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Abstract. We put forth a new cryptographic primitive for securely computing inner-products
in a scalable, non-interactive fashion: any party can broadcast a public (computationally hiding)
encoding of its input, and store a secret state. Given their secret state and the other party’s
public encoding, any pair of parties can non-interactively compute additive shares of the inner-
product between the encoded vectors.
We give constructions of this primitive from a common template, which can be instantiated
under either the LPN (with non-negligible correctness error) or the LWE (with negligible cor-
rectness error) assumptions. Our construction uses a novel twist on the standard non-interactive
key exchange based on the Alekhnovich cryptosystem, which upgrades it to a non-interactive
inner product protocol almost for free. In addition to being non-interactive, our constructions
have linear communication (with constants smaller than all known alternatives) and small com-
putation: using LPN or LWE with quasi-cyclic codes, we estimate that encoding a length-220

vector over a 32-bit field takes less that 2s on a standard laptop; decoding amounts to a single
cheap inner-product.
We show how to remove the non-negligible error in our LPN instantiation using a one-time,
logarithmic-communication preprocessing. Eventually, we show to to upgrade its security to the
malicious model using new sublinear-communication zero-knowledge proofs for low-noise LPN
samples, which might be of independent interest.

1 Introduction

In this work, we put forth a new approach for non-interactive secure computation of inner products,
one of the most basic and fundamental functionalities in secure computation. Our approach can be
instantiated under either the learning parity with noise (LPN) or the learning with error (LWE)
assumptions, two of the most important post-quantum assumptions. It builds upon a simple but
powerful observation: a well-chosen tweak of the Alekhnovich key exchange [4] turns it into a non-
interactive secure protocol for approximately computing inner products. Borrowing tools from the
recent line of work on pseudorandom correlation generators [15–17], we show how to turn this into
full fledged secure protocols for inner product, using a small preprocessing phase with communication
much smaller than the length of the vectors, both in the semi-honest and in the malicious setting.

1.1 Secure Inner-Product Made as Easy as Non-Interactive Key Exchange

To better capture the attractive efficiency features of our protocols, we introduce the notion of non-
interactive inner product (NIIP) protocols. At a high level, a NIIP specifies a pair of algorithm,
Encode and Decode, where:

– Encode takes an input vector x ∈ Fn over some field F, and produces a pair (pkx, skx). pkx is
the public encoding, and skx is the secret state. All parties can publicly reveal the encodings pkx,
since they computationally hide their vectors x.

– Decode takes as input a public encoding pkx, and a secret state sky, and outputs a value z, such
that the following holds: z = Decode(pkx, sky) and z′ = Decode(pky, skx) form additive shares of
the inner product xᵀ · y = z + z′ over F.

An NIIP provides an appealing way to compute inner products with a minimalistic interaction
pattern: multiple parties can compute and publish encodings of their input ahead of time, locally
keeping a secret state. Then, whenever two parties want to securely compute the inner product be-
tween their inputs, they can locally and non-interactively decode the other party’s public encoding
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with their own secret state, and obtain additive shares of the output. One can compare this inter-
action pattern to the pattern of non-interactive key exchange: after broadcasting their public keys,
any two individuals from a network can locally compute a shared secret key. We achieve exactly the
same interaction pattern, but for the significantly more “advanced” functionality of securely com-
puting (shares of) inner products. We believe that this minimalistic interaction pattern makes our
construction appealing in many natural scenarios, and allows them to scale more efficiently to large
networks of users (which is typically a bottleneck for secure computation).

LPN-based Instantiation. Our primary instantiation of this approach relies on the learning parity
with noise assumption. There, we only achieve correctness up to a vanishing (but non-negligible) error
term ε, which is of the order of λ2/n, where λ is a security parameter, and n is the vector dimension.
Therefore, our protocol provides non-trivial correctness only for values of n > λ2. We note that this
is likely to be optimal: an NIIP with a much smaller correctness error would imply an LPN-based
key exchange under LPN with noise rate higher than

√
n, which is a famous and long-standing open

problem. Furthermore, we improve the protocol in two ways:

– Using an input-independent preprocessing phase with sublinear communication O(log n) (where
the O(·) hides poly(λ) factors), the protocol can be made perfectly correct.

– By developing new types of zero-knowledge proofs with sublinear communication tailored to our
protocol, we show how the security of our protocol can be enhanced from semi-honest to malicious,
at a small cost. Our new zero-knowledge proofs, which demonstrate knowledge of a sparse vector in
the kernel of a matrix with communication sublinear in the dimension (but linear in the sparsity),
are of independent interest.

LWE-based Instantiation. Our second instantiation is based on the learning with error assump-
tion. There, we focus on the semi-honest setting, and directly achieve a full-fledged (negligible error)
NIIP, without any preprocessing. This makes our protocol highly versatile in environments where
it is desirable to minimize interactions. Furthermore, our LWE-based instantiation can be shown to
provide information-theoretic security for one of the two parties.

1.2 Efficiency

In addition to their optimal interaction pattern, our LPN-based protocols have linear communication
O(n), with concrete small constants. Specifically, the constant is always smaller than 6, and can be
asymptotically reduced to 2 + ε for arbitrarily small ε when n grows (approaching the optimal cost
of just exchanging the two vectors in the clear). In terms of computation, using relatively standard
variants of LPN (or LWE) with a quasi-cyclic matrix (the LPN assumption with quasi-cyclic codes
is relatively well studied [1, 3, 16], and has been used in recent submissions to the post-quantum
NIST competition [3, 5, 48]), our protocols have O(n · log n) computational complexity, where the
cost is dominated by that of doing a matrix-vector multiplication with a quasi-cyclic matrix (this
boils down to computing FFT’s in dimension n). For n ≈ 107, using the library of [23], the full
matrix multiplication can be executed in less than 2 seconds on a personal laptop, according to the
implementation of [16]. Furthermore, when assuming instead the hardness of LPN with respect to
the Druk-Ishai family of linear-time encodable code [34] (a less standard, but plausible assumption),
our LPN-based protocol enjoys computational complexity O(n), which is optimal up to a constant
factor.

1.3 Comparison to the State of the Art

Many methods from the literature can be used to securely compute inner products. We go through
the main options here, and compare them to our result.

From OT/OLE. A first option is to use generic oblivious-transfer-based secure computation for
inner product. This works especially well over F2, since the inner product between n bit vectors can
be reduced to n oblivious transfers (OT). Using recent advances in silent OT extension [15–17], this
can be done with asymptotic communication approaching three bits per oblivious transfer.
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However, things become significantly more complicated over larger fields. To handle multiplications
over a larger field F, the standard OT-based method [37] induces a log |F| overhead in the total number
of OTs, which can quickly get prohibitive. A more efficient alternative is to build on recent advances in
batch oblivious linear evaluation (OLE) over general fields, since an inner-product between length-n
vectors over F can be reduced to a batch of n OLEs over F. To our knowledge, the most efficient
protocols for generating many OLEs are the work of [18], which constructs a “silent OLE extension”
protocol assuming the hardness of ring-LPN over a fully-splitting ring, and the result of [9]. Being
silent, the protocol of [18] achieves an asymptotically optimal communication of 2n + o(n) elements
of F, for a computational cost of Õ(n) operations.

Our protocol achieves essentially the same asymptotic communication, and our computational
complexity is also essentially on par with theirs. However, we improve on three core aspects:

– Communication Pattern. The protocol of [18] requires running a generic, interactive secure compu-
tation protocol to generate the seeds for the silent OLE extension, before running a local expansion
and “derandomizing” the pseudorandom OLEs with additional interaction. In contrast, we achieve
a minimal interaction pattern, where a single encoding of the input is broadcast simultaneously
by all parties.

– Underlying Assumption. The protocol of [18] inherently requires a new “ring-LPN with fully
splitting ring” assumption. In fact, their starting point is a construction based on a standard
variant of LPN (LPN with quasi-cyclic codes, which we use here), which has superquadratic
computational complexity Õ(n2). Then, their new assumption is introduced as a way to overcome
this quadratic overhead. In contrast, we directly achieve quasilinear overhead, under the standard
LPN assumption over quasi-cyclic codes.

– Concrete Efficiency. Measuring the concrete efficiency of [18] is relatively complex, but working
out the parameters in the paper, the communication complexity of setting up the correlation is
around 40 · n for n = 220. For lower values of n, it is much higher, and it drops quickly for higher
values of n (e.g. around 3 · n for n = 224). In contrast, our setup costs are minimal (e.g. around
0.7 ·n for n = 220) In practice, this means that this approach will start to outperform our protocol
communication-wise only for n > 224.

As for the protocol of [9], their communication overhead is ∼ 33% larger than ours for short-ish
vectors (from 6n to 8n elements of F), and up to 4 times larger asymptotically (from (2 + ε)n to
8n elements of F). In addition, their construction requires a dedicated setup phase (while we only
need a common random string). Their dedicated setup can be replaced with a PKI setup, at the cost
of sacrificing further some efficiency. Other low-communication OLE protocols have been described
in [50], but their concrete computational efficiency is significantly lower than that of [18].

From homomorphic encryption. Another standard solution is to rely on linearly homomorphic
encryption, such as Paillier encryption [52]. In these solutions, one party encrypts its vector x and
sends it to the other party, who homomorphically computes and sends back a rerandomized encryption
of xᵀ ·y, which the first party decrypts. For extremely large fields (log |F| � 2048), one can achieve the
smallest communication across all known alternatives, with a communication of only (n+o(n)) log |F|
bits (i.e., essentially the cost of sending one of the two vectors in the clear), using a rate-1 homomorphic
encryption scheme such as Damgård-Jurik [28]. However, this solution is not competitive with the
previous approaches for any reasonable field sizes, communication-wise and computation-wise.

Using Ring-LWE-based linearly homomorphic encryption, a recent unpublished work [21] devised
a carefully optimized semi-honest OLE protocol. By tailoring their protocol to inner products, we
estimate that their protocol can achieve a communication comparable to our semi-honest protocol.
This comes at the cost of using PKI setup and not having a non-interactive communication pattern
as we do (furthermore, our protocol can be based on LWE rather than Ring-LWE).

1.4 Applications

Inner products are a fundamental operation in many standard privacy-preserving applications. In
many of these applications, the non-interactive structure of our new protocol enables a very appeal-
ing realization of these applications in a multi-party setting. This includes for example biometric
authentication [51] or pattern matching [39] (computing the Hamming distance between two strings
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can be non-interactively reduced to computing an inner product, since the Hamming distance be-
tween x and y is HW(x) + HW(y) − 2 · xᵀ · y, where HW denotes the Hamming weight). With our
non-interactive protocol, each user could publish a compact encoding associated to its fingerprint, and
each authority could also have a list of public encodings of authorized fingerprints. Then, users can
authenticate themselves with an authority with almost zero communication: the authority and the
user locally compute shares of the Hamming distance, and the user reveal his share to the authority
(a single field element). If the shares reconstruct to a value below the threshold, the authentication
is successful.

