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Efficient Communications for Overlapped
Chirp-based Systems
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Abstract—In this paper, we consider the problem of increasing
the spectral efficiency of a chirp-based communication system.
Existing radar systems employ non-overlapping chirps with a
large time-bandwidth product, and a modulation of these chirps
for communications systems results in low spectral efficiency.
Chirp overlapping can enhance the data rate, but it suffers from
performance degradation due to intersymbol interference (ISI).
In this study, we derive a useful bit error rate (BER) expression
to analyze the performance of a system with a finite number
of overlapped chirps. Additionally, we investigate the conditions
in which the ISI can be reduced while approaching the Nyquist
signaling rate. We then propose simple linear equalization tech-
niques to compensate for the ISI, allowing us to achieve faster-
than-Nyquist signaling. We demonstrate the effectiveness of our
approach by extensive analytical and numerical results.

Index Terms—chirp overlapping, communications, equaliza-
tion, spectral efficiency, ISI, BER.

I. INTRODUCTION

Chirp spread spectrum has been developed and deployed
extensively for military radar systems dated back to the 1940s,
and, more recently, for automotive radar. Additionally, chirp
signals can be employed for communications owning to their
appealing features, such as potentially high processing gain,
low-power implementation and robustness against channel
impairments [1]–[6]. In recent years, industry and academia
have shown growing interest in coexistence of sensing and
communications for applications such as automotive radar and
air traffic control [7], [8]. Thus, a chirp-based waveform has a
great potential for efficient communication, and possibly joint
radar sensing and communication.

There are several approaches to use chirp signals for
communications. A straightforward approach is to trans-
mit frequency-shift keying (FSK)-modulated non-overlapping
chirps [9], which can still be used for radar detection, but this
method results in low spectral efficiency. An overlap technique
in either frequency or time domain can increase the spectral
efficiency, and, consequently, the data rate. In frequency do-
main, orthogonal chirp division multiplexing (OCDM) relies
on frequency-shifted and -folded chirps to obtain orthogonal
signals [6], [10]. Although the spectral efficiency can approach
the Nyquist rate, this solution requires fully-digital signal-
processing and complex receivers. Another one is to allow
chirps to overlap in the time domain to increase the data rate
of a system and use a simple matched filter for detection. In
this overlap-based system, data can be modulated by either
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binary orthogonal keying (BOK) or direct modulation (DM).
The former utilizes up-chirp and down-chirp for representing
data, i.e., zero and one, [2], [3] while the latter employs a
chirp as a spreading code [5]. As a result, a transmitter and
the corresponding receiver in a DM system only need one
chirp as pulse-shaping and various modulation schemes can
be therefore utilized in the system.

Despite its simplicity, the overlap technique suffers from
intersymbol interference (ISI), which results in performance
degradation. In [11] the condition such that evenly-spaced
overlapping chirps are orthogonal was described, but a proof
is missing. Having orthogonal chirps eliminates ISI in single-
path channels, but for commonly employed parameters these
conditions result in low spectral efficiency. Therefore, deter-
mining an appropriate interval trading off spectral efficiency
and ISI is of special interest. In fact, a concrete analysis
regarding bit error rate (BER) and an optimal interval is still
missing in [2], [3], [6], [9]. To the best of our knowledge,
only [5] proposes a theoretical BER expression for an infinite
number of overlapped chirps. However, they only investigate
transmission at a rate much lower than the Nyquist signaling
rate and do not provide any solutions to compensate for the
ISI.

In this letter, we also study a communications system of
overlapped chirps in the time domain. More specifically, we
revisit the BER under a finite number of chirps, which is
the case in practice, where frames consisting of a number
of chirps are transmitted with guard intervals between them.
This approach allows the use of simple block-based linear
equalizers (EQ) to mitigate the effects of ISI. Interestingly,
with equalization we can achieve the exact Nyquist signaling
rate while keeping BER close to the non-ISI case, which is
hardly achievable using the state-of-the-art approaches. Our
main contributions include the following:
• We revise the BER expression for an overlapped chirp-

based communications system where the number of
chirps is finite. The derivation relies on the approximation
of Q-function using series of exponentially decreasing
cosine [5], [12].

• We derive the conditions for which overlapping chirps are
orthogonal, and show that ISI-free communications is not
possible at symbol rates close or equal to Nyquist signal-
ing rate. We then numerically evaluate the conditions in
which ISI is minimized.

