
A Heterogeneous Microkernel OS for Rack-Scale
Systems

Matthias Hille
Technische Universität Dresden
matthias.hille@tu-dresden.de

Nils Asmussen
Barkhausen Institut

nils.asmussen@barkhauseninstitut.org

Hermann Härtig
Technische Universität Dresden
hermann.haertig@tu-dresden.de

Pramod Bhatotia
The University of Edinburgh
pramod.bhatotia@ed.ac.uk

ABSTRACT
Datacenters are adopting heterogeneous hardware in the
form of different CPU ISAs and accelerators. Advances in
low-latency and high-bandwidth interconnects enable hard-
ware vendors to tighten the coupling of multiple CPU servers
and accelerators. The closer connection of components fa-
cilitates bigger machines, which pose a new challenge to
operating systems. We advocate to build a heterogeneous
OS for large heterogeneous systems by combining multiple
OS design principles to leverage the benefits of each design.
Because a security-oriented design, enabled by simplicity
and clear encapsulation, is vital in datacenters, we choose to
survey various design principles found in microkernel-based
systems. We explain that heterogeneous hardware employs
different mechanisms to enforce access rights, for example
for memory accesses or communication channels. We outline
a way to combine enforcement mechanisms of CPUs and
accelerators in one system. A consequence of this is a hetero-
geneous access rights management which is implemented as
a heterogeneous capability system in a microkernel-based
OS.

ACM Reference Format:
Matthias Hille, Nils Asmussen, Hermann Härtig, and Pramod Bhato-
tia. 2020. A Heterogeneous Microkernel OS for Rack-Scale Systems.
In ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’20), Au-
gust 24–25, 2020, Tsukuba, Japan.ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3409963.3410487

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’20, August 24–25, 2020, Tsukuba, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8069-0/20/08. . . $15.00
https://doi.org/10.1145/3409963.3410487

1 INTRODUCTION
Heterogeneous hardware is finding its way into datacenters.
Cloud vendors offer x86 and ARM general purpose cores,
GPUs, TPUs and FPGAs [20, 25, 26, 28]. Today these compo-
nents are hosted in discrete servers which are bundled in a
rack [16]. A server consists of multiple CPUs, memory and
extension cards including accelerator cards [38]. This design
offers little flexibility regarding the ratio between general-
purpose and specialized compute power, meaning CPUs and
accelerators, respectively. One could argue that there is flex-
ibility within one server, namely whether or not accelerator
cards are added and if so, which kind of accelerators. How-
ever, this is not the granularity a datacenter operator thinks
of. Companies which run large datacenters, like Facebook,
are starting to build racks out of chassis which consist of dif-
ferent server types like compute blades and accelerators [4].
This shows, that in a datacenter the flexibility should rather
be at the level of a whole rack to fit the demands of individ-
ual workloads and ease component composition. From this
demand of flexibility we derive an architecture that brings
flexibility into a rack bymeans of different board types which
make up a rack.
In a rack-scale design as depicted in Figure 1, a machine

handled by the operating system comprises the whole rack.
Due to the amount of components and the size of the rack
the overhead for cache-coherence across the whole rack
is prohibitive. Hence, we do not expect a rack to resem-
ble a cache-coherent machine but rather a conglomeration
of cache-coherent islands [37]. This leaves the OS with a
heterogeneous system containing various architectures and
communication schemes. On top of that, the enforcement of
access rights, one of the main tasks of an OS, works differ-
ently on diverse architectures.
Various operating systems have been developed and op-

timized for a particular system type. One such system type
are cache coherent systems for which highly optimized oper-
ating systems like Linux, Windows, XNU and Fiasco.OC [34]
have been developed. on the contrary, there are systems

https://doi.org/10.1145/3409963.3410487
https://doi.org/10.1145/3409963.3410487

APSys ’20, August 24–25, 2020, Tsukuba, Japan Matthias Hille, Nils Asmussen, Hermann Härtig, and Pramod Bhatotia
R
ac
k

NIC

NIC

NIC

NIC

NIC

NIC

CPU

Accelerator

CPU

CPU

Accelerator

Accelerator

R
ac
k

NIC

NIC

NIC

NIC

Accelerator

Accelerator

Accelerator

CPU

NICAccelerator

NICAccelerator

R
ac
k

NIC

NIC

NIC

NIC

NIC

CPU

CPU

Accelerator

Accelerator

CPU

NICCPU

Figure 1: Architectural scheme for racks in a datacen-
ter: A rack is equipped with two different board types:
CPU boards and accelerator boards. Each board is con-
nected with an intra-rack interconnect resembled by
the blue boxes on the left. The unconstrained choice
between board types provides flexibility in this de-
sign.