Other applications can include distributed data mining and machine learning applications such as
finding k-nearest neighbors (KNN) [60], rule mining [32], decision trees [56], support vector machine
(SVM) classification [62], or privacy preserving neural network learning [7, 24].

Inner products are also used in secure similarity measure protocols such as secure multi-keyword
searchable schemes [45], secure keyword similarity [46], similar document detection for plagiarism
prevention, copyright protection and duplicate submission detection (where similar documents be-
tween two entities should be detected while keeping documents confidential [41,49]), or secure profile
proximity matching in social networks (e.g. in some applications, a user profile is defined as a vector
of integers where attributes correspond to an interest; social proximity is defined as dot product of
two user’s vectors [25]. Similar methods are used in secure protocols for friend discovery in mobile
social networks [33]). In many of these applications, the non-interactive nature of our protocols can
allow to design scalable, multi-user variants.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. We use upper-case letters like M to
denote matrices, bold lower-case letters like v to denote row vectors, and for column vectors we use the
transpose vᵀ. We write uᵀ||vᵀ two denote the horizontal concatenations of (horizontal) vectors, and
u//v to denote vertical concatenation. Eventually, we write x $← X (resp. x $← D) to denote that x is
uniformly sampled from the set X (resp. randomly sampled according to distribution D). For a finite
set S, we denote the uniform distribution on S by U(S). We denote by Berτ the Bernoulli distribution
with parameter τ , i.e., e ∼ Berτ means that the random variable e evaluates to 1 with probability
τ and to 0 with probability 1 − τ . More generally, we write Berτ (F) to denote the distribution that
outputs a uniformly random element of F with probability τ , and 0 otherwise (note that with this
definition, Berτ (F2) = Ber(1+τ)/2; we ignore this slight discrepancy). We write D0

c
≈ D1 to denote

that two (families of) distributions D0 and D1 are computationally indistinguishable. Eventually, we
recall a standard lemma known in the LPN literature as the piling-up lemma:

Lemma 1 (Piling-up Lemma). For any 0 < τ < 1/2 and random variables (X1, · · · , Xn) i.i.d.
to Berτ , it holds that Pr [

⊕n
i=1Xi = 0] = (1 + (1− 2τ)n) /2.

2.1 Learning Parity with Noise

The learning parity with noise (LPN) assumption with dimension k, m noisy samples, and noise rate
τ states that it is infeasible to distinguish (A,A · s+ e) from random, where A is a random matrix in
Fm×k2 , s is a random length-k vector, and e is a length-m vector whose entries are sampled from Berτ .
More generally, the LPN assumption can be formulated with respect to a family of linear codes over
an arbitrary field F, in which case it states that it is hard to distinguish a noisy codeword A · s + e
from random (where A is a generator matrix for a random code from the family). Formally, given a
dimension k, number of samples m, and field F, let Code(m, k,F) be a probabilistic code generation
algorithm that outputs a matrix A ∈ Fm×k (A is viewed as the generator matrix of a linear code).
Furthermore, we let Code⊥(m,m− k,F) be a probabilistic code generation algorithm for the dual of
Code, which outputs random parity-check matrices B ∈ Fm×m−k for a random code A ∈ Code(m, k,F)
(i.e., a full-rank matrix B such that Bᵀ · A = 0; B is a generator for the dual of the code generated
by A). We define the LPN assumption over F with respect to a code Code below.

Definition 2 (Learning Parity with Noise). Fix a field F = F(λ), dimension k = k(λ), number
of samples m = m(λ), and noise rate τ = τ(λ). The LPNmk,τ assumption with respect to Code states
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that

{(A,b) | A $← Code(m, k,F), e $← Berτ (F)m, s
$← Fk,b← A · s+ e}

c
≈

{(A,b) | A $← Code(m, k,F),b $← Fm}

The above LPN assumption has an equivalent dual formulation:

Definition 3 (Dual Learning Parity with Noise). Fix a field F = F(λ), dimension k = k(λ),
number of samples m = m(λ), and noise rate τ = τ(λ). The dual-LPNmk,τ assumption with respect to
Code⊥ states that

{(H,b) | H $← Code⊥(m,m− k,F), e $← Berτ (F)m,b← Hᵀ · e}
c
≈

{(H,b) | H $← Code⊥(m,m− k,F),b $← Fm−k}

The following is standard:

Lemma 4. For any F, k,m, τ and code generation algorithm Code, the LPNmk,τ (F) assumption with
respect to Code and the dual-LPNmk,τ (F) assumption with respect to Code⊥ are equivalent.

Standard codes and noise distributions. The classical LPN assumption is recovered by setting
F = F2 and Code to be the uniform distribution over Fm×k2 . However, the hardness of LPN is
commonly assumed for other families of codes in the literature, such as sparse codes [4] (often called
the “Alekhnovich assumption”), quasi-cyclic codes (used in several recent submissions to the NIST
post-quantum competition [3,5,48]), Toeplitz matrices [36,47], Druk-Ishai codes [34], and many more.
All these variants of LPN generalize naturally to larger fields (and LPN is typically believed to be at
least as hard, if not harder, over larger fields).

In addition, it is also relatively common to consider alternative noise distributions beyond the
Bernoulli noise. The two most standard choices are exact noise (where the noise is sampled uniformly
from the set of all τ ·m-sparse vectors of Fm) and regular noise (where the noise is a concatenation
of τ ·m random unit vectors of length 1/τ). See [15, 17] for discussions about these alternative noise
distributions. We will denote by XNτ,m(F) (for eXact Noise) the exact noise distribution, and by
RNτ,m(F) (for Regular Noise) the regular noise distribution.

Security of LPN and its variants. Numerous attacks on LPN have been devised. Among the
most standard attacks are Gaussian elimination, which solves LPN in time and sample complexity
Θ(1/(1− τ)k) using Θ(k2) memory, and its variants (e.g. pooled Gauss [35], and BKW [13]), and the
Information Set Decoding attacks (introduced by Prange [53] and further improved in a long sequence
of papers, see e.g. [11, 12]). In this work, we will be interested in variants of LPN with a very low
number of samples (linear in the dimension) and a very low noise rate. This has several consequences:
first, algorithms such as BKW (which require a very large number of samples) do not apply, and using
a regular noise distribution has no known effect on security (in contrast, if the number of samples
is at least quadratic in the dimension, attacks such as the Arora-Ge attack [6] can take advantage
of the noise structure). Second, in the very low-noise regime, all improved variants of ISD become
equivalent to the original (much simpler) algorithm of Prange [58].

Increasing the field size beyond 2 is not known to reduce security (and actually seems to slightly
improve security with respect to known attacks). When using a different family of linear code, a
necessary condition is to be a good code (i.e. a random code from the family has a linear minimum
distance with high probability). In the case of quasi-cyclic codes, the strong structure allows for the
DOOM attack [55], which slightly reduces security (but can be easily compensated by a small increase
in the noise rate). We refer the reader to [15–18] for more detailed discussions on the security of LPN
with various types of noise distributions and code ensembles. As a rule of thumb, in our parameter
setting, all known attacks will have a complexity of the form 2O(τ ·m). Hence, fixing the noise rate τ
to λ/m for some fixed security parameter λ suffices to achieve exponential security (in λ) against all
known attacks.



6 Geoffroy Couteau and Maryam Zarezadeh

2.2 Learning with Errors

The learning with errors (LWE) assumption is a close variant of the LPN assumption. In essence, and
using our generalized definition of LPN, the LWE assumption with dimension k, and m samples, is
simply the LPN assumption over Zq (for some large enough prime q) with respect to a different noise
distribution, which trades sparsity for small magnitude – i.e., instead of being a distribution over
vectors whose entries are mostly zero, the noise distribution samples vectors whose entries are small
in magnitude. Multiple choices of such noise distributions are standard in the literature, including
discrete Gaussian noise, or noise sampled uniformly from [−B,B], where B � q is a bound on the
magnitude. We call ’LWEmk (Zq, χ) with respect to Code’ the LWE assumption with dimension k, m
samples, over Zq, with noise vector sampled from χm and matrix sampled from Code.

Rounding lemma. Let dxc denotes the rounding of x ∈ R to the nearest integer. We recall the
rounding lemma, from [19]:

Lemma 5 (Rounding of noisy shares). Let (p, q) be two integers with q/p ∈ N. Fix any z ∈ Zp,
and (t0, t1) be two random elements of Zq subject to t0 + t1 = (q/p) · z + e mod q, where e is such
that q/(p · |e|) ≥ λω(1) (λ is a security parameter). Then with probability at least 1− (|e|+ 1) · p/q ≥
1 − λ−ω(1), it holds that R(t0) + R(t1) = z mod p, where R is the deterministic rounding function
R : x→ d(p/q) · zc mod p and the probability is over the random choice of (t0, t1).

3 Non-Interactive Approximate Inner Product from LPN and LWE

In this section, we describe a general non-interactive protocol for securely computing the inner product
between two vectors over Fn, with ε correctness error (independent of the value of the inputs). Our
general protocol can be instantiated either under the LPN assumption, in which case the error will
be noticeable (but arbitrarily small), or under the LWE assumption (in which case the error can be
made negligible). Our protocol enjoys an attractive key exchange structure: consider two parties Alice
and Bob with respective inputs (u,v) ∈ Fn × Fn. The protocol has the following interaction pattern:

– First, Alice and Bob broadcast encodings of their respective vectors (u,v), denoted pku and pkv,
and locally keep a private state, which we denote by sku and skv respectively. The encodings have
length O(n) (the O(·) hides a small constant) and computationally hide the vector they encode.

– Second, Alice (resp. Bob) can locally compute α← Decode(pkv, sku) (resp. β ← Decode(pku, skv)),
where Decode is some deterministic decoding algorithm. The values α and β form additive shares
of a value w ∈ F, where it holds that w = uᵀ · v with probability at least ε (over the random
coins of the encoding procedure).

We call a protocol with the above interaction pattern a non-interactive approximate inner-product
protocol (NIAIP). We formalize this notion below.

3.1 Non-Interactive Approximate Inner Product

Definition 6. A non-interactive ε-approximate inner-product protocol (ε-NIAIP) over a field F is a
tuple of probabilistic polynomial-time algorithms (Setup,Encode,Decode) such that Decode is deter-
ministic, and

– Setup(1λ) : on input the security parameter 1λ in unary, outputs a common reference string (CRS)
crs.

