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Abstract—For data-driven cyber-physical systems, timely access
to storage is an important building block of real-time guarantees.
At the same time, storage technology undergoes continued techno-
logical advancements. The introduction of NVMe fundamentally
changes the interface to the drive by exposing request parallelism
available at the flash package level to the storage stack, allowing
to extract higher throughput and lower latencies from the drive.
The resulting architectural changes within the operating system
render many historical designs and results obsolete, requiring
a fresh look at the I/O scheduling landscape. In this paper, we
conduct a comprehensive survey of the existing NVMe-compatible
I/O schedulers in Linux regarding their suitability for real-
time applications. We find all schedulers severely lacking in
terms of performance isolation and tail latencies. Therefore, we
propose K2, a new I/O scheduler specifically designed to reduce
latency at the 99.9th percentile, while maintaining the throughput
gains promised by NVMe. By limiting the length of NVMe
device queues, K2 reduces read latencies up to 10× and write
latencies up to 6.8×, while penalizing throughput for non-real-
time background load by at most 2.7×.

Index Terms—I/O scheduler, work-constraining, NVMe, SSD

I. INTRODUCTION

Timely access to persistent data is critical for many real-
time applications, ranging from latency-sensitive datacenter
workloads to control and telemetry systems. In recent years,
storage hardware has undergone far-reaching technological
advancements. Non-Volatile Memory Express (NVMe) is now
the state-of-the art protocol to access flash-based storage
devices directly over PCI Express without the additional
hop through a Serial-ATA (SATA) controller. Compared to
traditional SATA-based solid-state drives, these NVMe-attached
devices exhibit two new fundamental characteristics: They
process considerably higher rates of I/O operations per second
and they expose device-internal parallelism to the operating
system.

Modern flash storage contains multiple flash packages that
can operate in parallel [1]. This parallelism is available to
software as multiple request queues, which are processed
out-of-order by the device and completed asynchronously.
These techniques are necessary to exploit the high throughput
offered by the flash hardware. The former serial interface was
insufficient to saturate the capabilities of modern drives. Also,
NVMe interfaces are not limited to desktop- or server-class

machines. ROCK Pi1 for example is a single-board computer
for embedded IoT devices and features NVMe-attached storage.

We believe these developments pose new challenges to real-
time systems that are worth exploring. There has been existing
research on mediating access to solid-state storage, but it either
predates these fundamental hardware changes [13, 17, 19]
or targets fairness or throughput improvements rather than
timeliness [10, 14, 23]. In this paper, we show that state-of-
the-art I/O schedulers for NVMe devices are not focussing on
request latency and therefore offer insufficient support for real-
time workloads. We also present an analysis of NVMe device
behavior and and an overview of the scheduling infrastructure
in Linux. We point out the lessons learned and the differences
presented by NVMe drives over previous storage technologies.

We propose K2, a new I/O scheduler that allows to control
request latencies for NVMe-attached storage. Because K2
works with off-the-shelf NVMe drives with no modifications
to drive internals, we cannot provide hard guarantees, but are
limited to empirical arguments. We do not consider our research
directly applicable to critical areas like autonomous driving,
because off-the-shelf flash storage does not offer the level
of reliability mandated by regulatory bodies. Drive-internal
error correction may re-read defective data multiple times,
necessitating a timeout for real-time operation. Ultimately, read
requests may fail completely, requiring additional measures to
ensure availability.

K2 protects the tail latencies (99.9th percentile) of real-time
applications from competing lower-priority load. The concept
of K2 is inspired by the Dynamic Active Subset scheduler [20]
for spinning hard drives: throughput of background load is
throttled to constrain the latency of real-time loads. But instead
of forming subsets based on request deadlines, K2 implements
bandwidth restrictions with a policy we call work-constraining
scheduling: less work is made visible to the drive in order
to bound the number of requests it can execute ahead of a
real-time request.

We make the following contributions:
• We point out the key differences of NVMe-attached stor-

age devices over previous technologies (Section II). One
surprising difference is that garbage collection is no longer

1http://rockpi.org, retrieved May 2019
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an issue for real-time behavior. Because writes are cached
and sequential reads can be prefetched, random reads are
now the most challenging workload. Consequently, K2
must focus on improving random read behavior.

• We provide a comprehensive analysis of existing NVMe-
compatible I/O schedulers in Linux (Section III). Among
those schedulers are KYBER [22], which claims to respect
a configurable latency target, and BFQ [24], which
claims to improve responsiveness by implementing request
budgets. To our knowledge, these schedulers have not been
tested for their real-time behavior on contemporary NVMe
devices.

• We design and implement K2 (Section IV), a new I/O
scheduler for NVMe-attached storage with predictably
low request latencies in the 99.9th percentile. K2 is
designed according to the constraints we have learned
from analyzing NVMe device behavior and the existing
schedulers. One particular constraint is that complicated
scheduling policies may spend enough CPU cycles to
impact the overall throughput of the drive. K2 implements
a global policy to trade latency of real-time loads against
throughput of background loads without unduly restricting
the performance of the NVMe device.

We evaluate K2 with microbenchmarks and application work-
loads in Section V. We demonstrate that K2 reduces read
latencies up to 10× and write latencies up to 6.8× in the
99.9th percentile. The source code for K2 is available under
an open-source license.2

II. BACKGROUND

I/O scheduling has a long history, dating back at least to
the 1960’s with first works on storage access policies [4]. In
this section, we will first revisit key historic advancements
and explain, how these findings extend to the specific behavior
of today’s NVMe storage devices. We will also provide an
overview of the NVMe subsystem in Linux as an example for
the implementation constraints a modern I/O scheduler faces.
Along the way, we derive lessons learned regarding the design
of our proposed NVMe scheduler.