like Popcorn Linux [6] and M3 [5] designed to work without
cache-coherence. The design of the Barrelfish multikernel [7]
aims at a shared-nothing architecture, while its implementa-
tion still uses cache-coherence protocols to implement mes-
saging. So far the requirements for different system types
were following from the integration of CPUs and memory,
but there are also accelerators which have been considered
in OS designs like Omnix [45] and M3. They strive to elevate
accelerators to first-class citizens in the OS design, giving
them direct access to OS services as other systems also tried
for selected types of accelerators [46, 47]. Finally, an OS de-
sign like LegoOS [43], considering disaggregated hardware
resources, splits the OS into various components for each
resource type.
In our opinion each of these OS designs solves a specific

requirement, but in a flexible rack-scale datacenter design
as we envision it, multiple requirements exist in parallel like
architectural heterogeneity and the heterogeneity of com-
munication mechanisms. Hence, we propose to pick features
of the individual OS designs and combine them into one
heterogeneous rack-scale OS.
Besides the goals to improve flexibility, system perfor-

mance and integrate accelerators into the system, security
is essential for datacenters. A cloud datacenter is constantly
exposed via the network and security breaches due to er-
roneous software raise serious threats to a cloud vendor’s
business. Microkernel-based OS designs suit the increased
security requirements due to their small trusted computing
base (TCB), clear encapsulation and least-privilege access
policy. The small code base of the microkernel makes it
possible to verify the kernel [33]. Encapsulation and a least-
privilege access policy enable failure containment limiting

the severity of many errors compared to the same errors
in a monolithic OS [9]. The least-privilege access policy is
typically implemented by means of capabilities [34].
We propose to merge different microkernel-based OS de-

signs into one OS to get the maximum out of both: CPUs
and accelerators. When combining different OS designs di-
verse OS abstractions and therefore various capability types
and hardware features are fused in one system. This raises
the question how to design hardware that couples different
hardware architectures in a system so it is modular, secure,
and provides isolation which is configurable by software.
The combination of different isolation mechanisms requires
the OS to control these and mediate resources of different
architectures.

In this workwe presentmicrokernel-basedOS architecture
for a new hardware paradigm in large datacenter. We cover
the hardware landscape and the resulting aspects for the OS
with an emphasis onmicrokernels. We give an outline how to
combine different isolation and communication mechanisms
in an OS and the implications on the capability system.

2 DATACENTER ARCHITECTURE
A modular and extensible hardware architecture is crucial
for datacenters to facilitate fast exchange of components or
quick launches of new hardware. In the following we present
a hardware architecture of a rack derived from recent efforts
of hardware vendors like Dell and datacenter providers in-
cluding Facebook, Microsoft and Amazon [16, 23, 36, 48]. We
further explain our view on how a suitable OS for such a
system can be built.

2.1 Hardware Architecture
We base our architecture on the trend that resources are be-
coming more numerous and accelerators gain importance [3,
13, 24, 28, 55] and also interconnects advance and enable
tighter coupling of servers [23, 48]. Figure 2 depicts a snip-
pet of a rack. We choose a machine to span a whole rack,
however, the principles of our approach are also applicable to
machines of smaller extent, for example a chassis comprising
several boards.
All boards of a rack are interconnected with a fast fab-

ric which enables close collaboration between them. The
interconnect provides two main features: 1) configurable
communication channels for message passing and 2) a con-
figurable access to memory ranges. This can be implemented
by an interconnect like Gen-Z [15], CXL [1] as has been
showcased by Dell EMC recently [32]. Similar to these inter-
connects M3 [5] introduced a component called data transfer
unit (DTU) providing a configurable high-bandwidth inter-
connect. The interconnect between the boards is configured
by a central privileged entity labeled with rack kernel in

A Heterogeneous Microkernel OS for Rack-Scale Systems APSys ’20, August 24–25, 2020, Tsukuba, Japan

Rack
Kernel

DTU

DTU NIC

A
cc
el D
R
A
M

D
R
A
M

Mngmt
DTU

DTU

DTU

DTU

DTU

el A
MDTU DTU

C

D
R
A

D
R
A

DTU NIC

C
P
U D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

Figure 2: Excerpt of the rack architecture with
two board types: CPU boads and accelerator boards.
CPUs have cache-coherent access to their board-local
DRAM. Accelerators are connected via DTUs. The in-
terconnect hooking up CPUs and accelerators to their
board DTU (on the left) are left out for clarity.

Figure 2. A DTU has configurable endpoints for this purpose
which can be programmed to be send, receive or memory
endpoints. Gen-Z offers mechanisms like Access Keys to en-
sure isolation between components and Write MSG packets
for messaging [15]. At the rack level the OS employs explicit
messaging to manage the boards.
The part of the OS running on the boards will send re-

quests to the rack kernel to set up communication channels
and access to memory ranges between boards. This might
seem overprotective if the whole machine is within one trust
sphere, e.g. if one customer rents the whole rack. However, it
enables to implement the least-privilege access policy across
the whole rack. The overhead for this should be minimal
since the communication channels and memory ranges are
usable without interaction of the rack kernel, because hard-
ware enforces the access rights once they are set up. Further-
more, this design enables partitioning of the rack so parts of
the rack can be used by mutually distrusting parties. Similar
to this principle but in the scope of one machine (i.e. one
board), Amazon has introduced the hardware supported hy-
pervisor AWS Nitro which is supported by a security chip
dedicated to manage virtualization tasks [36]. Furthermore,
Zhang et al. [53] have shown that a hardware component,
which controls the data flow and communicatiorn, can be
used to guaranty information containment.