– Encode(crs, b,u) : on input the CRS crs, a bit b, u ∈ Fn, outputs a pair (pkb, skb);
– Decode(crs, pk, sk′) : on input the CRS crs, a public encoding pk and a secret state sk′, outputs a

value γ ∈ F.

Furthermore, an NIAIP must satisfy two properties:

– ε-Correctness. For every common reference string crs in the domain of Setup(1λ) and every
pair (u0,u1) ∈ Fn × Fn of vectors, it holds that

Pr[Decode(crs, pk0, sk1) + Decode(crs, pk1, sk0) = uᵀ
0 · u1] ≥ ε(λ, n),

where the probability is taken over the joint random coins of both instances of Encode, ((pkb, skb)
$←

Encode(crs, b,ub))b∈{0,1}.
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– Indistinguishability. For every b ∈ {0, 1}, the advantage of any (stateful) probabilistic polynomial-
time (PPT) adversary A in distinguishing the following two experiments, parametrized by a bit
σ, is negligible:
• A receives crs

$← Setup(1λ) and outputs u ∈ Fn.
• The challenger samples a pair (pkb, skb)

$← Encode(crs, b,v), where v is 0n if σ = 0, and
v = u otherwise. The challenger sends pkb to A.

A note on syntax. We note that in the above definition, the parties have fixed roles. In a multiparty
setting, if all pairs of parties want to compute inner products, this means that they must publish two
encodings of their input, one with role 0, and one with role 1. In many applications, however, it is
natural to have “type-0” and “type-1” parties (e.g. clients and servers), such that secure computations
tasks are only carried between a type-0 and a type-1 party.

3.2 A (1− τ2m)-NIAIP from LPN

We now proceed with the construction of an ε-NIAIP, from the learning parity with noise assumption.
The construction is relatively simple in hindsight: it is a natural twist on the Alekhnovich cryptosys-
tem. The construction is parametrized by a field F, and a vector length n. We let k(n),m(n) denote
respectively a dimension parameter and a number of samples, both to be specified later (but the
reader can think of k and m as linear in n, e.g. k = 2n and m = 4n), and t = t(λ, n) denote a noise
parameter (the reader can consider t = λ to be a reasonable choice). Let Code be a probabilistic code
generation algorithm. The construction is represented on Figure 1.

– Setup(1λ) : sample H $← Code⊥(m, k + n,F) and output crs = H.
– Encode(crs, b,u) : parse crs asH and sample rb

$← Bermτ (F). If b = 0, output pk0 ← (u//0)−Hᵀ ·
r0 and sk0 ← r0. If b = 1, sample s

$← Fk, and output pk1 ← H · (u//s) + r1 and sk1 ← (u//s).
– Decode(crs, pk, sk′) : output pkᵀ · sk′.

Fig. 1. A non-interactive approximate inner-product over F for vectors of length n

Before we state the theorem, we introduce some notation: let Code⊥right be the code generator that

samples a random matrix H
$← Code⊥(m, k + n,F) (hence H ∈ Fm×k+n) and outputs the matrix

Hright ∈ Fm×k which contains the last k columns of H. Furthermore, we say that Code⊥ is a nice code
if given Hright, there is an efficient algorithm to sample a random matrix H from Code⊥(m, k + n,F)
whose last k columns are exactly Hright

3. We denote H $← Code⊥|Hright
(m, k + n,F) this process.

Theorem 7. Let Code⊥ be a nice code. Assume that the dual-LPNmm−(k+n),τ (F) assumption with
respect to Code⊥, and the (primal) LPNmk,τ (F) assumption with respect to Code⊥right both hold. Then
the construction (Setup,Encode,Decode) on Figure 1 is an ε-NIAIP, with ε ≥ 1−mτ2.

Proof. We first prove ε-correctness. Observe that for any pair of inputs (u0,u1) ∈ Fn×Fn and every
matrix H ∈ Fm×k+n, it holds that

Decode(crs, pk0, sk1) + Decode(crs, pk1, sk0)

= pkᵀ0 · sk1 + pkᵀ1 · sk0
= ((u0//0)−Hᵀ · r0)ᵀ · (u1//s) + (H · (u1//s) + r1)

ᵀ · r0
= (uᵀ

0 ||0ᵀ) · (u1//s)− rᵀ0 ·H · (u1//s) + (u1//s)
ᵀ ·Hᵀ · r0 + rᵀ1 · r0

= uᵀ
0 · u1 − rᵀ0 ·H · (u1//s) + (rᵀ0 ·H · (u1//s))

ᵀ + rᵀ1 · r0
= uᵀ

0 · u1 + rᵀ1 · r0 (since the transpose of a single field element is itself).

Now, since r0 and r1 are random Bernoulli noise vectors with rate τ , we have

Pr[rᵀ1 · r0 = 0] ≥ 1−m · τ2,
3 All known LPN-friendly codes satisfy this property.



8 Geoffroy Couteau and Maryam Zarezadeh

since Pr[rᵀ1 · r0 = 0] ≥ Pr[r
(i)
0 · r

(i)
1 = 0∀i ≤ m], which equal to 1 − Pr[∃i, r(i)0 · r

(i)
1 = 1] ≥ 1 −mτ2,

using a straightforward union bound and the fact that Pr[r(i)0 · r
(i)
1 = 1] = τ2 for any i.

We now prove indistinguishability, for b = 0 and b = 1. We proceed in a sequence of games of the
form Gib,σ:

– Game G0
0,0 is the initial game, with bits b = 0 and σ = 0. The challenger samples H $←

Code⊥(m, k+n,F). Upon receiving u ∈ Fn fromA(crs), the challenger returns pk0 ← 0k+n−Hᵀ·r0,
where r0 is a random Bernoulli noise.

– Game G1
0,0 : the challenger first receives a challenge, denoted (H, c), for the dual-LPNmm−(k+n),τ

assumption with respect to Code⊥, where c isHᵀ ·e for some noise vector e. Upon receiving u ∈ Fn
from A(crs), the challenger returns pk0 ← 0k+n−c. This game is perfectly indistinguishable from
the previous one.

– Game G2
0,0 is exactly as Game G1

0,0, except that c is now a random vector from Fm. Observe that
distinguishing between G1

0,0 and G2
0,0 is exactly solving the dual-LPNmm−(k+n),τ assumption with

respect to Code⊥.

– Game G3
0,0 : the challenger proceeds as in Game G2

0,0, except that it outputs pk0
$← (u//0) − c.

Since c is a uniformly random vector, this game is perfectly indistinguishable from the previous
one.

– Game G4
0,0 : as the previous one, except that c is back to being of the form Hᵀ · e for some noise

vector e. Distinguishing this game from G3
0,0 is exactly solving the dual-LPNmm−(k+n),τ assumption

with respect to Code⊥.
– Game G0

0,1 : this game is simply the initial game with bits b = 0 and σ = 1. Game G0
0,1 is perfectly

indistinguishable from G4
0,0.

From the above, we conclude that the advantage of any polynomial time adversary in the indistin-
guishability experiment with b = 0 is at most twice its advantage against the dual-LPNmm−(k+n),τ (F)
assumption with respect to Code⊥. We now address the case b = 1.

– GameG0
1,0 is the initial game, with bits b = 1 and σ = 0. The challenger samplesH $← Code(m, k+

n,F). Upon receiving u ∈ Fn from A(crs), the challenger returns pk1 ← H · (0n//s) + r1, where
r1 is a random Bernoulli noise and s is a random vector from Fk.

– Game G1
1,0 : the challenger first receives a challenge, denoted (Hright, c), for the LPNmk,τ assumption

with respect to Code⊥right, where c is Hright · s+ e for some random vector s and some noise vector

e. The challenger samples H as H $← Code⊥|Hright
(m, k + n,F) (which is possible by definition

since Code⊥ is a nice code). Let Hleft be such that H = Hleft||Hright. Upon receiving u ∈ Fn from
A(H), the challenger returns pk1 ← c. By construction of c, since H · (0n//s) = Hright · s, this
game is perfectly indistinguishable from the previous one.

– Game G2
1,0 is exactly as Game G1

0,0, except that c is now a random vector from Fm. Observe that
distinguishing between G1

0,0 and G2
0,0 is exactly solving the LPNmk,τ assumption with respect to

Code⊥right.

– Game G3
1,0 : the challenger proceeds as in Game G2

0,0, except that it outputs pk0
$← Hleft · u+ c.

Since c is a uniformly random vector, this game is perfectly indistinguishable from the previous
one.

– Game G4
1,0 : as the previous one, except that c is back to being of the form Hright · s + e.

Distinguishing this game from G3
0,0 is exactly solving the LPNmk,τ assumption with respect to

Code.
– Game G0

1,1 : this game is simply the initial game with bits b = 1 and σ = 1. Since H · (u//s) =
Hleft · u+Hright · s, Game G0

0,1 is perfectly indistinguishable from G4
0,0.

From the above, we conclude that the advantage of any polynomial time adversary in the indistin-
guishability experiment with b = 1 is at most twice its advantage against the LPNmk,τ (F) assumption
with respect to Code⊥right. This concludes the proof.



Non-Interactive Secure Computation of Inner-Product from LPN and LWE 9

3.3 Non-Interactive Inner Product from LWE

A simple variant of our construction of non-interactive approximate inner-product leads to a con-
struction under the learning with error (LWE) assumption. Unlike its LPN-based counterpart, this
variant can actually achieve correctness exponentially close to 1.

Let Fp be the prime-order field over which we want to compute a non-interactive inner-product.
Fix a bound B on the magnitude of the noise. Let Zq be a ring, for some multiple q of p of size
q > (m ·B2 + 1) · p · λω(1). The variant is described on Figure 2. Eventually, we let χ denote a noise
distribution. The exact choice of χ does not matter much, but we assume that all entries in a random
sample from χm belong to [−B,B] with overwhelming probability. Note that we follow an LPN-style
description, by viewing the matrix of the LWE assumption as the generator matrix of some linear
code over the ring Zq. While this is not so common in the LWE literature, this viewpoint allows for
considerations on the choice of better codes to improve efficiency.

– Setup(1λ) : sample H $← Code⊥(m, k + n,Zq) and output crs = H.
– Encode(crs, b,u) : parse crs as H and sample rb

$← χm. If b = 0, output pk0 ← (q/p) · (u//0)−
Hᵀ · r0 and sk0 ← r0. If b = 1, sample s

$← Zkq , and output pk1 ← H · (u//s) + r1 and
sk1 ← (u//s).

– Decode(crs, pk, sk′) : output d(p/q) · pkᵀ · sk′c mod p.

Fig. 2. An LWE-based non-interactive inner-product over Fp for vectors of length n

Theorem 8. Assuming the LWEmk (Zq, χ) with respect to Code, the construction of Figure 2 is an
ε-NIAIP, with correctness ε negligibly close to 1.

