C(m,n) = 1
γ

∫ ntp

(n−1)tp
y(t) ∗ Fbm(t)dt, ∀n,m (6)

Key = Quant

⎛

⎜⎜⎝

⎡

⎢⎢⎣

C(1,1) . . . C(1,N)

...
. . .

...
C(M,1) . . . C(M,N),

⎤

⎥⎥⎦

⎞

⎟⎟⎠ , (7)

where n is the frame index, 1 ≤ n ≤ N , m is the filter index within the filter bank,
1 ≤ m ≤ M, 1/γ is an arbitrary normalization factor, and Fbm(t) is the impulse response
of the mth filter. The functional Quant(·) in Eq. (7) represents the quantization process,
which can be done in different manners [31], and is out of the scope of the work.
In other words, the received signal y(t) is filtered by different band-pass filters, such that

the filter outputs C(m, n) reflect an estimate of the magnitude of the channel frequency
response h(t).
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Fig. 3 Sequence of messages between Alice and Bob to perform time-frequency filter-bank CRKG. The x(t),
yA(t), yB(t), hAB(t), and hBA(t) are described in Eq. (3), where A means Alice and B means Bob. The C is the
set ofM filter-bank outputs described in Eqs. (6) and (7)

According to the data processing inequality theorem, the filter-bank can only obtain
equal or minor entropy with respect to what is initially available from the radio channel.
However, in principle, by observing the radio channel both in time and in frequency, we
can operate over two dimensions, and so extracting more entropy, rather than by means
of solely temporal fading, e.g. RSSI-based CRKG. The filters can be a uniform grid of
finite-impulse response (FIR) filters, but they can be also implemented using fast Fourier
transform (FFT) or even wavelet transform. The big advantage of the proposed filtering
approach is flexibility, as shown in Section 7. It works with any chosen communication
waveform, as long as tp and fp are given. It allows us to choose bothM,N, depending if the
received frames are correlated in time, i.e., Tcoh is larger than tp, or in frequency, i.e., Bcoh
is larger than the fp, (see Table 1). Depending on the channel conditions, an additional
step of whitening [119] may be performed on the filter-bank outputs C in order to remove
time-frequency correlations among filters.
In the end, the time-frequency filter-bank key generation comes with some challenges.

It is necessary to have enough bandwidth to capture the multipath. For example, LoRa
[120] or Bluetooth [43] are too narrowband, whereas in 5 G, WiFi or UWB [121], the
available bandwidth ranges from tens to hundreds of MHz, enabling the frequency-
domain filter-bank (e.g., 5 G has 800 MHz of maximum available bandwidth [122]). This
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Fig. 4 Abstract representation of the filter-bank time-frequency plane. The C(m,n) is the filterbank output of
the nth frame andmth filter

positive trend is also supported by current research on mm-wave [123, 124] and THz
bands [22, 125], pushing for Gbps data rate.

6.1 Example of filter-bank input-output correlation

To demonstrate the potential of the filter-bank, we performed a simple simulation.
Thanks to the property of the channel model QuaDRiGa (QUAsi Deterministic RadIo
channel GenerAtor version 2.2.0) [126], we investigate the performance of the filter-bank
CRKG in the urban 3GPP TR38.901 UMi [127] scenario. A micro base-station (Alice) is
located at a 10-m height, in themiddle of an ideal circular cell of 500 m2. It serves 100 UEs
(i.e., Bobs) randomly dropped in the area, with 50% indoor probability and uniformly dis-
tributed, with 0.5 to 3 m of height. For each UE (Bob), an eavesdropper UE (Eve) is located
at 1 m of distance along a random direction on the horizontal plane. The frequency car-
rier is set to 2 GHz, all the UEs are static, and, for the sake of simplicity, the radio channel
is assumed perfectly reciprocal, noiseless, and interference free. Therefore, the simulation
is not meant to be representative of all scenarios, but to provide preliminary hints of the
filter-bank potential.
As shown in Table 2, the Pearson coefficients are calculated on inputs-outputs of the

