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Abstract— UAVs require reliable, cost-efficient onboard flight
parameter estimation that achieves high accuracy and ro-
bustness to perturbation. We analyze a multi-sensor extended
Kalman filter (EKF) based on the work by Leutenegger. The
EKF uses measurements from a MEMS-based inertial system,
static and dynamic pressure sensors as well as GPS. As opposed
to other implementations we do not use a magnetic sensor
because the weak magnetic field of the earth is subject to
disturbances. Observability of the state is a necessary condition
for the EKF to work. In this paper, we demonstrate that the
system state is observable — which is in contrast to statements
in the literature - if the random nature of the air mass is taken
into account. Therefore, we carry out an in-depth observability
analysis based on a singular value decomposition (SVD). The
numerical SVD delivers a wealth of information regarding the
observable (sub)spaces. We validated the theoretical findings
based on sensor data recorded in test flights on a glider. Most
importantly, we demonstrate that the EKF works. It is capable
of absorbing large perturbation in the wind state variable
converging to the undisturbed estimates.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) require reliable, cost-
efficient onboard flight parameter estimation that achieves
high accuracy as well as robustness to certain perturbation.
We analyze a multi-sensor extended Kalman filter (EKF)
based on the work by Leutenegger [1], [2], [3]. The EKF
uses measurements from a micro-electro-mechanical system
(MEMS) based inertial system, static and dynamic pressure
sensors, as well as GPS and a magnetic sensor. We briefly
summarize the features of the EKF.

In the EKF introduced by Leutenegger, the position, the
orientation, the ground speed, inertial measurement unit
(IMU) biases and the wind are included in the state vector.
Measurement updates are initiated by the GPS, the magne-
tometer and the pressure sensors. In addition, the framework
employs an aerodynamic model of the lateral force and the
speed polar to generate residuals, which update the state to
obtain accurate 3D wind, sideslip angle, and angle of attack
estimates. The residuals also impact the observability of the
state space.

It is frequently argued that a magnetometer is necessary
for the estimation of flight parameters [1], [2], [3], [4]. This
conclusion is easily understandable by looking at the wind
triangle for constant wind and constant ground speed. If only
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the quadratic measure of true airspeed provided by the Pitot
tube is available it is not possible to determine the wind vec-
tor. To resolve the phase ambiguity a magnetic sensor, a dual
GPS or other complex sensors to obtain the wind angles [5],
[6] are required. However, these sensors have severe deficits
for use in UAVs or gliders. The weak magnetic field mea-
sured by a magnetic sensor is subject to static and dynamic
disturbances. These disturbances are difficult to calibrate,
if at all. The alternative is expensive mounting away from
the disturbances. The dual GPS requires elaborate electrical
installations. The disadvantages of these sensors make their
use in most UAV and glider applications infeasible.

For the above reasons, it is therefore of practical and
theoretical interest to investigate the conditions under which
the EKF works without a magnetometer. The work described
in this paper was inspired by the fact that well-known
algorithms for wind measurements function during circling.
Our early experiments also demonstrated that the EKF works
— under certain conditions on the dynamics of the random
flight trajectory — without a magnetometer.

Observability deals with the question whether it is possible
to reconstruct the states of a dynamic system from available
measurements. Clearly, if certain states are not observable the
EKF cannot estimate these states. Thus, the observability of
the system state is a necessary condition for the EKF to work.
For linear systems, the state is observable if the observability
matrix has full rank. For nonlinear systems, the nonlinear-
ity introduces difficulties requiring advanced mathematical
tools, such as Lie derivatives [7]. While the system under
investigation is nonlinear, we do not analyze it as such. We
approximate it by a discrete-time, time-varying system. The
sampling rates of the sensor signals are 10-100 Hz, which is
at least 1-2 orders of magnitude larger than the inverse of the
dominant time constant of the UAV. Hence, the discrete-time
system operates quasi-time continuous. We linearize the state
equations around a nominal trajectory to obtain a discrete-
time, linear system. This approach is justified since the EKF
uses a similar approximation. The contribution of this paper
is to demonstrate that the state is observable (contrary to
statements in the literature) if the random nature of the air
mass is mathematically taken into account.

Our mathematical analysis is an in-depth observability
analysis based on a singular value decomposition (SVD).
The numerical SVD delivers much more than a rank test.
A wealth of information can be deduced regarding the
observable (sub)spaces by inspection of the singular vector
associated with a singular value. We validated the theoretical
findings in an extensive series of test flights on a glider.