Proof. The protocol of Figure 2 is identical to the LPN-based protocol of Figure 1, up to two differ-
ences:

– Hᵀ · r0 is used to mask (q/p) · (u//0) instead of (u//0), and
– the output of Decode is fed to the rounding procedure R of the rounding lemma (Lemma 5) which,

on input x ∈ Zq, outputs R(x) = d(p/q) · xc mod p.

Using the same analysis as for the correctness of the LPN-based protocol, if (pk0, sk0) and (pk1, sk1)
are encodings of two inputs (u0,u1) ∈ Fp × Fp, we have

pkᵀ0 · sk1 + pkᵀ1 · sk0 = (q/p) · uᵀ
0 · u1 + rᵀ1 · r0,

where |rᵀ1 · r0| ≤ m ·B2. Let e← rᵀ1 · r0 denote the output noise and z ← uᵀ
0 ·u1 denote the target

output. The values pkᵀ0 · sk1 and pkᵀ1 · sk0 form random shares of (q/p) ·z+e over Zq with |e| ≤ m ·B2.
Therefore, by the rounding lemma (Lemma 5), the outputs of Decode form additive shares of z ∈ Zp
with overwhelming probability. This concludes the proof of overwhelming correctness.

For security, the second part of the analysis is identical to the security analysis of the LPN-based
protocol, and reduces to the LWEmk (Zq, χ) assumption with respect to Code. The first part of the
analysis, however, differs in a crucial way: a standard application of the leftover hash lemma shows
that Hᵀ · r0 is statistically close to a random vector. Therefore, the NIAIP actually enjoys statistical
security for one of the two parties in the LWE setting. The rest of the game hops are identical – one
must simply replace invocations of the dual LPN assumption by the statistical argument.

Like its LPN-based counterpart, this protocol leads to an NIAIP over an arbitrary prime order
field (and can even be modified to give an inner product protocol over Z); furthermore, it enjoys
overwhelming correctness. However, as we will see later, it is possible to upgrade the correctness of the
LPN-based NIAIP to perfect correctness, and its security to security against malicious adversaries, at
a cost sublinear in n; this means that, asymptotically, the LPN-based protocol can be made perfectly
correct and maliciously secure at negligible cost. In contrast, making the LWE-based protocol secure
against malicious adversaries is more challenging, and we leave it to future work.
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3.4 From NIAIP to Secure Computation of Inner Product

The natural usecase for NIAIP is to securely compute inner products: two parties P0, P1 publish en-
codings of their respective inputs u and v, locally compute shares of the inner product, and exchange
their shares to reconstruct the output. An important technicality here is that the NIAIP indistin-
guishability notion does not directly imply security when revealing the share of P0 to its opponent
P1. When correctness is overwhelming (as with our LWE-based instantiation), this is not an issue:
given the output uᵀ · v and the randomness of P1, the simulator can compute P1’s share γ1, and
simulate the missing share as uᵀ · v − γ1. Due to the overwhelming correctness, the simulation is
indistinguishable from the honest protocol.

When using ε-NIAIP with non-negligible correctness error (as with our LPN-based instantiation),
however, the correctness error translates to a security loss for the protocol: the simulation fails with
probability 1 − ε. Yet, this does not directly imply an attack on the protocol. In fact, for our LPN-
based instantiation, we can get perfect simulation by giving the the simulator the error term rᵀ1 · r0.
Concretely, this corresponds to allowing the adversary to learn a single sparse linear equation (given
by r1) in the LPN noise vector r0. In turn, this means that the security reduces to an appropriate
LPN with leakage assumption. Such variants of LPN are relatively standard, and can in particular be
reduced to the standard LPN assumption, albeit with some loss [16,18].

In an multiparty setting, where P0 wants to compute the inner product of u with many other
vectors, the leakage can be accumulated across corrupted parties. This translates to a larger loss
for the assumption, and the LPN parameters must be adjusted to compensate, as a function of the
maximum number of corrupted parties. An alternative solution is to first remove the error instead,
using the sublinear-communication preprocessing phase described in Section 4.

3.5 Choosing the Parameters and the Code

Our non-interactive inner-product communicates k + n+m bits (k + n for pk0 and m for pk1). The
security of our protocol relies on a relatively unusual set of parameters: we need to assume dual
LPN with dimension m − (k + n), m samples, noise rate τ with respect to the matrix Hᵀ, as well
as primal LPN with dimension k, m samples, noise rate τ with respect to the “right half” of H. We
will discuss candidate choices for the underlying code afterwards. Regarding the parameters, we set
m− (k+n) = k to ensure that both assumptions achieve the same dimension and number of samples,
in order to balance security. This implies m = 2k + n. From there, the choice of k induces a tradeoff
between the noise rate (which must be kept low as the error probability of the protocol is τ2 · m)
and the communication of the protocol (which grows with k): picking a very large k � n increase
communication but achieves asymptoptically a rate 1/2 (as m approaches 2k).

Concrete Parameters. For concrete instantiations, we consider a reasonable middle ground and set
k = n (hencem = 3k), leading to codes of rate 1/3. This leads to a protocol with total communication
5n bits, only 2.5 times more than the communication of exchanging u0 and u1 in the clear. To estimate
the concrete noise rate, we rely on the analysis of [15] which provides various formulas to compute
lower bounds on the bit complexity of the most standard attacks on LPN. With a rate 1/3 and using
their formulas for the cost of ISD, Gaussian elimination, and low-weight parity-check attacks, we get
the following (very close) approximation of the security level: choosing τ = λ/m provides λ− 20 bits
of security (independently of the vector length n). Hence, for example, setting λ = 100 gives 80 bits
of security, and an error probability of λ2/m = 0.3% for vectors of length n = 220 (for smaller vectors,
the error probability increases rapidly: e.g. around 10% for n = 215).

Asymptotic Parameters. Asymptotically, letting m = 2k + n as before, the code rate is k/m
for both codes. Let ε be an arbitrarily small constant, and set k = ε · n and τ = λ/m for a security
parameter λ. The best known attack against LPN with code rate k/m = O(1) and noise rate λ/m run
in time 2O(λ) (where the O(·) hides a 1/ε factor). With these parameters, the protocol communicates
3k + 2n = (2 + 3ε)n bits, which is arbitrarily close to the optimal communication of an insecure
NIAIP that simply reveals the inputs in the clear. Settling for subexponential security in λ can further
reduce communication to 2n+ o(n).
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Choosing the Code. It remains to discuss how to choose an appropriate code to instantiate the
NIAIP. While the code has no impact on communication, it represents a tradeoff between computation
and security. For example, using a uniformly random code leads to a security reduction to the most
standard flavor of LPN, but comes at a huge computational cost: the computation scales as O(n2).

Some variants of LPN are conjectured to be secure with respect to linear time encodable codes,
where the mapping x→ H ·x can be computed in linear time (by the transposition principle [14,40],
this also implies that the mapping y → Hᵀ · y can be computed in linear time). This is for example
the case of primal LPN instantiated with a sparse matrix H, with a constant number of nonzero
entry per row, which corresponds to the Alekhnovich assumption [4]. Unfortunately, for this standard
choice of linear-time encodable code, the dual assumption with respect to Hᵀ turns out to be insecure.
This is equivalent to the well-known fact that LDPC codes admit an efficient decoding algorithm.

Fortunately, if we settle for quasi-linear time encodable codes, we can circumvent the issue. For
example, quasi-cyclic codes can be encoded in time O(n · log n) using Fast Fourier Transform, and
given a generator matrix H for a quasi-cyclic code, LPN is widely conjectured to hold both with
respect to Hright in its primal form, and with respect to Hᵀ in its dual form. Quasi-cyclic codes have
been used in numerous recent works [1, 3, 16] as well as in submissions to the NIST post-quantum
competition [3,5,48]. We note that, when using quasi-cyclic codes, one must account for the speedup
given by the DOOM attack [55], which gives a

√
k speedup for the attacker. To compensate for

this attack, we must therefore aim at λ + log2 k “pre-DOOM” bits of security, which can be done
by increasing the noise rate from (λ + 20)/m to (λ + 20 + log2 k)/m with our concrete choice of
parameters.

Eventually, one can instantiate the code using the Druk-Ishai family of linear-time encodable
codes [34]. While less standard, this provides a plausible candidate where the mapping y 7→ Hᵀ · y is
linear-time, and LPN can be conjectured to hold both for H in its primal form, and for Hᵀ in its dual
form (the work of [34] provides support for this conjecture). This yields an approximate inner-product
protocol with strictly linear communication and computation.

4 Removing Correctness Errors via Sublinear Preprocessing

In this section, we show how to convert the LPN-based ε-NIAIP from the previous section into a two-
party secure computation protocol for inner product, without correctness error. While the protocol is
not an NIAIP anymore, all additional interactions take place during an input-independent preprocess-
ing phase. Furthermore, the amount of computation and communication during this preprocessing
phase is sublinear in n (more precisely, it will be of the form poly(λ) · log n).

The ideal functionality FIP for secure computation of (shares of) an inner product over a field
F is described on Figure 4 (setting ε = 1). The intuition behind the protocol of this section is
natural: the correctness error in the protocol of Figure 1 is due to an additive term rᵀ1 · r0 in the
shares locally decoded by the parties. Since the rb are sparse vectors, their inner product is zero
with high probability ≈ 1− λ2/m. To correct the error, the parties will distributively generate noise
vectors (r0, r1) together with additive shares of rᵀ1 · r0. Crucially, this entire preprocessing requires
communication and computation sublinear in the vector length n.

4.1 Picking the Right Noise Distribution

While the high level intuition is simple, the (asymptotic and concrete) efficiency of this approach
turns out to be extremely sensitive to the noise distribution. In the previous section, we described the
protocol using the standard Bernoulli noise distribution, since it allows for a reduction to the most
common flavor of LPN. However, Bernoulli noise is a poor choice for allowing efficient preprocessing;
using a regular noise distribution insteads allows for a considerably more efficient preprocessing,
without harming security.

In a bit more details, setting τ = λ/m, a vector rb
$← Berτ (F)m can be written as the sum of

≈ λ unit vectors. Therefore, securely computing (shares of) the inner product between two such
vectors reduces to securely computing λ2 products of elements of F, and λ2 secure equality tests
between logm-size bitstrings. This is already sublinear in m = O(n), but the λ2 overhead can incur
a significant slowdown.