Fb in order to evaluate the correlation between Bob and Eve. The simulation includes 6
different bandwidths and 2 different filter-bank settings withM=32 andM=512 filters.
Ideally, the Pearson coefficient between Bob and Eve should be 0.0, showing a perfect

isolation between Alice/Bob and Eve. As confirmed also experimental work by [61], in
reality, the correlation might vary significantly due to the radio channel. However, several
results are interesting:

• Firstly, before the filter-bank, the Pearson coefficients computed on the received
signal in time, i.e., y(t), are higher than the same signal in frequency, i.e.,
Y (f ) = FFT(y(t)) (see columns 2 and 3 in Table 2).
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Table 2 Example of correlation between Bob and Eve in the simulated 3GPP TR38.901 UMi scenario

Pearson coefficients (average on 100 UEs)

Bandwidth Before Fb After Fb on C

MHz On y(t) On Y(f ) M = 32 M = 512

10 0.85 0.48 0.59 0.47

20 0.82 0.45 0.50 0.42

40 0.75 0.35 0.48 0.33

80 0.68 0.33 0.45 0.24

160 0.62 0.30 0.36 0.20

250 0.60 0.32 0.31 0.19

• Secondly, with larger bandwidth, more multipath components can be resolved by the
filter-bank. So, correlation is decreasing proportionally with bandwidth (along rows
in table). The propagation differences are more pronounced between Bob and Eve.

• Thirdly, after the filter-bank (see columns 4 and 5 in table), the correlation on C is
less than before the filter-bank (see columns 2 and 3 in table) on y or Y.

• Finally, after the filter-bank, it is evident that with M=512 (column 5 in table), the
filter-bank C is less correlated with respect to M=32 (column 4 in table). Because the
frequency-domain resolution is increased (i.e., fp is smaller), Bob and Eve differences
can be easier spotted out.

7 PLS-Box filter-bank examples
In the following, two examples of PLS-Box CRKG are given: a OFDM example, compli-
ant to actual system as 5 G or WiFi [128] (Fig. 5), and an UWB example, as an emerging
technology for indoor localization [129] (Fig. 6). Both examples follow the general dia-
gram depicted by Fig. 3, but differentiating between a case of modem-aided PLS-Box and
a case of blind PLS-Box, respectively

7.1 Modem-aided filter-bank

PLS in OFDM systems is not new, as shown by [99, 130–134]. All the essential structures
for our time-frequency CRKG processing are ready: RF impairments are compensated
[106], radio channel is estimated [99, 135], and the bandwidth spans from tens to
hundreds of MHz.
In this example, the filter-bank is directly implemented via FFT/IFFT, inside the PHY

OFDM modem. Ideally, all the sub-carriers should be used to sound the channel at
once, over the full bandwidth. In practice, the PLS-Box might use the CSI collected
from the sub-carrier pilots for key generation, according to the pilot allocation of the
OFDM system. In terms of signal acquisition for PLS, this solution is somehow equivalent
to well-known channel sounding technique based on Vector-Network-Analyzer (VNA)
[136].
Assuming independent sub-carriers and 1 bit quantization for each sub-carrier, the

resulting key generation rate is increased by a factor proportional to the FFT size, e.g., in
the range of 64–6400, with respect to RSSI schemes. Approximately, considering 15 KHz
as sub-carrier spacing and 100 MHz of bandwidth, at least 6666 sub-carriers/-bands are
available for the filter-bank, for example.
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Fig. 5 Qualitative representation of modem-aided PLS-Box filter-bank with an OFDM waveform

Of course, dedicating radio resources to PLS-Box security reduces the communication
performance. However, the pilot tones and the preamble are already part of the OFDM
PHY, so in principle, the PLS-Box is only re-using information available in the modem,
with negligible overhead.
In terms of security, the proposed OFDMCRKG solution is even supported by the liter-

ature [42]. In [137], Eve attacks Alice/Bob introducing controlled movements of an object
in a static indoor environment, causing intentionally predictable changes in Alice/Bob
received power, (i.e., LOS/NLOS switching). So dictating the RSSI oscillations, the key
generated has predictable periodic bit sequences. Then, [42] proposes a PLS scheme in a
OFDM systems against such channel attack, showing that the LOS/NLOS strikes are not
present in all the OFDM sub-carriers, and so, a high-entropy key can be anyway extracted,
thanks to frequency diversity.
Moreover, assuming that complex CSI is attainable at OFDM PHY and reciprocal