The sensor signals were recorded during the flights and
later analyzed in a tool suite on the ground. We performed
a numerical observability analysis, which confirmed our
theoretical findings. Most importantly, we demonstrate that
the EKF works without a magnetic sensor. It is capable
of absorbing large perturbations in the wind state variable
converging to the undisturbed estimates.

The paper is organized as follows. Section II provides an
overview of the system model. For this purpose, we first
describe the system by its kinematic equations including
the wind model and modeling of sensor biases. We briefly
describe the considered EKF based flight parameter esti-
mator, which is closely related to the EKF introduced by
Leutenegger. In Section III, to get a basic understanding
of the system behavior it proved to be useful to analyze
a simplified 2D EKF, which just considers the position,
ground speed, and wind speed in the horizontal plane and
which can also be handled analytically. We carried out an
observability analysis for the simplified 2D EKF yielding
the key contribution of the paper, a condition under which
the system without a magnetometer is observable. We show
that the state is observable in case of a varying direction
of the true airspeed, a condition that is fulfilled in practical
scenarios due to the random nature of the air mass. This
result is followed by a detailed numerical study of the
observable sub-spaces for different flight paths based on an
SVD of the observability matrix. Subsequently, in Section IV
the numerical observability analysis based on the SVD is also
carried out for the full state EKF showing that the state is
effectively observable without a magnetic sensor. Thereafter,
in Section V we experimentally validated our theoretical
results. More specifically, we tested the 2D EKF with a
simulated flight trajectory and we tested the full state EKF
using data recorded in an extensive series of test flights on
a glider. These experiments, on the one hand, confirmed the
results of the observability analysis and, on the other hand,
demonstrated that the EKF works. Finally, Section VI gives
a conclusion and discusses some future work.

Notation: Vectors and matrices are set in bold font. The
superscript 1" denotes a transpose. Measurements are denoted
by a tilde, e.g., py and estimates are denoted by hats, e.g.,
7. Dots denote time derivatives, e.g., 7.

II. FLIGHT PARAMETER ESTIMATION

Fig. 1 provides an overview of the input and output quan-
tities of the EKF flight parameter estimation. The purpose
of the EKF is to estimate the 3D position 7, the 3D ground
speed nv, the orientation given by the 4D quaternion gy 3,
and the 3D wind speed nyd. Hence, all these quantities are
included in the state vector of the EKF. As the measurements
of the gyro and the accelerometer are strongly biased, these
biases b, and b, are also tracked by the EKF and, thus,
included in the state vector, which is then given by

T T

z=[r" yv' gz n~dT b baT]TGng. (1)

Here, the subscripts N and B denote the north-east-down
(NED) and the body frame, respectively. Moreover, gy g rep-
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Fig. 1. Flight parameter estimation fusing information from various sensors.

resents the orientation of the body frame with respect to the
NED frame. The position = is given in terms of the latitude
¢, the longitude A, and the altitude h. Note that the state
vector has 19 dimensions, which however could be reduced
to 18 since the Euclidean norm of the quaternion is one [8].

The flight parameter estimation is based on the following
measurements acting as inputs to the EKF: the angular rate
pw, the acceleration pa, the GPS position 7, the static
pressure pg, the dynamic pressure pg, and the temperature
T. As motivated before, we do not use the magnetometer as
the magnetic field of the earth is easily disturbed onboard of
UAVs, e.g., by electronic equipment.

In the following, for the sake of readability, we briefly de-
scribe the EKF based on the work by Leutenegger [2]. Each
iteration of the EKF consists of two steps, the propagation
update and the measurement update. In the propagation step,
the states are predicted based on the following model equa-
tions describing time-derivatives of the states [2], [6], [8]:

r= dlag |:R¢1+h (R)\Jrhl) cos(P) _]-:| N7, (2)

N = Cnp(Ba — by — w,) + ng, 3)
dNB = 3qnB @ (@ — by — wy), “4)
vd = wy, (5)
i)g = Wp,, (6)
by = —1b, +wy,. (7)