Instead, we sample r0 and r1 from the regular noise distribution: r0 and r1 are concatenations
of λ random unit vectors. The corresponding variant of LPN, regular LPN, is not known to be
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any weaker than LPN in our regime of parameters. Let us introduce a few notations: we denote
rb = (r

(1)
b // · · · //r(λ)b ) for b = 0, 1, where the r

(i)
b are unit vectors. Furthermore, we denote by jb,i and

rb,i the position and the value of the nonzero entry in r
(i)
b . then, we have

rᵀ1 · r0 =

λ∑
i=1

(r
(i)
1 )ᵀ · r(i)0 =

λ∑
i=1

EQ(j0,i, j1,i) · (r0,ir1,i),

where EQ(x, y) returns 1 if x = y and 0 otherwise. Therefore, securely distributing shares of rᵀ1 · r0
reduces (mostly) to performing λ secure equality tests (for the EQ(j0,i, j1,i) terms) between log(m/λ)-
bit strings, and secure products over F (for the r0,ir1,i terms), which is quadratically reduced compared
to the cost for Bernoulli noise.

4.2 A Simple Protocol with Leakage

A first solution is to let the parties sample slightly more than λ random positions j0,i, j1,i (say,
λ′ = 2λ). Let us denote (j0, j1) the respective vectors of inputs. Then, the two parties perform a batch
equality test with inputs (j0, j1), which reveals to both parties for each position i whether j0,i = j1,i.
Extremely efficient batch equality-tests have been constructed in the context of private set intersection
protocols, using oblivious transfers [44], or more recently vector-OLE [20,54]. Concretely, even a naive
OT-based protocol would use λ′ log(m/λ) invocations of a bit-OT, a very small value. Using [44], this
can be further reduced to about 4λ string-OT.

Given the results of the equality tests, the parties discard all positions where j0,i = j1,i. They use
a λ-sized subset of the remaining positions (a subset of this size is guaranteed to exist by a standard
Chernoff bound) to define their noise vectors r0, r1. Note that this corresponds to letting the parties
sample uniformly random regular vectors r0, r1 conditioned on rᵀ0 · r1 = 0. Hence, executing the
protocol with these noise vectors yields an inner product protocol without correctness error.

The downside, however, is that the noise vectors are not independent: concretely, for each block
of r0 (recall that a regular noise is a concatenation of blocks, where each block is a unit vector), Bob
learns one uniformly random position of the block which is guaranteed to not be noisy. Therefore,
Bob gets in total a leakage of λ non-noisy positions in Alice’s vector (and reciprocally, Alice gets
a leakage of λ noise-free positions in Bob’s noise vector). In the two-party setting, this remains
manageable: the security analysis still goes through, but under a less standard LPN-with-static-
leakage variant of LPN, which has been studied in the past [16, 59] (in particular, it reduces to
the standard LPN assumption, albeit with a large loss). Hence, scaling up the LPN parameters
to compensate for the leakage suffices to guarantee security. However, in a multiparty setting, this
becomes more troublesome: if (e.g.) Alice performs an inner product protocol with many other parties,
these parties can, by colluding, accumulate the leakages. The situation is similar to the issue discussed
in Section 3.4, but much worse: when using the approximate inner product protocol in a multiparty
setting, each execution leaks roughly one linear equation about the noise (by revealing whether rᵀ0 ·r1 =
0), while with the above error-free variant, each execution leaks λ linear equations (since rᵀ0,j ·r1,j = 0
is guaranteed for all blocks j). Hence, the leakage accumulate significantly faster. Below, we describe
a more involved preprocessing strategy which completely remove all leakage and guarantees security
under the standard LPN assumption, while still achieving sublinear communication.

4.3 The Protocol

We describe below a protocol for inner product, following our previous discussion. We use the following
building blocks:

– FEQ is an ideal functionality parametrized by a domain [k] which, given two inputs (x, y) ∈ [k]2,
outputs random shares bA, bB to Alice and Bob of EQ(x, y);

– FOLE is an ideal functionality parametrized by a field F which, given two inputs (x, y) ∈ F2,
outputs random shares zA, zB of x · y to Alice and Bob.

The protocol in the (FEQ,FOLE)-hybrid model is given on Figure 3.
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Protocol Πsh
IP

– Setup. Let F be a prime order field. Sample H $← Code⊥(m, k + n,F) and output crs = H.
– Preprocessing. Alice and Bob each sample random pairs (j0,i, r0,i)

$← [m/λ]×F∗ and (j1,i, r1,i)
$←

[m/λ]× F∗ for i = 1 to λ. Let r0, r1 denote the corresponding regular noise vectors.
• The parties call FEQ on inputs (j0,i, j1,i) ∈ [m/λ]2 for i = 1 to λ. Let (b0,i, b1,i) denote Alice’s

and Bob’s outputs. Let c0,i ← (−1)b0,i and c1,i ← (−1)b1,i for i = 1 to λ. Note that c0,i · c1,i =
(−1)EQ(j0,i,j1,i).

• If F 6= F2, the parties call FOLE over F twice, on inputs (r0,i, r1,i) and (c0,i · r0,i, c1,i · r1,i), for
i = 1 to λ. Let (α0,i, α1,i) and (β0,i, β1,i) denote their respective outputs in each instance. Note
that α0,i + α1,i = r0,i · r1,i, and β0,i + β1,i = c0,ir0,i · c1,ir1,i = (−1)EQ(j0,i,j1,i) · r0,ir1,i.

• If F 6= F2, the parties compute z0 =
∑λ
i=1(α0,i − β0,i)/2 and z1 =

∑λ
i=1(α1,i − β1,i)/2. Note

that z0 + z1 =
∑λ
i=1 r0,ir1,i · (1− (−1)EQ(j0,i,j1,i))/2 =

∑λ
i=1 r0,ir1,i · EQ(j0,i, j1,i) = rᵀ0 · r1.

• Else, if F = F2, the parties set (z0, z1) ← (
⊕λ

i=1 b0,i,
⊕λ

i=1 b1,i). Note that z0 ⊕ z1 =⊕λ
i=1 EQ(j0,i, j1,i) = rᵀ0 · r1 (since r0,i = r1,i = 1 for all i when F = F2).

– Online Phase. Let (u0,u1) be the inputs of Alice and Bob.
• Alice sends pk0 ← (u0//0) − Hᵀ · r0 and sets sk0 ← r0, while Bob samples s

$← Fk, sends
pk1 ← H · (u1//s) + r1 and sets sk1 ← (u1//s).

• Alice outputs x0 = pkᵀ1 · sk0 − z0 and Bob outputs x1 = pkᵀ0 · sk1 − z1.

Fig. 3. A non-interactive inner-product protocol with semi-honest security Πsh
IP over F for vectors of length n

Theorem 9. Let F be a prime order field and Code⊥ be a nice code. Assume that the regular
dual-LPNmm−(k+n),τ (F) assumption with respect to Code⊥, and the (primal) regular LPNmk,τ (F) assump-
tion with respect to Code⊥right both hold. Then protocol on Figure 3 securely realizes the inner product
functionality FIP(F, n) from Figure 4 in the (FEQ,FOLE)-hybrid model with semi-honest security and
static corruption.

Functionality FIP(F, n)

The functionality FIP is parametrized by a field F, and a vector length n. It interacts with two parties Alice and
Bob, and an adversary A. On input (Input,u ∈ Fnq ) from Alice and (Input,v ∈ Fnq ) from Bob, the functionality
FIP proceeds as follows:

- If both parties are honest, sample α, β ∈ Fq at random such that uᵀ · v = α+ β
- If Alice is corrupted, wait for a message (Output, α ∈ Fq) from A and set β = uᵀ · v − α.
- If Bob is corrupted, wait for a message (Output, β ∈ Fq) from the adversary and set α = uᵀ · v − β.

The functionality outputs α to Alice and β to Bob, and then halts.

Fig. 4. Ideal functionality FIP for inner product between vectors over Fn.

Proof. Case 0: both parties are honest. We first consider the case where no party is corrupted.
Then, it follows by construction that z0 + z1 = rᵀ0 · r1. Furthermore, we established previously in the
proof of Theorem 7 that pkᵀ1 · sk0 + pkᵀ0 · sk1 = uᵀ

0 · u1 + rᵀ0 · r1 (the online phase of the protocol is
identical to an execution of Encode and Decode; only the distribution of r0, r1 changes). It follows
that the outputs of Alice and Bob form additive shares of uᵀ

0 · u1 (with probability 1).
Case 1: Alice is corrupted. Assume now that Alice is corrupted, with input u0. The simulator

Sim activates FIP(F, n) on behalf of Alice in the ideal world by sending (Input,u0). In the real world,
it plays honestly the role of Bob in the preprocessing phase, emulates the answer of the functionalities
FEQ and FOLE by returning either a random bit or a random element of F, and stores the queries
of Alice to the functionalities and the output z0 that she computes from the answers to her queries.
Sim extracts the j0,i from Alice’s calls to FEQ and the r0,i from her calls to FOLE, and reconstructs

r0 = sk0. Sim emulates Bob in the online phase by sending pk1
$← Fm, and sets x0 ← pkᵀ1 · sk0 − z0.

Eventually, Sim sends (Output, x0) to FIP(F, n).



14 Geoffroy Couteau and Maryam Zarezadeh

It remains to argue why the simulation is indistinguishable from an honest execution of the
protocol. Observe that the behavior of Sim is perfectly indistinguishable to that of Bob, except that
it sends pk1

$← Fm instead of pk1 ← H · (u1//s)+ r1. Since the preprocessing phase does not leak any
information about r1 (the answers of FEQ and FOLE to Alice being uniformly random by definition)
and Sim does not need r1 to emulate these functionalities, the same sequence of games as in the proof
of Theorem 7 shows that the advantage in distinguishing pk1 from a uniformly random element in
Fm is negligible under the (regular, primal) LPNmk,λ/m assumption with respect to Code.

Case 2: Bob is corrupted. Assume now that Bob is corrupted, with input u1. Sim plays in
the preprocessing phase and interacts with FIP(F, n) in a symmetrical way, extracting the (j1,i, r1,i)
and reconstructing the vector r1 and the value z1. Sim emulates Alice in the online phase by sending
pk0

$← Fm. Upon receiving pk1 from Bob, Sim extracts sk1 = (u1//s) by solving pk1 − r1 = H · X
and parsing the solution X as sk1 = (u1//s) (which is guaranteed to be well-formed since Bob is semi
honest). Eventally, Sim sets x1 ← pkᵀ0 · sk1 − z1 and sends (Output, x1) to FIP(F, n).

As above, proving indistinguishability from an honest execution reduces to proving that pk0
$← Fm

is indistinguishable from setting pk0 ← (u0//0) −Hᵀ · r0, which can be shown (since r0 is perfectly
hidden from Bob), using the same sequence of games as in the proof of Theorem 7, to follow from
the (regular) dual-LPNmm−(k+n),λ/m assumption with respect to Code.