• We analyze the conditions to achieve the Nyquist signal-
ing rate in light of our BER analysis and propose simple
but efficient block-based linear equalization techniques to
mitigate the effect of ISI on the system.



• The numerical results have demonstrated the accuracy of
our BER expression and the effectiveness of our proposed
equalization. In particular, the performance of a system
under severe ISI using linear equalization still approaches
its performance without ISI.

Notation: Bold lower and upper case letters represent vec-
tors and matrices, respectively. I defines an identity matrix, of
which the size can be easily inferred from the context; HT is
transpose of H; E[.] and P(.) is the expectation and probability
of a random variable. ~ denotes the convolution, <(.) stands
for a real value and Z is the set of integer numbers.

II. SYSTEM MODEL

A complex baseband chirp signal is given by

s(t) =

√
Eb
τd
ejπµt

2

, |t| ≤ τd
2

(1)

where Eb is the symbol energy and µ = B
τd

is the chirp slope,
in which B and τd are the bandwidth and the chirp duration,
respectively. Hence, a direct modulated chirp can be expressed
as

u(t) = ξs(t) (2)

where ξ = ±1 for binary phase shift keying (BPSK). We
assume that the receiver is synchronized with the transmitter
and the impulse response of the matched filter at the receiver
side is defined by

h(t) =
√
τde
−jπµt2 . (3)

Then, we may express the filter output as

w(t) = u(t)~ h(t) = ξ
√
Ebr(t), (4)

where r(t) is the chirp autocorrelation function defined by [2],
[5]

r(t) =
sin
(
πBt(1− |t|τd )

)
πBt

, |t| ≤ τd. (5)

To increase the data rate of the system, we may send multiple
chirps with a signaling interval τ ≤ τd. In words, the trans-
mitted signals are overlapped and an output of the matched
filter at the time ti = iτ is, therefore, as follows

yi =

+∞∑
k=−∞

wi−k + ni =
+∞∑

k=−∞

ξk
√
Ebr((i− k)τ) + ni, (6)

where ni is complex non-white Gaussian noise with zero-mean
and variance σ2

n = N0.

III. PROPOSED APPROACH

A. BER expression for overlapped chirps
We propose to send a frame with a finite number of κ over-

lapped chirps, preceded or followed by a guard interval. As a
consequence, we can simplify the aforementioned equation as
follows

yi =

(κ−1)∑
k=0

ξk
√
Ebr((i−k)τ)+ni =

√
Eb (ξi + vi)+ni, (7)

where vi is the ISI component

vi =

(κ−1)∑
k=0,k 6=i

ξkr−(k−i). (8)

It was mentioned in [11] that zero ISI can be obtained with
overlapping chirps, i.e., vi = 0, if we choose τ =

√
τd
B .

However, the condition for its feasibility as well as a proof
is missing. Here, in Appendix A, we derive more generic
conditions at which zero-ISI can be achieved. However, it
relies on very stringent conditions. Also, for commonly used
chirp parameters, the interval τ =

√
τd
B is much larger than

the Nyquist signaling interval τN = 1/B, and we have always
to tolerate or deal with ISI if we want to achieve high spectral
efficiency.

Now we revise the BER formulation to our considered
problem. Considering a BPSK system, where ξi = [+1,−1],
the average error probability is given by

Pe = P(y > 0|ξ0 = −1)
= P(−r0 + v0 + n > 0|ξ0 = −1). (9)

The conditional probability is defined as

Pe|v0 = P(n > (r0 − v0)) = F(r0 − v0) (10)

where F(.) is the cumulative distribution function of ni.
Assuming r0 and v0 are both normalized, we obtain

Pe|v0 = F(1− v0). (11)

For BPSK, the above equation is equivalent to

Pe|vl = Q

(√
2Eb
N0

(1− vl)

)
. (12)

Proposition 1. A closed-form BER for a system of κ over-
lapped chirps is given by

Pe = <

nT−1∑
j=0

cje
ρE

 (κ−1)∏
k=0,k 6=l

cosh(r((l − k)τ)ρ)

 (13)

where ρ = (λj + iωj)
√

2Eb
N0

; nT , cj , λj , and ωj are taken
from the approximation of Q-function in [5].