A rack in our system is made of two basic types of boards:
CPU boards featuring powerful cache-coherent general pur-
pose cores and accelerator boards comprising either GPUs,
TPUs, FPGAs or other kinds of accelerators. Both board types

are equipped with memory which is also accessible from
other boards (via the board DTU). The system could also
be extended with a memory or storage board type to in-
tegrate NVM and disks into the system. However, in this
work we concentrate on compute resources. CPU boards are
very similar to today’s server systems except that they are
connected to other boards via the intra-rack interconnect
and they do not incorporate accelerators as extension cards.
Our architecture is similar to the Zion accelerator platform
recently introduced by Facebook [31]. In the Zion platform
dual-socket compute blades and accelerator modules coex-
ist. A proprietary PCIe-based interconnect is used between
the compute boards and the accelerator modules. While this
interconnect is designed to provide low latency and high
bandwidth it is missing the configurability an interconnect
with a configurable component like the DTU provides.

Additional to the interconnect within a rack, each board is
equipped with a network interface card. Accelerator boards
internally employ the same type of interconnect as is used
between the boards of a rack. An accelerator board possesses
a management CPU running the OS which configures the
interconnect for the accelerators. To enable direct access to
accelerators or stream data to the network directly accelera-
tor boards also possess a network interface which is driven
by the management CPU.

2.2 OS Cherry Picking
Each OS design is targeting different hardware architectures
or design goals like security by simplicity, a unified hardware
abstraction or legacy compatibility [5, 14, 22]. We want to
cherry pick suitable hardware and software features and
utilize them to manage the parts of the system for which
their design fits best.

Size Does Matter. Today operating systems deployed in
datacenters are monolithic. They save mode- and context-
switches by putting many OS services into the kernel in
contrast to microkernels [35]. However, such a large TCB is
hard to maintain and can lead to security issues. Therefore
we believe that microkernels are a better fit for datacenters
which are constantly exposed via the network and should
be secure at all times to protect customer data and business
reputation. The small TCB and the clear encapsulation of a
microkernel-based OS make it easier to review the system’s
code base and it becomes affordable to verify important parts
of the system like the microkernel itself [33]. Microkernels
employ capabilities to implement the least-privilege princi-
ple which helps to prevent privilege escalation due to errors
in OS services (failure containment). The argument that most
microkernel-based OSes are missing the compatibility (e.g.
drivers) does not hold in a cloud datacenter because it is a

APSys ’20, August 24–25, 2020, Tsukuba, Japan Matthias Hille, Nils Asmussen, Hermann Härtig, and Pramod Bhatotia

closed hardware ecosystem with a limited variety of hard-
ware components for which drivers can be maintained with
reasonable effort.

Specialization. Among microkernel-based systems there
is none which has all advantages one would wish for in
a datacenter with large racks consisting of heterogeneous
cores and accelerators. There are L4 microkernels like Fi-
asco.OC, seL4 [33, 34] which are well-suited for powerful
cache-coherent general purpose CPUs. A multikernel like
Barrelfish [7] uses explicit message passing which makes
the design a good fit to manage different cache-coherent is-
lands [8] inside a rack, but it is a radical choice to completely
abandon the cache-coherence mechanisms which are there
anyways.

Hardware Support. Current COTS systems employ mem-
orymanagement units (MMU) and IOMMUs to support hardware-
enforced memory isolation. While this design is battle-tested,
it requires CPUs to implement privileged mode execution
and IOMMUs to be configured by the host CPU. Systems
using ISA capabilities like CHERI [52] offer fast delegation
of access rights which is a good fit for large systems, how-
ever, this comes at the price that revocation is either not
possible or is limited to revoking all capabilities to a resource
(in CHERI this is memory) as suggested by Achermann et
al. [2]. Both hardware mechanisms, MMUs and ISA capa-
bilities, only support memory isolation but not hardware
supported message passing. The M3 system isolates CPUs
and accelerators with its DTU which provides both, mem-
ory isolation via memory ranges and message passing via
configurable communication channels between components.
These features enable the execution of untrusted code on
accelerators, fast IPC between any accelerator and/or CPU
and the provision of OS services to accelerators [5].