4.4 Variant: Replacing λ Calls to FOLE by 2λ Calls to FOT

Let FOT(F) be the oblivious transfer functionality over F: on input (s0, s1) ∈ F2 from the sender and
a bit b from the receiver, it outputs sb to the receiver and nothing to the sender.

In the protocol of Figure 3, the parties with shares (b0,i, b1,i) of EQ(j0,i, j1,i) and values (r0,i, r1,i) ∈
F2 must compute additive shares of (b0,i ⊕ b1,i) · r0,ir1,i, which they do using two calls to FOLE. We
provide an alternative instantiation, which uses one call to FOLE, and two additional calls to FOT:

– Alice and Bob call FOLE on inputs (r0,i, r1,i) ∈ F2 and obtain additive shares (α0,i, α1,i) of their
product.

– Alice and Bob perform two oblivious transfers in parallel. In the first OT, Alice plays the sender
with inputs (b0,i ·α0,i+ rA, (1− b0,i) ·α0,i+ rA) for a random mask rA, and Bob plays the receiver
with input b1,i. Concretely, Alice and Bob obtain this way shares of (b0,i⊕b1,i) ·α0,i (where Alice’s
share is rA). In the other direction, Bob plays the role of the sender, using a random mask rB ,
and Alice of the receiver with input b0,i; Alice and Bob obtain additive shares of (b0,i⊕ b1,i) ·α1,i.
Summing their shares, Alice and Bob do indeed obtain shares of (b0,i ⊕ b1,i) · r0,ir1,i.

4.5 Instantiating FEQ and FOLE

With the above variant, the preprocessing boils down to λ invocations of FEQ on log(m/λ)-bit strings,
λ invocations of FOLE over F, and 2λ invocations of FOT on log |F|-bit strings. There exists numerous
options to implement the FEQ functionality. In our range of parameters, we estimate that the most
efficient solution is the protocol of [26]. For equality test over `-bit strings, it requires `+o(`) oblivious
transfers of log `-bit strings, and O(log∗ `) rounds of communication. Concretely, setting for example
λ = 120 and m = 3n, for an inner product between string of length at most n = 220, the protocol
of [26] can be instantiated either with 15 OTs of 16-bit strings and 14 OTs of bits in two rounds,
or with 15 OTs of 16-bit strings, 4 OTs of 4-bit strings, and 2 OTs of bits, in three rounds (and
no additional communication beyond the OTs). For FOLE, the protocol of [37] requires log |F| OTs
per OLE over F (while recent OLE protocols such as [18] are much more efficient, their efficiency
improvement “kicks in” only for a large enough number of OLE). With these choices of protocol, the
full preprocessing boils down to λ · (log(m/λ) + log |F|+ 2) oblivious transfers.

Overall, setting m = O(n), the communication of the preprocessing phase boils down to O(λ ·
(log n+ log |F|)) oblivious transfer of small strings (O(log n)-bit or log |F|-bit strings), which leads to
a logarithmic communication in the vector length n. For example, using the standard instantiation
for short string oblivious transfer [43], computing the inner product between two strings of length 220

over a 32-bit field requires about 5 ·105 ≈ 0.5 ·n bits of communication, adding only a small overhead
to the entire communication of the protocol. Using recent advances in silent OT extension [16, 27],
this overhead can be further reduced by a factor four.
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5 Malicious Security

In this section, we enhance our protocol from Section 4 to withstand attacks from malicious adver-
saries.

5.1 Guaranteeing the Success of Extraction

In the malicious model, the parties may not follow the specifications of the protocol; in particular,
they may not use their prescribed input. Therefore, to make the protocol from Figure 3 secure against
malicious behavior, the simulator must have a mean to extract the input of the corrupted party. When
Alice is corrupted, since Sim emulates the preprocessing and stores her noise vector r0, the effective
input u0 used by Alice can be extracted by computing pk0+Hᵀ ·r0, and parsing it as (u0//0). However,
the success of this extraction is only guaranteed if we can ensure that pk0 will always be well-formed
(i.e. the “bottom half” of pk0 is of the form M · r0 for a sparse r0, where M is the bottom half of
Hᵀ). Similarly, if Bob is corrupted, Sim extracts u1 by solving the linear system H ·X = pk1 − r1 to
get (u1//s). However, this is an overdetermined system of equations which is not guaranteed to have
a solution, and extraction will again succeed only if we can guarantee that pk0 is well-formed (i.e.,
this system has a solution).

To guarantee the success of extraction, we let Alice and Bob add zero-knowledge proofs that their
public keys pk0, pk1 are well-formed. With simple manipulations, it is easy to show that in both cases,
this reduces to proving that a vector v is of the form M · e, where M is a public compressive matrix,
and e is a secret sparse noise vector – i.e., this reduces to proving knowledge of a preimage in an
instance of the syndrome decoding problem for the code with parity-check matrix M , which is a well-
studied problem [2,22,57]. Unfortunately, existing solutions are prohibitively expensive in our setting:
they require O(κ ·m) communication, where κ is a statistical security parameter (which stems from
parallel repetitions of an underlying zero-knowledge proof with constant soundness error, e.g. 2/3 in
Stern’s scheme [57]) and m is the code dimension. Since our protocol operates in the high-dimension,
low-noise setting, this causes a huge blowup to the total communication and computation.

5.2 A New Almost-Zero-Knowledge Proof for Low-Noise Syndrome Decoding

As a contribution of independent interest, we therefore design a new zero-knowledge proof system
for the syndrome decoding problem, which is especially suited for instances with large dimension and
low noise. For a syndrome decoding instance of dimension ` and a noise rate of λ/`, our protocol
boils down essentially to O(λ · log `) actively secure oblivious transfers and λ OLE. On the downside,
unlike Stern’s protocol, our zero-knowledge proof is not an identification scheme: it is private coin
and cannot be made non-interactive using the Fiat-Shamir heuristic.

Our approach follows the intuition underlying a recent line of work [8, 10, 30, 61] on efficient
zero-knowledge proofs from pseudorandom correlation generators [15–17]. However, our goal is fun-
damentally different, since these works target linear communication zero-knowledge proofs for general
(arithmetic) circuits; on the other hand, we construct a sublinear communication zero-knowledge proof
for a specific problem.

Intuition. A recent line of work initiated in [15] has developed pseudorandom correlation generators
(PCG) for the vector-OLE (VOLE) correlation. At a high level, a PCG for a VOLE correlation allows
to distributively generate additive shares of ∆ ·v, where ∆ is a (chosen) element of F known to one of
the parties, and v is a (long) pseudorandom vector over F, known to the other party. We do not directly
build on PCG, but observe that the main component in their construction is a protocol that relies
on puncturable pseudorandom functions (PPRF) to distributively generate, with low communication,
additive shares of ∆ · e for a sparse, regular noise vector e.

We rely on this PPRF-based protocol to authenticate the regular noise vector e (i.e., the witness
of the prover) with low communication overhead, using an information-theoretic MAC ∆ known to
the verifier. Due to the regular structure of e, this boils down to distributively generating and locally
concatenating shares of ∆ · ei for i = 1 to λ, where the ei are unit vectors (let ji be the index of
their nonzero entry, and ei be the corresponding value). Such a protocol is called a single point vector
OLE. We briefly recall how such shares are generated with sublinear communication:
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– The verifier samples ∆, and a PRF key K for a PRF {PRFK : [`/λ] 7→ F}K .
– The parties execute an interactive protocol to securely generate K{ji} (the key K punctured at
ji). Using variants of the Doerner-shelat protocol [31] on top of the GGM puncturable PRF [38],
this requires O(log `) invocations of an oblivious transfer protocol.

– The prover obliviously receive the value PRFK(ji) +∆ · ei, using a single OLE over F.
– In the malicious setting, when several instances are executed, additional consistency checks are

required to guarantee that ∆ remains the same accross all executions. An efficient protocol for
this task was given in [59], with minimal overhead compared to the semi-honest protocol.

Let (q0,q1) denote the additive shares of ∆ · e generated using the above protocol. To check that
v is indeed of the form M · e, the verifier sends a random vector ρ to the prover, who replies with the
value ver0 = −ρᵀ · (M · q0) ∈ F. Then, the verifier sets ver1 ← ρᵀ · (M · q1 −∆ · v) and check that
ver0 = ver1.

Observe that ver1− ver0 = ρᵀ · (M ·q1−∆ ·v+M ·q0) = ρᵀ · (M · (∆ ·e)−∆ ·v) = 0 if M ·e = v.
Soundness will rely on the Schwarz-Zippel lemma to show that when M ·e 6= v, causing ver0 = ver1 is
as hard as guessing ∆, which can happen only with probability 1/|F| since ∆ is perfectly hidden from
the prover. This readily suffices when F is exponentially large. For smaller fields, we simply sample ∆
from an appropriate extension field F′ of F such that |F′| ≥ 2κ for some statistical security parameter
κ; the rest of the protocol is identical, except that the parties must use a PRF from [`/λ] to F′, and
execute the OLE’s over F′.

Zero-knowledge versus almost-zero-knowledge. The above blueprint actually leads to a true
zero-knowledge proof system with sublinear communication, when instantiated with a maliciously
secure sublinear protocol for single point vector OLE. While it is possible to construct such protocols,
recent works [16,59] have observed that one can achieve a much greater efficiency by slightly relaxing
the single point VOLE functionality. In this relaxation, the verifier is allowed to learn roughly one bit
of leakage about the noise vector e. When instantiating our construction with the protocol of [59] (the
state-of-the-art protocol of this line of work), the protocol we get is therefore not truly zero-knowledge.
Nevertheless, it still suffices to construct a maliciously secure inner product protocol, which is our
end goal, at the cost of relying on the LPN with static leakage assumption (first put forth in [16]),
which states (informally) that LPN remains secure given one bit of leakage about the noise vector.

Since, for better efficiency, we do not achieve full-fledged zero-knowledge but only a relaxed version
which suffices in our specific context, we do not provide here an isolated description of the zero-
knowledge proof, and directly integrate it into our maliciously secure protocol. However, for the sake
of completeness, we provide a description of the proof system in isolation (with and without the
relaxation) in Appendix A.

5.3 Maliciously Secure Inner Product from LPN with Static Leakage

The full protocol, integrating the procedure for checking that pk0 and pk1 are well-formed, is described
on Figure 6, in the Fmal

pre -hybrid model. These checks require the parties to have access to authenticated
versions of the noise vectors r0, r1; this authentication procedure is executed in a preprocessing phase.
The ideal functionality Fmal

pre describing the preprocessing phase is represented on Figure 5. It follows
closely the single-point vector-OLE functionality from [59], but enhances it to also distribute the
inner product between pairs of single-point VOLEs. Similarly, our instantiation of this functionality
will build upon the protocol of [59].