Here R4 and R) denote local radii of the Earth [9, p. 41],
~g denotes the gravity field vector in the NED frame,
Cpyp is the coordinate transformation matrix from the
body frame to the NED frame, 7 is the time constant of
the change of the accelerometer bias, and ® is quaternion
multiplication [8]. Moreover, the acceleration, the angular
rate, the wind, the bias of the accelerometer, and the bias
of the gyro are modeled as Brownian processes. We define

the vector w containing the corresponding system noise

T
processes as w = [w} wg ’wg ’wg; ’wl};] . All

these noise processes are white Gaussian and mutually
independent. Note that the measurements of the acceleration
and the angular rate feed the system dynamical model in the
propagation step. The system transition matrix is calculated
by linearizing the continuous-time system (2)-(7) based on



the error state estimates [8]

O3x3 Fio O3x3 0O3x3 Osx3 0353
03x3 03x3 Fb3 O0O3x3 O03x3 —Cnp
F, = |0sxs Osxs Fz3 0O3xz —Isxz  Osxs (8)
O3x3 03x3 O3x3 O3x3 Osx3 033
O3x3 O3x3 O3x3 O3x3 Oszxs O3x3
03x3 0O3x3 O3x3 Osxs Osxz  —1Ig.s

with the non-zero elements

. 1 1
F 5 = diag [Rw—ﬁ (Rx+h) cos() _1} ’
F2,3 = _CA’NB[B&_BG}X’ (9)
F33 = —[pw — by|x,

where [e], is the cross product matrix. Note, F, is of size
18 x 18 as we reduced the state vector by one dimension by
linearizing the quaternion by small angular perturbation [8].

The measurement update corrects the predicted states
based on the residuals for the GPS position 7, the static
pressure p,, and the dynamic pressure py; which are given by

e =7 -—r, (10)
9o M

€= s — s = Bs —po (1= LU= 0y

€4 =Pd — Pd = Pd — SPBV (12)

where L is the temperature lapse rate, gg is the gravitational
acceleration, M is the molar mass of air, R is the universal
gas constant, py is the pressure at mean sea level, NV is
the geoid height [9, p. 41], and p denotes the air density.
Finally, pv., is the x-component of the true airspeed in the
body frame, i.e., the component along the longitudinal axis
of the UAV. The true airspeed can be derived via the wind
triangle yv; = yv — nd.

To estimate the 3D wind vector while having only a
1D measurement of the true airspeed, i.e., the magnitude
provided by the dynamic pressure sensor, we use two
aerodynamic constraints of fixed-wing airplanes as residuals.
The first constraint is the side force Y that acts on the
lateral surface of the aircraft, mainly on the vertical tail,
due to the oncoming air [3], [10, p. 60] (see Fig. 2). The
second constraint characterizes the sink rate vy as a function
of the forward true airspeed in Fig. 3. These aerodynamic
constraints yield the following residuals [3]

ey =Y =Y =m(pay — bay) — paSCy, (13)
€vy = A2VE, + 1BV + ag + pvi Im(pa —b,). (14)

Here S is the wing area, Cy is the side force coefficient
approximately proportional to the sideslip angle S [10, p. 61],
m is the mass of the UAV, and ag, a; and a, are constants of
the speed polar. Here IT; = diag([1, 0, 1]) is a projection ma-
trix, and n(a) normalizes an arbitrary vector a to unit length.

Using (10) to (14) we get the following measurement
matrix
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where A denotes the small angular variation [8]. Note that
the residuals for static and dynamic pressure in (11) and (12)
as well as the speed polar in (14) are nonlinear, rendering
the measurement matrix to be time dependent.

The implementation of the flight parameter estimator in
the EKF is based on a time discretization of the system
model given by equations (2) to (14), where the sampling
rate is chosen at least 1-2 orders of magnitude larger
than the relevant time constant of the UAV. Thus, we can
linearize the state equations, the measurement equations,
and the equations describing the aerodynamic constraints
around the current state such that the system is modeled as
linear time-variant.

III. OBSERVABILITY ANALYSIS FOR
A SIMPLIFIED 2D MODEL

A. Simplified 2D Estimator

To get an in-depth understanding of the observability of
the EKF based flight parameter estimation, we start with the
analysis of a simplified 2D system model where the state vec-
tor is reduced to 6 dimensions. The simplified 2D EKF only
estimates the 2D position x7T, the 2D ground speed nwvy
and the 2D wind speed ndj, which compose the state vector

Topp = [NTE NUL Nd;ﬂT , (16)
with time index k. These variables are given in the northeast
domain, which is denoted by NN in the present section. Their
discrete-time kinematics are summarized by

NTk4+1 = NTk + NULAL,

NUkt1 = NUk + NapAt, (17

Ndp+1 = nd + vwg AL,

with yaj denoting the acceleration, ywg is the wind
system noise, and At is the sampling time interval.