[138–140], the CSI phase domain represent a CRKG opportunity to be further explored
for several reasons. In line-of-sight (LOS)-dominant scenario, the channel is flat (i.e.,
non-selective) inhibiting the filter-bank method. Therefore, the channel phases repre-
sent the last resort to harvest entropy. In fact, as shown in [141] by means of ray-tracing
Eve’s attack, the CSI phases cannot be predicted accurately as good as the CSI magni-
tude. In addition, analyzing the signal phases over multi-antenna ports allows to estimate
angle-of-arrival (AoA) spectrum (e.g., usingMUltiple SIgnal Classification (MUSIC) algo-
rithms), opening the opportunity to use also the angle domain for PLS [142]. In the end,
taking into account the aforementioned RF impairments and practical non-reciprocity
issues, it is not completely clear if the CSI phase is an effective reliable parameter for
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Fig. 6 Qualitative representation of blind PLS-Box filter-bank with an UWB waveform

practical CRKG. Actually, there is no sufficient evidence in literature to be confident that
phase CRKG could work in practical systems. Moreover, radio channel phase estima-
tion is definitively more challenging rather than RSSI or scalar CSI. Further research is
necessary.

7.2 Blind filter-bank

UWB systems perform indoor localization and communication, in line with IEEE 802.15.4
[143–146]. Several works [147–151] have already performed investigations on PLS in
UWB systems: [152] obtains a key generation rate of 18 bps and [41] shows that Eve corre-
lation can reach 50%. However, to our knowledge, no investigation has been published so
far regarding a time-frequency approach for UWB PLS key generation, such as the filter-
bank here presented. In order to do so, we can in fact take advantage of the natural GH
span of bandwidth of the UWB waveform [121].
We assume to have a blind PLS-Box which is filtering the received UWB frame, inde-

pendently from the UWB modem. The processing is described as shown in Fig. 6: a
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localization anchor of the UWB system placed in a corner of an office scenario is com-
municating with a portable device. The goal is to locate the position of the device in the
room. Even though the UWB link range is a few meters and LOS, the frequency selectiv-
ity is expected to be significant, thanks to the impulsive nature of the UWB waveform.
In terms of signal acquisition, this solution is indeed equivalent to well-known channel
sounding technique [153].
Moreover, there is an interesting synergy between UWB and PLS [154]. The localiza-

tion information about the terminal positions (attained by the UWB system) represents
a threat for the PLS schemes, due to ray-tracing attacks [155]. This means that if the
UWB modem is compromised, the positions of Alice and Bob might be spoiled. Then,
Eve might simulate correctly the radio channel and try to predict the CRKG key. For
example, in [141], a ray-tracing attack is investigated in a common office scenario at 2.4
and 5 GHz: the mean absolute error is less than 2 dB, between the narrowband received
power predicted by the ray tracing and the measurements (i.e., comparable to real-life
case). It is hard to forecast the impact of this attack on real mobile wideband system.
With the increasing trend of environment digitization and virtual/augmented reality,
indoor/outdoor digital maps be easily available online. Furthermore, with increasing com-
putational power of devices, the time required for a complete ray-tracing simulation may
be in the same order of magnitude as that of CRKG protocol (i.e., msec). Further research
is necessary.

8 PLS-Box CRKG optimization
Recalling all the previous sections, the PLS-Box performance can be optimized in time
and frequency and throughout the CRKG protocol. The optimization parameters are
collected in Table 3.

• kT is the key generation time required for CRKG. Ideally, an exchange of frames (or
packets) would be the minimum number: one for authentication, one for channel
probing and one for reconciliation. In literature, kT is in the order of tens/hundreds
of milliseconds, depending on the channel conditions;

• kS is the size of the final key, in number of bits (i.e., 128 bit). The key size can be
shortened after reconciliation, discarding erroneous bits, and even more, after
privacy amplification to maximize its randomness [61];

• kR = kS/kT is the key generation rate, in terms of bps or, alternatively,
bits-per-frame. For example, in [44], a kS = 256 bit key is obtained in kT = 5 s of
CRKG, achieving a rate kR = 51 bps. Generally, in literature kR = 10 ∼ 100.