A proof of this proposition is given in Appendix B. In partic-
ular, we derive the expression from the series of exponentially
decreasing cosine [5], [12] since it provides useful and ap-
propriate approximation for mathematical manipulations while
retaining sufficient accuracy. In Fig. 1 we plot the absolute
errors between the approximated and the actual values of the
Q-function. Since [5] demonstrates a better approximation in
comparison with that of [12], we utilize the former in the
present letter. Note that the curve of [5] is not smooth since
the optimization for the approximation is performed in two
separate error regimes. When the number of chirps is infinite,
the ISI is mostly decided by both (ϑ−1) precursors and (ϑ−1)
successors, where ϑ = τd

τ and our BER expression therefore
reduces to the one in [5]. Furthermore, we can easily extend
our formula to M-PSK where the modulation order M ≥ 4
[13]. Specifically, a slight change in the derivation shows that

Pe = <

 2

log2M

nT−1∑
j=0

cje
ρE

 (κ−1)∏
k=0,k 6=l

cosh(r((l − k)τ)β)


(14)

where β = (λj + iωj)
√

2Eb log2M
N0

sin( πM ). In fact, the proof
follows similar arguments to those of Appendix B and thus is
skipped for the sake of brevity.
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Fig. 1: Performance of different Q-function approximations.

B. Spectral efficiency analysis

For a BPSK system the spectral efficiency is given by

η =
R

B
=

1

τB
(15)

where R is the bit rate. Hence, a small interval results in
high spectral efficiency. Then a problem of interest is how to
maximize the spectral efficiency while retaining low BER.

Considering orthogonal transmission with the conditions in
Appendix A, we obtain

η =
R

B
=

1√
τdB

. (16)

This results in very low spectral efficiency η � 1 since the
time-bandwidth product τdB � 1 as a requirement for radar
systems. This requirement makes the spectral efficiency even
worse in case of non-overlapping chirps, i.e., τ ≥ τd since

η ≤ 1

τdB
� 1. (17)

One possible solution is to transmit consecutive chirps
spaced at the first zero of (5), which is given by1

τ =
τd −

√
τ2d − 4 τdB

2
. (18)

In this case, the spectral efficiency is computed as

η =
R

B
=

2

Bτd(1−
√
1− 4

Bτd
)

(19)

and its limit, as Bτd increases, is therefore

lim
Bτd→∞

η = lim
Bτd→∞

(
1

(1− 4
Bτd

)−
3
2

)
= 1. (20)

Generally speaking, the spectral efficiency can approach 1
but the result is hardly hold true in practice where Bτd is
typically from twenty to several hundreds. Also, this interval
only removes the ISI from a single preceding and following
chirp, but we still have to deal with the ISI from all the other
chirps.

The argument above is also applicable to a Nyquist signaling
interval τN = 1/B in which we achieve η = 1, but cannot
eliminate ISI. Note that the approximations in [4] approach
the Nyquist rate. However, no techniques are reported to
compensate for the ISI in such high spectral efficiency. In
contrast, we can utilize simple linear block equalization to
mitigate the effect of the ISI as shown in the next subsection.
Moreover, we show that this equalization can also work
effectively at a faster-than-Nyquist rate.

1See Appendix A.

C. Equalization methods

Considering the first received chirp, we can expand (7) as

y0 =

(κ−1)∑
k=0

ξkr(−kτ) + n0

= ξ0r(0) + ξ1r(−τ) + . . .

+ξκ−1r(−(κ− 1)τ) + n0. (21)

Continue in this fashion, we can obtain similar results for
the other chirps. To simplify the formulation, we define an
effective channel matrix

H =


r0 r−1 · · · r−(κ−1)
r1 r0 · · · r−(κ−2)
...

...
. . .