We consider a minimum set of measurements that consist
of the GPS position y7j and the dynamic pressure pg .
Hence, the measurement model is given by

T Tk
YoD .k = {N k} + VoD = [1 NTR +vop i, (18)
Dd.k

3P(NVE i + NV 1)
where vop j; is white Gaussian noise of the observations with
independent elements. In addition, yv¢g 1 and yvyy 1 denote
the true airspeed along the north and east direction, respec-
tively. Here we assume that the pitch angle is small as in this
case the horizontal true airspeed can be interpreted as the true
airspeed along the longitudinal axis of the body frame.



B. Observability Analysis

Observability addresses the question whether the state of a
system can be reconstructed from the measurement data. For
a nonlinear system, the nonlinearity introduces substantial
difficulties requiring advanced mathematical tools, such as
Lie derivatives [7] for a continuous-time system. However, as
stated above, the fact that the system is highly oversampled
allows us to model it as a linear time-variant system. A linear
system is observable if its observability matrix has full rank.

Consider a generic linear time-variant system:

Zp41 = Frxp + Gruy,
19)
yr = Hyxy,
with a state vector xg, an input vector uy, and an observation
vector yy. Its observability matrix is given by [11, p. 467]
Hy,

Hy 1 Fy

o- (20)

Hyyi 1 FryioFyyi3... Fy

The state is observable in the time interval [k,k + ] iff

rank(O) = n with n being the dimension of the state xy.
For the observability analysis we linearize the measure-

ment equation (18) w.r.t. the states, yielding the measurement

matrix

Lxa  0O2x2 O2x2

Hy = . 21
F O1x2 pNv;[:k *pNUEk @D
The transition matrix is given by
Lxe Izx2At O2x2
Fy = |02x2 Ioxa  O2x2 (22)
O02x2  O2x2  Ioxo

Subsequently, this yields the following observability matrix

Lo 0252 0252
H, O1x2  pNU; —pNVL,
o — 7 — t,k t,k 23
°P |:Hk+1Fk:| Ioxa  IoxoAt 0252 3)
Oix2 ANVl jy1 —PNUL i

As the magnitude of the true airspeed vector ’UE & cannot
be zero, the minimum rank for the matrix (23) is 5. The
observability matrix in (23) has rank 5 if and only if

Uiy, k+1 Vty,k

= (24)

b
Uiz k+1 Uiz k

which corresponds to a straight motion. This implies that
the rank of Osp is 6 and, thus, the state is observable, if
the direction of the true airspeed is time-variant. This is a
key condition.

For comparison, we briefly discuss the case that we have
an additional measurement of the direction provided by a
magnetometer which is given by

Ym,k = wk + Vm,k = arctan (M) + Vm, k> (25)

NVtx

where 1, is the heading, and v, j, is the measurement noise
of the magnetometer. Calculating the observability matrix in
case of having this additional measurement, we have been
able to show that its rank is always 6. L.e., in case of using
a magnetometer the system state is always observable.

C. Numerical Observability Analysis

In the following, we verify the observability condition
given by (24) by calculating the singular values of the ob-
servability matrix via a singular value decomposition (SVD)
for a simulated flight trajectory [12]. Moreover, the singular
vectors given by the SVD enable to study the observable
(sub)spaces [13], which we will discuss in detail. This gives
deep insights into the behavior of the EKF based flight
parameter estimation.

We briefly recall the essential properties of the SVD. Any
m X n matrix A can be factored into [14, p. 331]

A=UxVT (26)

with the m X m matrix U and the n X n matrix V' being
unitary and with the left and right hand singular vectors
being their columns, respectively. Moreover, the m x n
matrix 3 is diagonal carrying the nonnegative singular values
01,02,...,0, of A on its main diagonal (assuming w.l.0.g.
that n < m), which here are assumed to be sorted in
decreasing order.

The matrices A and ¥ describe the same mapping of a
vector x € X to a vector y € ) in a different base system,
where X' and ) are vector spaces. The matrices U and VT
define two base transformations. But why do we perform
these two base transformation?

First, the fact that 3 is diagonal enables to easily test the
rank of A, which in our case is the observability matrix.
A has full rank if o; > 0 for all i < n. Otherwise, it is
rank deficient. The singular values calculated in a computer
will not be exactly zero. Therefore, it is meaningful to speak
of the effective rank of a matrix when we ignore all values
below a given threshold which depends on the application.