3 OS DESIGN CHALLENGES
The ever growing number of compute resources (CPU cores
and accelerators) is a phenomenon OS developer have been
exposed to for more than a decade [11, 12]. Maintaining
cache coherence for large amounts of CPU cores involves
considerable overheads and complicates the system’s scala-
bility which is a challenge for hardware development [30].
However, we do think that cache coherence will stay, but
in a limited scope [37], for example in groups of CPU cores
which we call cache-coherent islands. The OS which used to
leverage a homogeneous communication mechanism to man-
age the system will then face cache-coherent islands which
can use shared-memory communication within islands but
explicit messaging to communicate between them.

Resource disaggregation is moving in the focus of the re-
search community these days [29, 39, 43] to integrate numer-
ous resources into a system including the growing number of
accelerators [10, 20, 28, 42, 49, 54]. One of the challenges with
respect to accelerators is how to integrate them closely into
the system to keep the data transfer costs low, which are pro-
jected to increase their share regarding energy consumption
and execution time [41]. Today large amounts of accelerators
are connected with high-speed interconnects [19] and form
pods of accelerators which work together closely [21, 27].
However, this limited spatial integration is not suitable for all
workloads. Considering this we envision a machine to span a
whole rack consisting of boards of powerful general-purpose
CPUs, GPUs, TPUs, FPGAs and other accelerators.
In the heterogeneous hardware environment of a rack

consisting of different boards, the OS has to handle two kinds
of heterogeneity: different ISAs and different communication
schemes (cache-coherence vs. explicit messaging).

ISA Heterogeneity. Managing a system consisting of differ-
ent ISAs requires to execute different low-level implemen-
tations of an OS kernel in the same system. These kernel
implementations are sharing the same OS design choices, for
example they have a unified process management and access-
rights management. There are different ways to abstract
away the heterogeneous ISAs: one way is to use software
only, like Popocorn Linux or Barrelfish do [6, 7] and another
is a hardware/software co-design in which a hardware com-
ponent offers a unified interface to different ISAs and the
abstraction is realized in hardware as M3 does [5]. Some re-
search OSes cannot just handle general purpose cores with
different ISAs but also accelerators, which we consider as
an extreme but very important case of ISA heterogeneity.
The challenge is to build an OS which is versatile enough
to handle different ISAs and accelerators without loosing
the performance benefits of years of optimization to specific
architectures.

Communication Heterogeneity. In order to scale, OSes are
optimizing for one communication strategy which is either
cache coherence or explicit messaging. In cache-coherent
systems OS developers use fine-grained locking and careful
alignment of data structures to cache lines [50]. This pre-
vents cache thrashing due to false sharing. Other OS designs
employ explicit messaging [5, 7, 51] to communicate between
the multiple kernels and OS services running the machine.
OS developers will be challenged to mix both communication
techniques [43] and optimize algorithms appropriately.

Access Rights Management. In microkernels access rights
are managed by means of capabilities. A capability is a com-
bination of: 1) a reference to a resource and 2) the access
rights to this resource [17]. Microkernel-based systems are

A Heterogeneous Microkernel OS for Rack-Scale Systems APSys ’20, August 24–25, 2020, Tsukuba, Japan

appealing due to their small trusted computing base and
comprehensible security architecture. The small size and
clear encapsulation enables the verification of parts of the
system and can prevent critical errors already by design [9].

The ways to implement capabilities for access rights man-
agement are manifold. A capability system in general enables
access rights management and enforcement. The required
functionality of a capability system can be categorized as
follows:

1) Delegation: The delegation of access rights can be over-
seen by a privileged entity like the OS kernel or a capability
co-processor which verifies whether it is allowed to delegate
a particular capability. Only sparse capabilities are delegated
without supervision.
2) Enforcement: A capability system needs to ensure that
programs obey to their access rights. First this depends on the
kind of resource a capability refers to. For memory the most
common enforcement mechanism is an MMU which is pro-
grammed by the kernel. MMUs are typically combined with
partitioned capabilities as used in L4 systems. Alternatively
there exist ISA capabilities which are enforced by a capa-
bility co-processor which checks whether the program has
the necessary capabilities loaded into its capability registers.
Furthermore, the M3 system uses a hardware component, the
so-called data transfer unit (DTU), which can be configured
to give an application access to a range of memory [5].
Another important resource is the inter-process commu-

nication (IPC). Typically this is enforced by the kernel which
mediates between two communicating processes. A special
case is theM3 system [5] containing a DTUwhich can be con-
figured to establish a communication channel between two
applications. In such a system the kernel sets up the channel
but is not required to enforce it, hence it is not involved in
the actual communication.

Other resources like process management and scheduling
are enforced by the kernel since it is the privileged entity in
control of these features.
3) Revocation: Access rights also need to be withdrawn
which is done by revoking a capability. Revocation can be
done in various ways and with differing granularity. The
most coarse-grained is to revoke all access rights to a re-
source in a system, e.g. by changing a version number in the
referenced resource. A more flexible way is to introduce in-
direction objects when capabilities are delegated (e.g. across
trust spheres). Invalidating an indirection object then only
revokes capabilities pointing to this indirection object but
not all capabilities to the resource if multiple indirection
objects exist [44]. The most flexible approach is the selec-
tive revocation of a capability (and all capabilities delegated
from this one). Therefore the system has to track delegation
or needs to be able to reconstruct the delegation to find all

capabilities which need to be revoked. Note that revocation
also requires to reset enforcement mechanisms like TLBs,
which cache access rights.