...
rκ−1 rκ−2 · · · r0

 (22)

where rj = r(jτ). Note that H is symmetric since r(.) is an
even function. The received signals can be written as

y = Hx + n (23)

where x = [ξ0, ξ1, . . . , ξκ−1]
T , y = [y0, y1, . . . , yκ−1]

T , n =
[n0, n1, . . . , nκ−1]

T .
This formulation is quite standard in the literature for which

we can apply simple linear equalization methods, for example,
zero-forcing (ZF) or minimum mean square error (MMSE).
More specifically, the equalization matrices are given by

WZF = H−1 (24)

WMMSE = HT (HHT + λ−1I)−1 (25)

where λ is the signal to noise ratio.
Since H is a symmetric matrix, we can compute the

equalization matrix efficiently in what follows. By eigenvalue
decomposition, we obtain

H = UΣUT (26)

where U is an orthogonal matrix. Substituting (26) into (24)
and (25) yields

WZF = UΣ−1UT (27)

WMMSE = UΣ(Σ2 + λ−1I)−1UT . (28)

We notice that, for faster-than-Nyquist rate, i.e., τ → 0 and
thus r(.)→ 1 which results in H→ J where J is an all-one-
rank-deficient- matrix. Therefore, these methods are projected
at higher BER than those of non-overlapping or Nyquist case.
The performance of these equalizers under different spectral
efficiency settings is evaluated in more detail in the following.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the proposed approach. In the following experiments, the
results are averaged over a large number of simulations and
the chirp duration is fixed at τd = 1µs. Other parameters are
specified for each setting.

First we study the error behavior for different intervals
using our BER expression as well as empirical results. The
bandwidth is set to 100 MHz and the symbol interval τ varies
proportionally to the Nyquist interval τN = 1

B = 0.01µs.
As can be seen from the Fig. 2, when the interval is large,



0 5 10 15

10
−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

B
E

R

Simulation, τ = 10τN
Theory, τ = 10τN
Simulation, τ = 5τN
Theory, τ = 5τN
Simulation, τ = τN
Theory, τ = τN

Fig. 2: Bit error rate versus signal to noise per bit with varying
symbol interval τ . The bandwidth B = 100 MHz.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
−4

10
−2

10
0

Spectral efficiency,η

A
ve

ra
g

e
IS

I
p

ow
er

Bτd = 10

Bτd = 20

Bτd = 50

Fig. 3: Average ISI power with varying time-bandwidth prod-
uct τdB.

then the resulting BER is close to the theoretical BER for
BPSK in an AWGN channel, due to small ISI. In contrast,
the BER degrades dramatically when the ISI is more severe,
for instance, τ = τN . Also, the analytical BER is sufficiently
accurate under low and moderate ISI, but not at large ISI, due
to the approximation error of the Q-function.

In the second experiment, we study the possibility of achiev-
ing the rate close to the Nyquist rate without utilizing any
equalization methods. More specifically, we take advantages
of the formulation (8) to visualize the average ISI power when
the spectral efficiency η increases. Generally speaking, the ISI
is severe as shown in Fig. 3 when the data rate is close to or
more than the Nyquist rate. Interestingly, Fig. 3 also shows
that we can always find a local minimum close to the Nyquist
rate, but with lower average ISI power. For instance, for 10
MHz, the average ISI at the point η = 0.8, or equivalently
τ = 1.25τN has much lower ISI than for τ = τN . As a result,
we may use this minimum without additional equalizers, as
investigated in the following experiment.

Now we turn our attention to the effects of local minimum of
the ISI mentioned above, with B = 10 MHz. In Fig. 3 we see
that τ = 1.25τN reduces ISI significantly in comparison with
τ = τN . As a result, its BER outperforms that of τN as shown
in Fig. 4. However, a gap between this local minimum and the
no-ISI curve still remains, and, therefore, efficient equalization
is vital to compensate for this gap, as demonstrated in the
following simulation.

Next, we investigate the effectiveness of equalization under
Nyquist rate. We set the bandwidth to 10 MHz and 50 MHz
and the symbol interval to τN . Unsurprisingly, the equalization
has greatly improved the performance of the system, although
the ISI is severe under this setting. More specifically, the BER
approaches that of the BPSK without ISI as expected. Note
that the performance of ZF and MMSE are quite similar due
to the fact that the channel matrix is positive definite for the
considered τ .
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Fig. 4: Bit error rate versus signal to noise per bit in case of
close to Nyquist rate and without equalization. The bandwidth
B = 10 MHz.
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In principle, the design of a linear equalizer utilizing known
chirp autocorrelation function can be applicable to any rate.
With this in mind, in the last simulation, we demonstrate that
a faster-than-Nyquist rate using chirps is also achievable. For
the considered simulation, the number of chirps is transmitted
at 20% and 50% above the Nyquist rate. In Fig. 6, the
performance without equalization suffers from severe ISI. As
mentioned in the preceding section, linear equalizers may
reduce the ISI significantly but their BERs are not very close to
that of Nyquist rate (c.f. Fig. 5). Interestingly, this simulation
shows that the equalization for this setting is more effective
when the mainlobe width is large, e.g., 10 MHz. We also note
that more research efforts should be put into investigating the
maximum achievable rate and designing more efficient non-
linear equalizers for this important setting.