Second, the SVD delivers much more than a rank test. A
wealth of information can be deduced by inspection of the
singular vector associated with a singular value based on the
sum decomposition [14, p. 333]

A=UxVT = alul'u;r —&—ogugv;r + - —i—anun'u?;. 27

Eq. (27) shows that any matrix can be expressed as the sum
of rank 1 matrices. Geometrically, the space of dimension n
is built up by n subspaces of dimension 1. Multiplying the
matrix A with a right singular vector v; produces a multiple
of the column ¢ of the matrix U':

T
A’Ui = 0;U;V; Uy = O;U;. (28)

From (28) it follows that every 1-dimensional subspace
has n identical columns multiplied by the components of
VT, We also observe that the columns of the matrix w;v}
are weighted by the singular value o;. Eq. (27) can be
used as the basis of an approximation of the A with a
rank k matrix, A®). Such an approximation is called a
low rank approximation, which is optimal in the sense that
it minimizes the quadratic Frobenius norm. Why is this
approximation useful? This will be explained by an example
of the simplified 2D system.

Using the framework in [12] based on a dynamic control
algorithm for gliders, we generate simulated flight data,
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Fig. 4. SVD of the observability matrix: a) singular values in logarithmic
scale in a straight and a turning flight, b) right singular vector v and v
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which has a straight flight and two banking turns. The wind
is assumed constant. We use the dynamic pressure as well
as the horizontal components of position, and acceleration
of the simulated flight as the input of the simplified 2D
system. Table I shows the sensor and EKF parameters.
Fig. 4a shows the singular values of the observability matrix
of the simplified system in a straight flight. We observe a
gap of approximately one order of magnitude between the
two smallest singular values o5 and og. This is typical for an
effectively rank deficient matrix. If one ignores the contri-
bution of the smallest singular value o¢ the effective rank of
the matrix is 5 and the matrix O2p can be approximated by
OéSD). It is instructive to inspect the right singular vector vg
in Fig. 4b. Only the components of the north and east wind
(dz,dy) are nonzero. Thus, a 1-dimensional subspace of the
wind components is unobservable. If one sets o = O the
vector vg is mapped to a zero vector. Since the remaining
four state variables (1, 7y, v, v,) are in the nullspace of vg
these states can, in principle, be observed if the observable
subspace has dimension 4. As the effective rank of Osp is 5
a 1-dimensional subspace of the wind is still observable. This
statement is supported by the fact that the 5th and 6th entry of
v1, i.e., the singular vector of the largest singular value, are
nonzero, see Fig. 4b. This observation corresponds to the in-
tuition that based on the Pitot tube we can estimate the mag-
nitude of the true airspeed, but not its direction, which leaves,
in consequence, one degree of freedom for the wind estimate.

Another maneuver is turning. Fig. 4a also shows the
singular values in a turning flight at an arbitrarily chosen
time instant. Differently to the case of a straight flight the

TABLE I
SENSOR CHARACTERISTICS AND EKF PARAMETERS

Value Unit

Gyro noise density 3.0e-4 rad/(sv/Hz)
Gyro bias noise density 1.0e-5 rad/(s?v/Hz)
Accel. noise density 1.0e-2 m/(s?vHz)
Accel. bias noise density 1.0e-4 m/(s3vHz)
Wind random walk density 0.3 m/(s?+/Hz)
GPS position noise (NED) STD | [2.2,2.2,10] | m

Static pressure noise STD 9.5 Pa

Dynamic pressure noise STD 53 Pa
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Fig. 5. SVD of the observability matrix: a) six smallest singular values in
a logarithmic scale at different time instants, b) right singular vector v17
and v1g of the second smallest and smallest singular value, respectively.

5th and 6th singular value are equal, having the same value
as the 2nd smallest singular value in the straight flight case.
Choosing the same threshold as in the straight flight case
to determine the effective rank of the observability matrix,
the matrix now has full rank, implying that the system is
fully observable in turning. From Fig. 4c, we see that two
out of six states depend on the smallest singular value, the
east component of the wind and the ground speed. In the
same way, the north component of the wind and the ground
speed depend on the 2nd smallest singular value. As the two
smallest singular values are of the same order of magnitude,
this implies that both directions of wind and ground speed
can be equally well estimated in turning.