In a heterogeneous system with a mix of enforcement
mechanisms, the OS has to manage heterogeneous types of
capabilities for the same resource type (e.g. kernel-enforced
vs. DTU-enforced IPC). Furthermore, capabilities can cross
boardswhichmay require the combination of cache-coherent
and message-based coordination in the capability system.
Designing an OS which mediates access across boards using
heterogeneous capabilities and which coordinates between
multiple kernels in the system is a challenging task.

4 A HETEROGENEOUS OS DESIGN
4.1 OS Mechanisms
In an architecture, as we describe it, access rights are man-
aged differently on individual boards. The cores of CPU
boards could be equipped with MMUs or with capability
co-processors, using partitioned capabilities as in L4 systems
or ISA capabilities like in CHERI respectively [34, 52]. To
illustrate our design we will consider partitioned capabilities
in this work.
Since not all accelerators have an MMU we equip accel-

erators with a DTU that connects them to the board-local
network, similar to a network-on-chip. The DTU enables
enforcement of memory access rights by configuration of
memory endpoints. In addition it provides explicit messag-
ing which enables to enforce IPC without intervention of the
kernel. The kernel running on the management CPU only
needs to configure the DTUs to set up the communication
channels.

4.2 Rack OS
To enable communication between accelerator boards and
CPU boards the memory and IPC enforcement mechanisms
need to be compatible across the whole rack. Therefore we
merge OS mechanisms of different OS designs into a Rack
OS. In our Rack OS we employ an L4-like kernel to control
CPU boards and an M3-like kernel to control accelerator
boards. On top of that we deploy a rack kernel which sets
up sharing and communication between individual boards
(cf. Figure 2). In the following we discuss how the cross-board
coordination is achieved.

Memory. To share memory between accelerator and CPU
boards, memory pages have to be translated to memory
ranges which can be used to configure DTUs of accelerators
such that they can access memory directly. The L4 kernel op-
erating the CPU boards needs to have a notion of how a DTU
works such that it can request the rack kernel to configure
the board’s DTU appropriately. In the other direction the M3

APSys ’20, August 24–25, 2020, Tsukuba, Japan Matthias Hille, Nils Asmussen, Hermann Härtig, and Pramod Bhatotia

A
cc

el

DTU DTU

C
P

U

D
RA

M

DTU
DTU

C
P

U

D
RA

M

Kernel

DTU

C
P

U

D
RA

M

App
1 Send msg

2 Deposit msg

3 IRQ

4 Activate receiver

5 Read msg

a) b)

c)

Figure 3: Cross-board communication from an acceler-
ator to a CPU. The accelerator’s message is forwarded
via the DTUs on the communication channel. The
DTU of the CPU board deposits the message in mem-
ory and informs the Kernel via an interrupt. The ker-
nel thenwakes up the receiverwhich can now read the
message.

kernel operating the accelerator boards has to translate pos-
sibly byte-granular memory ranges to memory pages with
a fixed page size. To always offer migration between both
mechanisms, memory ranges would need to be page-sized
as well, which would abandon the flexibility advantage of
memory ranges. A solution to this could be to request a spe-
cial type of memory (migratable memory) which is always
page-sized and use byte-granular memory ranges for non-
migratable memory. From the OS’ perspective this principle
extends the notion of pinned and non-pinned memory in
today’s systems.

Communication. The mediation of IPC between different
board types involves a transition from hardware-enforced
IPC to kernel-enforced IPC. Figure 3 illustrates the steps of
this transition. When an accelerator wants to send a mes-
sage to a CPU, the accelerator initiates the send operation
via its DTU depicted in step 1○ in Figure 3.a). The message
is forwarded by the accelerator’s DTU to the DTU of the
corresponding accelerator board which forwards it to the
CPU board. In step 2○ the DTU of the CPU board deposits the
message in a predestined memory location. Subsequently the
DTU signals the arrival of a message to the kernel of the CPU
via an interrupt in step 3○ in Figure 3.b). The kernel then
identifies the receiver and activates the process in step 4○. Fi-
nally step 5○ in Figure 3 depicts the receiving process reading
the message from memory. For short messages the message
can be injected directly into the CPU’s registers to minimize
latency caused by memory reads and writes, as is common
practice in microkernels [18]. For IPC from a CPU board to
an accelerator the L4 kernel has to forward the message from
the sender running on a CPU via the CPU board’s DTU to
an accelerator board. Both scenarios require that the boards

are actually allowed to communicate with each other and
that the boards’ DTUs have been set up by the rack kernel.
The coordination via messages between the boards’ kernels
exhibits that we also employ OS design principles known
from the multikernel approach [7].