V. CONCLUSIONS AND FUTURE WORKS

We have derived a simple BER expression to evaluate the
performance of an overlapped chirp-based system using the
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Fig. 6: Bit error rate for a 20% and 50% faster rate than
Nyquist rate.



series of exponentially decreasing cosine. More importantly,
we have reformulated the receiving signals to arrive at simple
equalization techniques which can even work efficiently at a
faster rate than Nyquist rate. In fact, our BER expression has
provided sufficient accuracy compared to the existing formu-
lation. Moreover, our extensive simulation and analysis have
demonstrated the effectiveness of our equalization approach,
which have reduced ISI components significantly and the bit
error rate thus approaches the one without ISI.

Having shown the potential of utilizing chirps for high-
rate communications, the research can be explored in broader
scenarios taking into account, for instance, the effect of a
multipath channel model. More importantly, the guard interval
can be replaced by a sequence of non-overlapping chirps, used
for not only radar detection but also channel estimation and/or
synchronization, which in turn allows easy cooperation and
flexible resource allocation. Future research on this important
joint radar and communications systems will address key
issues such as interference management, parameter identifi-
ability as well as resource allocation strategy [7], [14].

APPENDIX A
PROOF OF ZERO-ISI CONDITION FOR CHIRP OVERLAPPING

For zero ISI, it is required that r(kτ) = 0,∀k > 0. As a
result, τ must be a root of the autocorrelation function (5),
and the n-th root is given by

τ0(n) =
τd
2

(
1−

√
1− 4n

Bτd

)
, with Bτd > 4n. (29)

Note that n > 0 and k > 0 without loss of generality.
Considering (5) and the zero-ISI condition, then to obtain the
shortest interval τ with zero ISI, we need to find the smallest
integer n such that

Bkτ0(n) (τd − |k|τ0(n))
τd

∈ Z, ∀k ∈ Z. (30)

Now, for k > 0, substituting (29) into (30), we get the
following condition

k2n+
k(k − 1)

2

(√
B2τ2d − 4nBτd −Bτd

)
∈ Z, (31)

which, since k, n ∈ Z, this simplifies to√
B2τ2d − 4nBτd −Bτd ∈ Z. (32)

We can easily see that the proposed interval in [11] i.e., τ =√
τd/B can be achieved only and only if n =

√
Bτd − 1

and thus
√
Bτd ∈ Z. This result immediately satisfies the

condition of (32). However, this condition is impractical since
time-bandwidth product can be arbitrary number and thus non-
orthogonality is unavoidable.

APPENDIX B
BER CALCULATION PROOF

Recall that the bit error rate of the system is defined as

Pe = E(Pe|vl). (33)

Therefore, we can take the bit error rate as a result of averaging
all possibilities. However, this approach is not feasible, if
impossible, if the number of possibilities is too large. Instead,

we may employ an approximation of the Q-function so that
the computation of the expectation is practicable. In this paper,
we rely on the series of exponentially decreasing cosine [5],
[12] to approximate BER expression, which is given by

Q(x) ≈ <

nT−1∑
j=0

cje
(λj+iωj)x

 . (34)

Substituting (34) into (33), we obtain the following

Pe = <

nT−1∑
j=0

cjE
(
e
(λj+iωj)

√
2Eb
N0

(1−vl)
) (35)

= <

nT−1∑
j=0

cje
(λj+iωj)

√
2Eb
N0 E (Ω)

 (36)

where Ω = e
−(λj+iωj)

√
2Eb
N0

(κ−1)∑
k=0,k 6=l

v−(k−l)
.

As ξ = ±1, we thus get

Pe = <

nT−1∑
j=0

cje
ρE

 (κ−1)∏
k=0,k 6=l

cosh(r((l − k)τ)ρ)

 (37)

where ρ = (λj + iωj)
√

2Eb
N0

, which completes the proof.
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