The fact that the observability matrix in turning has full
rank, whereas it is effectively rank deficient in straight flight
confirms the derived observability condition (24).

IV. OBSERVABILITY ANALYSIS FOR FULL STATE EKF

We apply the SVD based observability analysis to the
full state EKF described in Section II. Differently to
Section III-C, we use sensor signals recorded onboard of
a glider with 18 m wingspan (ASG 29). As measurements,
we use the angular rate, the acceleration, and the temper-
ature from MPU-9250, the position from a GPS receiver
(u-blox 7), the static pressure from a barometer (MS5611-
01BAO3), and the dynamic pressure from a Pitot tube
(MS4525DO0). Table I shows the sensor characteristics and
additional model parameters used in the EKF.

We apply the same procedure to calculate the observability
matrix for the full state system as described in Section III-B
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by time-discretization of the continuous-time equations in
Section II. Fig. 5a shows the 6 smallest of the 18 singular
values at different time instants. The two smallest singular
values are very close and in the same order between 1078
and 10~9. Fig. 5b shows their right singular vectors. Each of
these singular vectors is related to the same component of the
ground speed and of the wind. E.g., the north ground speed
and the north wind speed have a nonzero entry in the right
singular vector of the smallest singular value. This implies
that the north and east components of the ground speed as
well as of the wind speed have an independent impact on
the observability matrix, as it has been also observed for
the 2D simplified model in case of turning, see Fig. 4c.
This highlights that the wind is observable for the full state
system in real flights due to the random nature of the air
mass movement and non-strict straight flight. Differently to
this, the analysis in Section III-C was based on the simulated
flight with constant wind, i.e., the necessary random compo-
nent that renders the system always observable in practical
scenarios (even in straight flight) was missing.

V. EXPERIMENTAL ESTIMATOR VALIDATION

We will demonstrate the tracking properties of the 2D EKF
and the full state EKF based on experimental evaluation.

A. Results of Simplified 2D Estimator

As the input of the 2D EKEF, the sensor data are calculated
based on the simulated flight parameters, which is a ground
truth [12], disturbed by additive white Gaussian noise. The
simulated flight has a straight path from Os to 95s, and
subsequently two banked turns. The results of the simplified
EKF provide an insight on the tracking of the wind without
a magnetometer. Fig. 6a highlights that the wind can be
tracked after circling even without a magnetometer. In case
of using a magnetometer, the wind can be tracked even
without circling. These results match condition (24) given
by the observability analysis. Estimates of the ground speed
converge quickly with and without a magnetic sensor as
shown in Fig. 6b, thanks to accurate position measurements
provided by the GPS.

B. Results of Full State Estimator

We tested the full state EKF using data recorded in an
extensive series of test flights on a glider. The sensor settings
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Fig. 7.

are the same as in Section IV, where the magnetometer is
not used. Fig. 7 shows the effect of a perturbation of the
wind estimate (direction flipped by 180°). The wind estimate
converges quickly to the undisturbed estimate. During testing
of the full state EKF with several measurements taken on a
series flights, we never observed that the flight parameter
estimator loses tracking of the wind. This validates the
finding that the full state EKF is effectively observable
regardless of the flight patterns and, hence, the EKF works
without a magnetometer independent of the flight pattern.

VI. CONCLUSION AND OUTLOOK

Using a simplified 2D model we have proven that the
state is observable in case of a time-varying true airspeed
direction while not using a magnetometer. This condition
is fulfilled in practical scenarios. Moreover, a numerical
observability analysis for the 2D EKF with simulated flight
data (no randomness in the wind) shows that in straight
flight the observability matrix is effectively rank deficient
— one dimension of the wind vector remains unobservable —
while in turning it has full rank. However, due to the random
nature of the air mass, in a practical setting the state is
observable independent of the flight pattern, as shown by the
numerical observability analysis of the full state EKF based
on measured data recorded onboard of gliders. This shows
that the EKF works without a magnetometer. Finally, these
results have been validated by an experimental performance
evaluation of the EKF using measurement data recorded in
numerous test flights. This shows that the EKF works and
that the state estimates quickly converge to the undisturbed
estimate after a perturbation.

While this observability analysis already gives detailed
insight into the behavior of the EKF based flight parameter
estimator, it does not explain its good tracking behavior
experimentally observed, i.e., we never observed that the
EKEF loses lock. Thus, a study of the tracking behavior of the
nonlinear EKF is the subject of an upcoming publication.
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