Table 3 CRKG optimization parameters

Symbol Description

kT Key generation time

kS Key size

kR Key generation rate

kH Key entropy

kM Alice/Bob’s key mismatch

kL Eve’s key leakage

kC Key generation consumption

Clearly dependent on the PHY and hardware
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• kM is the key generation mismatch, indicating the number of bits which are not
corresponding at Alice and Bob sides. It is equivalently to the bit-error-rate for
communications. Generally, in literature kM = 2 ∼ 20%.

• kL is the key leakage to Eve, expressing how capable Eve is to wiretap Alice and Bob.
It can given directly by the number of key bits sniffed correctly or can be
characterized by the mutual information among Alice, Bob, and Eve [61].

• kH is the key entropy. In literature, the quality of the key is usually addressed by
means of the National Institute of Standards and Technology (NIST) tests,
specifically tackling randomness [156] and entropy [157]. It is worth noticing that not
all NIST randomness tests are suitable for short keys. For example, the FFT test
seems to be unreliable [99, 158]. Even flaws in the NIST entropy estimators have
been debated [159, 160], leaving the entropy estimation an open issue [61].

• kC is the key generation energy consumption. Equivalently in communications, the
energy efficiency of CRKG can be computed as kS/kC in terms of bit/J. It is naturally
hardware-dependent and useful to benchmark CRKG schemes versus conventional
cryptography methods [44]. For instance, a comparison of energy consumption by
[61], shows that the RSSI scheme proposed in [137] consumes 2.4 mJ versus the
101.2 mJ of ECC-DHE, implementing both algorithms in an ARM Cortex M3
processor. These are very good results, but further energy consumption comparisons
are necessary to outline the advantages of PLS in practical systems.

In conclusion, the optimization of PLS-Box faces a trade-off in the CRKG: kM and kL
must be minimized, that is minimum key mismatching errors and Eve’s leakage; but kS
and kH must be maximized, that is long keys with high entropy. The problem is that Alice
and Bob have no knowledge about Eve and cannot communicating anything clear-text
over the the radio channel. Moreover, their PLS-Boxes are not likely to be able to jointly
cooperate to optimize the CRKG filter-bank.
However, we envision that machine learning algorithms can be utilized for this task

[161–163], in order to handle the variations of the radio channel and the key quality.
For example, in case of classification of the radio channel LOS and time-invariant, the

entropy is very limited. So, the PLS-Box might adaptively reduce the filter-bank num-
ber of filters entropy (i.e., LOS and time-invariant), the PLS-Box might adaptively drive
the filter-bank reducing the number of filters to limit the correlation in the key bits,
or fall back to RSSI-methods, or even use the phase information. Eventually, it might
notify the upper layers about the inconvenient channel conditions at PHY, advising to
rely on conventional schemes for key generation. This cross-layer feedback needs further
investigation.

9 Conclusions and future work
After an initial overview of the security landscape of today, we have outlined the moti-
vations of Physical-Layer Security, providing a summary of the state of the art of this
promising field. In this regard, we have presented the PLS-Box as a new flexible paradigm
towards an effective PLS implementation. We have discussed the open issues and chal-
lenges of this concept, such as RF impairments, accessibility to the PHY baseband
modem, and attacker capabilities. In details, we have focused on channel-reciprocity-
key-generation, presenting a novel strategy for time-frequency key-generation, based on
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filter-bank processing. This new approach aims at improving the performance of key
generation, thanks to a dynamic time-frequency wideband signal processing. We have
shown the general model of the filer-bank and its benefits, by means of a simple sim-
ulation in a usually 3GPP and not 3 GPP. 3rd Generation Partnership Project scenario.
Additionally, two PLS-Box filter-bank examples have been described, in line with today’s
OFDM and UWB systems, showing the suitability and flexibility of our solutions. Our
future work will be oriented tomodel the filter-bank, and test its performance in a real-life
prototype.
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