4.3 Heterogeneous Capability System
Each breed of OS kernel used in the Rack OS has its own
capability types. This is because they employ different en-
forcement mechanisms for memory access rights and IPC.
In addition to that, execution contexts are disparate due to
the diverse compute hardware. A CPU has a vastly different
execution context from a GPU or an FPGA. Thus some ca-
pability types like a scheduling capability for a CPU thread
are not applicable on an accelerator board. However, it can
still be useful to have the ability to activate a CPU thread,
for example when an accelerator wants to signal an event to
a CPU thread.

The resource heterogeneity is reflected in a heterogeneous
capability system. There are capabilities which have to be
mapped between different implementations (e.g. memory,
IPC) and capabilities which only reference remote resources
(e.g. processes / execution contexts, scheduling contexts). To
enable the delegation of access rights to resources across the
whole system, kernels of various boards need to cooperate
and exchange capabilities via messages. Hence, our system
comprises a distributed capability system similar to the one
used in the multikernel approach. However, inside of a CPU
board cache coherence can be used to coordinate capability
operations between kernel threads running on different cores.
The capability system is therefore not only heterogeneous
regarding the capability types but also with respect to the
coordination of capability operations.

4.4 Additional Challenges
The OS design we propose is a combination of various op-
erating systems into one system. It entails different kernels
running on the boards comprising a rack. To manage the sys-
tem as a whole we gave an outline how to combine different
isolation and enforcement mechanisms and the correspond-
ing capability system. However, there are more building
blocks of the system which we want to discuss briefly.

Memory Allocation. The memory allocation in a system
with memory distributed on the various boards requires the
coordination of local per-board allocators. The choice where
to allocate memory and when to migrate it to another board
can be left to the application developer or a runtime system.
In any case the OS has to take care that memory access rights
are reflected correctly with both enforcement mechanisms.
A migration might be possible using the migratable-memory
approach described in section 4.2. An alternative approach

A Heterogeneous Microkernel OS for Rack-Scale Systems APSys ’20, August 24–25, 2020, Tsukuba, Japan

is the integration of ISA capabilities which can be used to
enforce byte-granular memory access rights in page-based
systems [52]. However, to preserve the capability system’s
full functionality a mechanism to selectively revoke ISA ca-
pabilities would be necessary.

Scheduling. Scheduling in such a large system requires a
mixture of board-local schedulers and a mechanism to trig-
ger scheduling of an execution context on another board, to
optimize for latency-critical operations for instance. Board-
spanning scheduling requires to introduce notions of the
various execution contexts into every kernel of the system.
This is also useful for setting up accelerator tasks from a
CPU thread or vice versa to dynamically generate CPU tasks
during computation on an accelerator. The notion of an
execution context also affects migration between differing
ISAs or even accelerators. Previous work suggests to provide
multi-ISA binaries [40] which could be extended to multi-
accelerator binaries containing diverse implementations for
the same problem.

Resource Management. Resource discovery and represen-
tation is another topic where various trade-offs can be found.
In a rack consisting of many boards it might be unnecessary
that each kernel on every board knows all the resources of
the rack. Instead resource discovery can be done by the rack
kernel and cross-board resource requests are be mediated by
this central entity. Discovery of OS services canwork in a sim-
ilar fashion, where some services might not be usable across
boards but others are. For example an in-memory filesys-
tem service, which is designed to utilize the byte-granular
memory ranges of a DTU, is not usable in the same way on
a CPU board with MMU enforced page-granular memory
protection.

5 CONCLUSION
To improve the scalable integration of general purpose cores
and accelerators in datacenters we propose to combine mul-
tiple OS designs into a Rack OS to leverage the benefits of
each design. Extending the isolation mechanisms of accel-
erators facilitates the cooperation with powerful general
purpose boards and enables the OS to provide OS services
to accelerators directly. We suggest to base a datacenter OS
on microkernels offering a security-oriented design with
clear encapsulation and a least-privilege access policy. The
combination of multiple OS designs entails merging of dif-
ferent isolation and enforcement mechanisms resulting in
a heterogeneous capability system. The operation of such
a capability system requires to mediate between varying
enforcement mechanisms and the combination of two coor-
dination methods—cache-coherence and explicit messaging.

REFERENCES
[1] Compute Express Link (CXL) Promoters 2019. Compute Express Link

Specification 1.0, 2019.
[2] Reto Achermann, Robert N. M.Watson, Chris Dalton, Paolo Faraboschi,

Moritz Hoffmann, Dejan Milojicic, Geoffrey Ndu, Alexander Richard-
son, Timothy Roscoe, and Adrian L. Shaw. Separating translation from
protection in address spaces with dynamic remapping. In Proceedings
of the 16th Workshop on Hot Topics in Operating Systems (HotOS), 2017.