5.4 Security Analysis

We first recall the LPN with static leakage assumption from [16,59]:

Definition 10 (Regular LPN with static leakage). Fix a field F = F(λ), dimension k = k(λ),
number of samples m = m(λ), and noise rate τ = τ(λ). The regular LPNmk,τ assumption with static
leakage with respect to Code holds if for every PPT algorithm A, it holds that∣∣∣∣Pr[LPN-SuccA(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ),

where the experiment LPN-SuccA(λ) is defined as follows:
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Functionality Fmal
pre (F,F′, n)

The functionality is parametrized by a field F and an extension field F′ of F, as well as a vector length n,
which is assumed to be a power of 2.

Initialize. Upon receiving Input from Alice and Bob, sample ∆,∆′ $← F′ if both Alice and Bob are honest.
Otherwise, if Bob is corrupted, receive ∆′ from the adversary and sample ∆ $← F′; if Alice is corrupted,
receive ∆ from the adversary and sample ∆′ $← F′. Output ∆ to Alice, ∆′ to Bob, and ignore all subsequent
Input commands.

Extend. Upon receiving (Extend,x′) from Alice and (Extend,x) from Bob, where (x′,x) are unit vectors over
Fn, do:

1. If Bob is honest, sample y
$← (F′)n. Otherwise, receive y ∈ (F′)n from the adversary. Similarly, if Alice is

honest, sample y′
$← (F′)n. Otherwise, receive y′ ∈ (F′)n from the adversary.

2. If Alice is honest, compute z ← y + ∆ · x. Otherwise, receive z from the adversary and recompute
y ← z − ∆ · x. Similarly, if Bob is honest, compute z′ ← y′ + ∆′ · x′. Otherwise, receive z′ from the
adversary and recompute y′ ← z′ −∆′ · x′.

3. If party P ∈ {A,B}, receive a set I ⊆ [1, n] from the adversary. Let j ∈ [1, n] be the index of the nonzero
entry of x (if P = B) or x′ (if P = A). If j ∈ I, send success to P and continue. Otherwise, send abort to
both parties and abort.

4. If both parties are honest, set (w0, w1) to be random shares over F of xᵀ ·x′. Otherwise, if Alice (resp. Bob)
is corrupted, receive w0 (resp. w1) from the adversary, and set w1 ← xᵀ ·x′−w0 (resp. w0 ← xᵀ ·x′−w1).

5. Send (z,y′, w0) to Alice and (y, z′, w1) to Bob.

Global-key query. If party P ∈ {A,B} is corrupted, receive (guess, ∆̂) from the adversary with ∆̂ ∈ F′. If
∆̂ = ∆ and P = A, or if ∆̂ = ∆′ and P = B, send success to P and ignore any subsequent global-key query
from P . Otherwise, send abort to both parties and abort.

Fig. 5. Ideal Functionality for the preprocessing step of maliciously secure inner product, parametrized by a
field F with extension field F′

1. Sample A $← Code(m, k,F), s $← Fk, e $← RNτ,m(F), and let (α1, · · · , ατm) ∈ [1/τ ]τm denote the
location of the nonzero entries of e. Send A to A.

2. A outputs τm subsets (I1, · · · , Iτm) of [1/τ ]. If αi ∈ Ii for every i ≤ τm, output success to A;
otherwise, abort the experiment and set the output to 0.

3. If the experiment did not abort, pick a random bit b $← {0, 1}. If b = 0, set u ← A · s + e; else,
set u $← Fm. Send u to A. Output 1 if A answers with b, and 0 otherwise.

We note that LPN with static leakage reduces to standard LPN assumption [16], but the reduction
is not tight. Intuitively, the assumption allows the adversary to obtain one bit of leakage on e on
average, which should reduce bit security by one bit at most. Since the reduction to LPN induces a
much larger loss, we define this assumption as an independent assumption and use it with the same
concrete parameter as for LPN.

On the use of a PRF. The checks in the online phase require the parties to exchange long random
strings ρ0, ρ1. To reduce communication, this is done by exchanging short keys, which the parties
locally stretch into long pseudorandom strings by evaluating a PRF on a priori fixed inputs: ρb ←
(PRFKb

(0), · · · ,PRFKb
(k/λ)), assuming that PRF has λ-bit outputs. It is a well-known result that

any statistical test that succeeds with high probability for a random string, such as our application
of the Schwarz-Zippel lemma, must succeed with comparable probability when evaluating a PRF on
inputs fixed before the key was sampled, since any noticeable difference can be turned into an efficient
distinguisher against the PRF.

Theorem 11. Let Code⊥ be a nice code. Assume that the dual-LPNmm−(k+n),τ (F) assumption with
static leakage with respect to Code⊥, and the (primal) LPNmk,τ (F) assumption with static leakage with
respect to Code⊥right both hold. Then the protocol πmal

IP securely computes the inner product functionality
FIP with security against malicious adversaries in the Fmal

pre -hybrid model.
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Protocol Πmal
IP

Let F′ be the smallest extension field of F (possibly equal to F) such that |F′| ≥ 2κ, for a statistical security
parameter κ. Fix parameters (k,m) as in the semi-honest protocol. Sample H $← Code⊥(m, k + n,F) and
output crs = H ∈ Fm×(k+n).

Preprocessing. Alice and Bob send Input to Fmal
pre (F,F′,m), and receive respective outputs (∆,∆′) ∈ F′×F′.

– Alice and Bob each sample random pairs (j0,i, r0,i)
$← [m/λ]× F∗ and (j1,i, r1,i)

$← [m/λ]× F∗ for i = 1

to λ. Let rb = r
(1)
b // · · · //r(λ)b for b = 0, 1 denote the corresponding regular noise vectors.

– Alice and Bob call the Extend command of Fmal
pre (F,F′,m/λ) λ times, on respective inputs (r

(i)
0 , r

(i)
1 ) for

i = 1 to λ. Let (zi,y′i, w0,i) and (z′i,yi, w1,i) denote their outputs in the i-th instance respectively. Alice
constructs q0 by concatenating all the zi, and −q′0 by concatenating all the y′i. Similarly, Bob constructs
−q1 by concatenating all the yi, and q′1 by concatenating all the z′i. Eventually, Alice sets z0 ←

∑
i w0,i

and Bob sets z1 ←
∑
i w1,i. Note that by definition of Fmal

pre (F,F′,m), it holds that (q0,q1) form additive
shares of ∆ · r1, (q′0,q′1) form additive shares of ∆′ · r0, and (z0, z1) form additive shares of rᵀ0r1.

Online Phase. Let (u0,u1) be the inputs of Alice and Bob.

– Alice sends pk0 ← (u0//0) − Hᵀ · r0 and sets sk0 ← r0, while Bob samples s
$← Fk, sends pk1 ←

H · (u1//s) + r1 and sets sk1 ← (u1//s). The following checks are performed in parallel:
– Checking that pk0 is well-formed:
• Let M ∈ Fk×m be the last k rows of Hᵀ. Note that the statement “there exists a vector u0 and a λ-

regular vector r0 such that pk0 = (u0//0)−Hᵀ ·r0” is equivalent to “there exists a λ-regular vector r0
such that the last k coordinates of pk0 are equal to M · r0”. Bob sends K0

$← {0, 1}λ and both parties
expand K0 into ρ0 = (PRFK0(0), · · · ,PRFK0(k/λ)) ∈ (F′)1×k using a PRF PRF : {0, 1}λ 7→ {0, 1}λ.

• Alice sends ver0 ← −ρ0 · (M · q′0). Bob aborts unless ver0 = ρ0 · (M · q′1 −∆′ · pk0).
– Checking that pk1 is well-formed:
• Let G ∈ F(m−k−n)×m be a parity-check matrix of H. Note that the statement “there exists a vector

u1//s and a λ-regular vector r1 such that pk1 = H · (u1//s) + r1” is equivalent to “there exists a
λ-regular vector r1 such that G · pk1 = G · r1”. Alice sends K1

$← {0, 1}λ and both parties expand K1

into ρ1 = (PRFK1(0), · · · ,PRFK1(k/λ)) ∈ (F′)1×(m−k−n) using a PRF.
• Bob sends ver′1 ← −ρ1 · (G · q1). Alice aborts unless ver′1 = ρ1 · (G · q0 −∆ · (G · pk1)).

– Alice outputs x0 = pkᵀ1 · sk0 − z0 and Bob outputs x1 = pkᵀ0 · sk1 − z1.

Fig. 6. A non-interactive inner-product protocol with malicious security Πmap
IP over F for vectors of length n

Proof. Let A be an adversary who corrupts Alice. We construct in a sequence of games a simulator
Sim with access to FIP that simulates the view of the adversary. The analysis for a corrupted Bob
will follow almost identically.

– Game 1: this is the real game, where Alice interacts with Bob, who holds an input u1.
– Game 2: in this game, Sim honestly simulates Fmal

pre and stores the vectors (r0,q0,q
′
0) and the

value ∆ obtained by Alice. This game is perfectly indistinguishable from the previous one.
– Game 3: in this game, Sim simulates the output of Bob without using sk1, as follows: using

sk0 = r0 and z0 (both extracted by simulating Fmal
pre ), Sim extracts (u0//0) ← pk0 +Hᵀ · r0 and

sends (Input,u0) to FIP(F, n) on behalf of Alice in the ideal world. Afterwards, Sim computes
x0 = pkᵀ1 · sk0− z0 and sends (Output, x0) to FIP on behalf of Alice in the ideal world, and receive
Bob’s output x1.
This game is perfectly indistinguishable from the last one if it holds that pk0 is indeed of the form
(u0//0)−Hᵀ · r0. This is equivalent to saying that the last k coordinates of pk0, denoted p0, are
equal to M · r0, where M ∈ Fk×m is the last k rows of Hᵀ. Assume for the sake of contradiction
that p0 6=M · r0. Then,

ρ0 · (M · q′1 −∆′ · p0) = ρ0 · (M · (∆′ · r0 − q′0)−∆′ · p0)

= ∆′ · (ρ0 · (M · r0 − p0))− ρ0 ·M · q0

= ∆′ · w + ver0,
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where w = (ρ0 · (M · r0 − p0)). Furthermore, by assumption, M · r0 − p0 is not the all-zero
vector. Therefore, with overwhelming probability 1 − 1/2κ over a random choice of ρ0, w 6=
0 holds as well by the Schwarz-Zippel lemma. By the PRF security, this must therefore still
hold with overwhelming probability when ρ0 is constructed as (PRFK0(0), · · · ,PRFK0(k/λ)) for
a random key K0. Now, recall that ∆′ is uniformly random over F′, and entirely unknown to
Alice. Therefore, the probability that Alice comes up with a value ver′0 that passes the check (i.e.
ver′0 = ∆′ · w + ver0) is upper bounded by 1/|F′| ≤ 1/2κ. This implies that the advantage of any
adversary in distinguishing Game 2 from Game 3 is at most 2/2κ+ negl(λ) (where negl(λ) bounds
the advantage against the PRF).