[3] Sandeep R Agrawal, Sam Idicula, Arun Raghavan, Evangelos Vlachos,
Venkatraman Govindaraju, Venkatanathan Varadarajan, Cagri Balke-
sen, Georgios Giannikis, Charlie Roth, Nipun Agarwal, and Eric Sedlar.
A many-core architecture for in-memory data processing. In Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017.

[4] Alexey Andreyev. The New FacebookDCTopology, 2019. OCP Summit
2019.

[5] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and
Gerhard Fettweis. M3: A Hardware/Operating-System Co-Design to
Tame Heterogeneous Manycores. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[6] Antonio Barbalace, Binoy Ravindran, and David Katz. Popcorn: a
replicated-kernel OS based on Linux. Ottawa Linux Symposium (OLS),
2014.

[7] Andrew Baumann, Paul Barham, Pierre-evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. The Multikernel: A New OS Architecture for
Scalable Multicore Systems. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles (SOSP), 2009.

[8] Andrew Baumann, Chris Hawblitzel, Kornilios Kourtis, Tim Harris,
and Timothy Roscoe. Cosh: clear OS data sharing in an incoherent
world. In 2014 Conference on Timely Results in Operating Systems
(TRIOS), 2014.

[9] Simon Biggs, Damon Lee, and Gernot Heiser. The Jury Is In: Monolithic
OS Design Is Flawed: Microkernel-based Designs Improve Security.
In 9th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys), 2018.

[10] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for sdn. In Proceedings of the ACM SIGCOMM 2013 Conference
(SIGCOMM), 2013.

[11] Silas Boyd-wickizer, Austin T Clements, Yandong Mao, Aleksey
Pesterev, M Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
An Analysis of Linux Scalability to Many Cores. Proceedings of the 9th
USENIX conference on Operating systems design and implementation
(OSDI), 2010.

[12] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-
halian, Mike Houston, and Pat Hanrahan. Brook for GPUs: Stream
computing on graphics hardware. In ACM SIGGRAPH, 2004.

[13] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. A cloud-scale acceleration architecture. In
The 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2016.

[14] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrah-
manyam, Carl A. Waldspurger, Dan Boneh, Jeffrey Dwoskin, and
Dan R.K. Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems. In Proceed-
ings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2008.

[15] Gen-Z Consortium. Gen-z core specification version 1.0, 2018.

APSys ’20, August 24–25, 2020, Tsukuba, Japan Matthias Hille, Nils Asmussen, Hermann Härtig, and Pramod Bhatotia

[16] Microsoft Corporation. How microsoft designs its cloud-scale servers.
https://www.microsoft.com, 2014.

[17] Jack B. Dennis and Earl C. Van Horn. Programming semantics for
multiprogrammed computations. Communications of the ACM, 1966.

[18] Kevin Elphinstone and Gernot Heiser. From L3 to seL4 what have we
learnt in 20 years of L4 microkernels? In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (SOSP), 2013.

[19] D. Foley and J. Danskin. Ultra-performance pascal gpu and nvlink
interconnect. IEEE Micro, 2017.

[20] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-
sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Lo-
gan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek,
Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steve Reinhardt, Adrian
Caulfield, Eric Chung, and Doug Burger. A configurable cloud-scale
dnn processor for real-time ai. In Proceedings of the 45th International
Symposium on Computer Architecture (ISCA), 2018.

[21] N. A. Gawande, J. B. Landwehr, J. A. Daily, N. R. Tallent, A. Vishnu,
and D. J. Kerbyson. Scaling deep learning workloads: NVIDIA DGX-
1/Pascal and Intel Knights Landing. In 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2017.

[22] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski,
F. Mehnert, and M. Peter. The nizza secure-system architecture. In
2005 International Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2005.

[23] Robert Hormuth. Dell EMC’s 2019 Server Trends & Observa-
tions. https://blog.dellemc.com/en-us/dell-emc-s-2019-server-trends-
observations, 2019.

[24] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo In-
terlandi, Tyson Condie, and Jason Cong. Programming and runtime
support to blaze fpga accelerator deployment at datacenter scale. In
Proceedings of the Seventh ACM Symposium on Cloud Computing (SoCC),
2016.

[25] Amazon Web Services Inc. Amazon elastic graphics.
https://aws.amazon.com/ec2/elastic-graphics/.

[26] Google Inc. Cloud TPUs – ML accelerators for TensorFlow.
https://cloud.google.com/tpu/.

[27] Google Inc. System architecture cloud tpu.
https://cloud.google.com/tpu/docs/system-architecture.

[28] Jouppi et al. In-datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA), 2017.

[29] Katrinis et al. Rack-scale disaggregated cloud data centers: The dredbox
project vision. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), 2016.

[30] Stefanos Kaxiras and Alberto Ros. A new perspective for efficient
virtual-cache coherence. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA), 2013.

[31] Patrick Kennedy. Facebook zion accelerator platform for
oam. https://www.servethehome.com/facebook-zion-accelerator-
platform-for-oam.