– Game 4: from this game on, Sim will simulate Bob’s answers to the check that pk1 is well-formed,
as follows: Sim computes ver′0 ← ρ1 · (G · q0 −∆ · (G · pk1)) using the preprocessing material of
Alice, and sends ver′1 ← ver′0. This game is perfectly indistinguishable from the previous game.
Note that Sim1 does not use (s, r1) in the check of pk1 anymore.

– Game 5: let Hleft ∈ Fm×k, Hright ∈ Fm×n denote the left and right halves of H. In this game, we
assume that Hright was received as part of a challenge (Hright, c) for the LPNmk,λ/m assumption over

F with static leakage, where c is of the formHright·s+e, andH was sampled asH $← Cᵀ|Hright
(m, k+

n,F). Sim plays as in the previous game, except that he constructs pk1 asHleft·u1+c. Furthermore,
whenever Bob makes queries of the form I ⊆ [1,m] to Fmal

pre , Sim makes the corresponding query
to the challenger for the LPN with static leakage assumption, and forwards the answer to Bob.
By construction of c, this game is perfectly indistinguishable from the previous one.

– Game 6: same as the previous game, except that c is now a random vector. This game is indis-
tinguishable from the previous one under the LPNmk,λ/m assumption over F with static leakage.

– Game 7: in this game, Sim now samples pk1
$← Fm, and plays as before otherwise. Since c is

uniformly random, this game is perfectly indistinguishable from the previous game.

We sketch the other direction, which is almost identical. When A corrupts Bob, Sim emulates the
preprocessing functionality and extracts u1 by solving for pk1 − r1 = H · (u1//s). Then, it forwards
(Input,u1) to FIP and programs the output with (Output, x1 = pkᵀ0 · (u1//s) − z1). This simulation
succeeds if it holds that pk1 is indeed of the form H · (u1//s) + r1; equivalently, G · pk1 is equal to
G ·r1 (G being a parity-check matrix of H). The same analysis shows that this holds with probability
1− 2/2κ (where a 1/2κ term comes from the probability that ρ1 · v = 0 for a fixed nonzero vector v,
and the other 1/2κ term bounds the probability that Bob guessed ∆ successfully). Sim also simulates
the check that pk0 is well-formed using the preprocessing material of Bob, and simulates pk0 by
sending a uniformly random vector over Fm, which is indistinguishable from the real pk0 under the
dual LPNmm−(k+n),λ/m(F) assumption with static leakage. This concludes the proof.

Efficiency. Compared to the semi-honest protocol, the online phase of Figure 6 adds two rounds
of interaction to the protocol, as well as 2λ bits (for exchanging the seeds) and two elements of F′
(hence, the overall increase in communication is essentially negligible). Regarding computation, the
cost of the check that pk0 is well-formed is dominated by a multiplication by the matrix M · Fk×m,
which (setting k = n for concreteness) is about twice faster than a multiplication by H. The cost of
checking that pk1 is well-formed is dominated by a multiplication by the parity-check matrix G of H
for Bob (resp. two multiplications by G for Alice), which is about the same cost as a multiplication
by H. Therefore, the computational cost of the maliciously secure protocol is about twice that of the
semi-honest protocol.

Implementing the malicious preprocessing functionality. The functionality Fmal
pre is a slight

extension of the single point VOLE functionality of [59], whose work also provides a very efficient
instantiation of the functionality. More specifically, our preprocessing functionality enhances theirs
in two ways: (1) the single point VOLE is executed twice, with the roles of Alice and Bob reversed
in one of the two instances, and (2) Alice and Bob also receive additive shares of the inner product
between their respective unit vectors.

The first item simply boils down to executing two parallel instances of the protocol of [59]. We
showed in Section 4 how to efficiently generate shares of the inner product between unit vectors, using
one equality test and two OLEs. This construction can be enhanced to the malicious setting using
standard techniques (working on mac-authenticated values, see e.g. SPDZ [29] or MASCOT [42]).
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However, a non-trivial task remain: the protocol must guarantee that the unit vectors involved in the
inner product are the same as those generated through the single-point VOLE protocol of [59].

Fortunately, we observe that the single-point VOLE protocols of [16] and [59] can be modified to
output not only shares of ∆ · x for a unit vector x known to Bob and a MAC ∆ known to Alice, but
also additive shares (over an appropriate field) of Γ · j, where j is the position of the nonzero entry
(known to Bob) and Γ is an information-theoretic MAC known to Alice. We sketch this construction
here: the key intuition behind constructions of single-point VOLE is that Alice will hold a PRF key
K for the GGM puncturable pseudorandom function [38]. This PRF key K defines a complete binary
tree with m/λ leaves and K at its root, where the two children of each nodes are computed by
applying a length-doubling PRG to the parent node. The goal of the protocol will be to distributively
generate a key K{j}, i.e. a PRF key punctured at the index j known by Bob of the non-zero entry of
its unit vector. Then, Alice’s share of the unit vector is the vector (PRFK(i))i≤m/λ, and Bob’s share
is the vector whose coordinates are equal to PRFK{j}(i) for i 6= j, and ∆ · xj + PRFK(j) at i = j
(which is computed using a single OLE).

Bob’s input j is viewed as a path from K to K{j} in the GGM tree. To securely generate K{j},
Alice and Bob will execute log(m/λ) oblivious transfers in parallel, where Bob will use as selection
bit the bits of j, and Alice will use as input an appropriate XOR of values on the nodes of the GGM
tree (the details do not matter here). The honest behavior of the parties during this interaction is
guaranteed by a checking procedure perfomed by the parties at the end. A nice feature of this protocol,
which was never used to our knowledge, is that it can be used to authenticate j = j1j2 · · · jlogm/λ
simultaneously, with the guarantee that the authenticated index is the same as the index of the nonzero
entry in Bob’s unit vector. This is done as follows: during the i-th OT, Alice will append two strings
(ci, ci+2i−1 ·Γ ) to her two OT inputs respectively. After the interaction, Alice defines c←

∑logm/λ
i=1

as her share, and Bob sum the ci+ ji ·2i−1 ·Γ , to obtain ci+ j ·Γ , where the j is guaranteed to be the
same as in the punctured key K{j} obtained through the interaction. Afterwards, the authenticated
position j can be used inside maliciously secure equality tests using standard techniques; we omit
the details here and leave a full-fledged optimized implementation of the malicious preprocessing to
future work.
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A Zero-Knowledge Proof for Low-Noise Syndrome Decoding

The protocol. Let M ∈ F`′×` be a public compressive matrix (i.e. `′ < `), and v ∈ F`′ be a public
word. We describe a zero-knowledge protocol between a prover P holding a regular vector e ∈ F`
of weight λ and a verifier V , for the statement “ ∃e ∈ F`, e is λ-regular and v = M · e”. We let
Lsyndec(M,λ) denote the corresponding language. Following the blueprint given above, we rely on the
maliciously secure protocol of [59] for single-point subfield vector-OLE, whose functionality is recalled
on Figure 7.

Functionality FspsVOLE(F,F′, n)

The functionality is parametrized by a field F and an extension field F′ of F, as well as a vector length n,
which is assumed to be a power of 2.

Initialize. Upon receiving Input from Alice and Bob, sample ∆ $← F′ if Bob is honest, and receive ∆ from
the adversary otherwise. Output ∆ to Bob and ignore all subsequent Input commands.

Extend. Upon receiving Extend from Bob and (Extend,x) from Alice, where x is a unit vector over Fn, do:

1. If Bob is honest, sample y
$← (F′)n. Otherwise, receive y ∈ (F′)n from the adversary.

2. If Alice is honest, compute z ← y + ∆ · x. Otherwise, receive z from the adversary and recompute
y← z−∆ · x.

3. (If Bob is corrupted, receive a set I ⊆ [0, n) from the adversary. Let j ∈ [0, n) be the index of the nonzero
entry of x. If j ∈ I, send success to Bob and continue. Otherwise, send abort to both parties and abort.)

4. Send z to Alice and y to Bob.

Global-key query. If Alice is corrupted, receive (guess,∆′) from the adversary with ∆′ ∈ F′. If ∆′ = ∆,
send success to Alice and ignore any subsequent global-key query. Otherwise, send abort to both parties and
abort.

Fig. 7. Ideal Functionality for single-point subfield vector OLE over a field F with extension field F′

In addition to FspsVOLE, we use an equivocable commitment scheme com (i.e., a simulator can
construct a valid-looking commitment which it can later open to any value), and a hash function H :
{0, 1}λ+log `′ 7→ F, modelled as a random oracle (which is used solely to generate a long pseudorandom
string from a short seed). The formal protocol is represented on Figure 8.

(Almost) zero-knowledge proof for the statement v ∈ Lsyndec(M,λ)

Let F′ be the smallest extension field of F (possibly equal to F) such that |F′| ≥ 2κ, for a statistical security
parameter κ. We assume that M ∈ F`

′×` with `′ < ` and `/λ is a power of two. Let e = (e1// · · · //eλ) be the
witness of the prover.

1. The prover and the verifier send Input to FspsVOLE(F,F′, `/λ) (the prover plays the role of Alice). The
verifier receives a random ∆ ∈ F′.

2. The prover and the verifier call the Extend command of FspsVOLE(F,F′, n) λ times, with inputs (ei)i≤λ
from the prover, and receive outputs (zi,yi). The prover sets q0 ← z1// · · · zλ and the verifier sets
−q1 ← y1// · · ·yλ.

3. The verifier sends seed $← {0, 1}λ and both parties set ρ← H(seed||0)|| · · · ||H(seed||`′) ∈ F1×`′ .
4. The prover sends ver0 ← −ρ · (M ·q0) to the verifier, who accepts the proof iff ver0 = ρᵀ · (M ·q1−∆ ·v).

Fig. 8. (Amost) zero-knowledge proof for the statement v ∈ Lsyndec(M,λ)

The soundness of the protocol reduces to the binding property of the commitment scheme. If
one were to remove step 3 from the functionality FspsVOLE (let us denote F ′spsVOLE this punctured
functionality), the protocol of Figure 8 could be shown to be zero-knowledge under the equivocability
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of com, leading to a “true” zero-knowledge proof in the F ′spsVOLE-hybrid model. However, in order to
rely on the efficient protocol of [59], we must permit the verifier to obtain the leakage allowed by step
3. Observe that since the functionality aborts given any unsuccessful guess, this allows the verifier to
learn on average a single bit of information in total about e.
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