[32] Patrick Kennedy. Gen-z in dell emc poweredge mx and cxl implica-
tions. https://www.servethehome.com/gen-z-in-dell-emc-poweredge-
mx-and-cxl-implications.

[33] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. sel4: Formal verification of an os kernel. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles
(SOSP), 2009.

[34] Adam Lackorzynski and Alexander Warg. Taming subsystems: Capa-
bilities as universal resource access control in L4. In Proceedings of
the Second Workshop on Isolation and Integration in Embedded Systems

(IIES), 2009.
[35] Jochen Liedtke. On µ-kernel construction. In Proceedings of the fifteenth

ACM symposium on Operating systems principles (OSDI), 1995.
[36] Anthony Liguori. C5 instances and the evolution of amazon ec2

virtualization, 2018.
[37] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip

cache coherence is here to stay. Communications of the ACM (CACM),
2012.

[38] Open Compute Project Microsoft Corporation.
Project olympus 1u server mechanical specification.
https://www.opencompute.org/wiki/Server/ProjectOlympus,
2017.

[39] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagi-
mont. Welcome to zombieland: Practical and energy-efficient memory
disaggregation in a datacenter. In Proceedings of the Thirteenth EuroSys
Conference (EuroSys), 2018.

[40] Pierre Olivier, Sang-Hoon Kim, and Binoy Ravindran. Os support for
thread migration and distribution in the fully heterogeneous datacen-
ter. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems - HotOS ’17, 2017.

[41] Ardavan Pedram, Stephen Richardson, Mark Horowitz, Sameh Galal,
and Shahar Kvatinsky. Dark memory and accelerator-rich system
optimization in the dark silicon era. IEEE Design and Test (IEEE D&T),
2017.

[42] B. Poudel, N. Kumar Giri, and A. Munir. Design and comparative
evaluation of gpgpu- and fpga-based mpsoc ecu architectures for se-
cure, dependable, and real-time automotive cps. In 2017 IEEE 28th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), 2017.

[43] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS:
a disseminated , distributed OS for hardware resource disaggrega-
tion. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2018.

[44] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: A
fast capability system. In Proceedings of the Seventeenth ACM Sympo-
sium on Operating Systems Principles (SOSP), 1999.

[45] Mark Silberstein. OmniX: an accelerator-centric OS for omni-
programmable systems. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems (HotOS), 2017.

[46] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. GPUfs:
Integrating a File System with GPUs. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[47] Hayden Kwok-Hay So and Robert Brodersen. A unified hard-
ware/software runtime environment for fpga-based reconfigurable
computers using borph. ACM Transaction of Embedded Computing
Systems (TECS), 2008.

[48] Siamak Tavallaei, Whitney Zhao, Tiffany Jin, Cheng Chen, and Richard
Ding. OCP Accelerator Module (OAM), 2019. OCP Summit 2019.

[49] Mellanox Technologies. Bluefield multicore system on
chip. http://www.mellanox.com/related-docs/npu-multicore-
processors/PB_Bluefield_SoC.pdf.

[50] Qi Wang, Yuxin Ren, Matt Scaperoth, and Gabriel Parmer. SPeCK: a
kernel for scalable predictability. In 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, 2015.

[51] David Wentzlaff and Anant Agarwal. Factored operating systems (fos):
The Case for a Scalable Operating System for Multicores. ACM SIGOPS
Operating Systems Review, 2009.

[52] Jonathan Woodruff, Robert N M Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. The cheri capability model:
Revisiting risc in an age of risk. In Proceedings of the 41st International

A Heterogeneous Microkernel OS for Rack-Scale Systems APSys ’20, August 24–25, 2020, Tsukuba, Japan

Symposium on Computer Architecture (ISCA), 2014.
[53] Hansen Zhang, Soumyadeep Ghosh, Jordan Fix, Sotiris Apostolakis,

Stephen R Beard, Nayana P. Nagendra, Taewook Oh, and David I
August. Architectural Support for Containment-based Security. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2019.

[54] Peng Zhang, Jianbin Fang, Canqun Yang, Tao Tang, Chun Huang, and
Zheng Wang. MOCL: An efficient openCL implementation for the
Matrix-2000 architecture. In Proceedings of the 15th ACM International
Conference on Computing Frontiers (CF), 2018.

[55] Whitney Zhao, Siamak Tavallaei, Richard Ding, and Tiffany Jin. OCP
Accelerator Module (OAM) System: An Open Accelerator Infrastruc-
ture Project, 2019. OCP Summit 2019.

	Abstract
	1 Introduction
	2 Datacenter Architecture
	2.1 Hardware Architecture
	2.2 OS Cherry Picking

	3 OS Design Challenges
	4 A Heterogeneous OS Design
	4.1 OS Mechanisms
	4.2 Rack OS
	4.3 Heterogeneous Capability System
	4.4 Additional Challenges

	5 Conclusion
	References