A. Evolution of Storage Hardware and I/O Scheduling

Magnetic drum storage and early spinning disk drives were
among the first popular storage technologies, for which I/O
scheduling strategies were investigated. A key characteristic of
these devices was high access latency caused by the mechanical
movement involved in accessing data. Because each misplaced
request would incur a notable delay, spending CPU cycles
to create a beneficial request order is economical. Thus, to
improve throughput, these early drives were scheduled entirely
in software by strategies such as the Elevator Algorithm and
Shortest Access Time First (SATF) [4].

In the late 1990’s, drives started abstracting from their
internal physical layout and offered logical-block-based ad-
dressing. Scheduling individual requests became difficult,

2https://github.com/TUD-OS/k2-scheduler

because knowledge about physical distances was no longer
precise. Therefore, the related technologies Tagged Command
Queueing (TCQ) and Native Command Queueing (NCQ) began
to move scheduling functionality into the device itself. These
in-device schedulers optimized for throughput, so the real-
time community investigated augmenting or replacing those
schedulers to achieve latency targets [20].

Solid-State Drives (SSDs) gained wide-spread application
after 2005. Flash cells as storage medium mandated the
introduction of wear leveling by way of a Flash Translation
Layer (FTL). The FTL maps logical addresses to arbitrary
physical storage locations on the drive. Thus, the internal layout
of data on the device as well as the different characteristics of
faster single- and slower multi-level cell storage [1] are decou-
pled from the logical view presented to the operating system.
A novel issue particularly critical for real-time applications are
timing hazards caused by garbage collection [13].

In recent years, SSDs migrated from SATA controller
connections to being directly attached via PCIe, eliminating the
additional controller. The resulting NVMe protocol achieves
higher request rates and lower completion latencies. Because
SSDs are internally implemented by multiple flash packages,
NVMe exposes the resulting parallelism to the operating system
by offering multiple request queues per device, compared to just
a single request stream with SATA. This queue-based parallel
interface forces a programming model with multiple in-flight
requests, which is necessary to achieve the high throughput
promised by NVMe storage devices. At the same time, this
paradigm hands the device a large set of jobs to execute in an
order decided by its own internal scheduler.

Lesson learned: Any effort at I/O scheduling for off-the-shelf
NVMe-attached storage must accept that substantial internal
complexity is hidden within the device. This abstraction gap has
widened over generations of storage hardware and is unlikely
to be closed in the foreseeable future.

An upside of the complexity-hiding is that the drives are in
a distinctive position to optimize for throughput, delivering im-
pressive performance gains to applications. In the early 2000’s,
spinning disks typically offered around 100 I/O operations per
second (IOPS), while x86 CPU frequencies around 1 GHz were
common, resulting in one I/O operation per 10 million cycles.
Early SSDs around 2010 provided 50,000 IOPS, with typical
CPU speeds around 3 GHz. This technology shift narrowed the
gap between CPU and I/O speeds by two orders of magnitude
to one I/O operation per 60,000 cycles. NVMe-attached storage
improves the ratio by another 5× to one I/O operation per
10,000 cycles (400,000 IOPS @ 4 GHz). This cycle count is
in the order of magnitude of an x86 inter-processor interrupt
round trip.

Lesson learned: The throughput difference between CPUs and
I/O devices is shrinking. Any scheduling algorithm for NVMe-
attached storage that spends too many cycles per request on a
complex scheduling policy will harm achieved bandwidth and
request latency. We share this realization with Hedayati, Shen,

https://github.com/TUD-OS/k2-scheduler


Scott, and Marty [7]. Upcoming storage technologies such as
3D XPoint memory will continue this trend [6].

B. Specific Behavior of NVMe-Attached Storage

Being a fast SSD on a parallel queue-based interface, NVMe-
attached storage inherits and magnifies many of the behavioral
quirks of SSDs. Writing data on flash storage works differently
than on magnetic media: existing data in flash cells has to
be erased before new data can be written, adding an extra
erasure step when modifying existing data. While read and
write requests are organized in pages with typical sizes of 2, 4,
or 8 KiB, erasure is performed on larger block sizes dictated by
the internal structure of the SSD. This size mismatch requires
additional data copying of pages that should not be erased.
Altogether, erasure is a slow operation that can significantly
throttle write performance [12, 19].

To mitigate this problem, modern NVMe drives use a portion
of the flash cells as a fast write cache. In this mode, the cells
only store a single bit, i.e. a single voltage level is used (SLC —
single level cells), which is faster than typical storage operation
with multiple voltage levels. The write cache is pre-erased to
absorb write requests as quickly as possible. Depending on the
drive model, the cache can be dynamically allocated. Therefore,
problems with degrading write performance only occur, when
the drive fills up and less storage capacity can be spent on this
cache.

In order to prepare flash blocks for writing, the drive
firmware needs to erase them. Any data that should be kept
needs to copied to a different flash block. This process is known
as garbage collection. As an optimization, the operating system
can inform the drive, whenever data pages are discardable, for
example when their enclosing file has been deleted within the
file system. This optimization is called trimming and allows the
drive to elide the copy step and erase the data in place. Reading
from trimmed pages will return unspecified data — either all
ones, all zeros, or the previous content [16]. The drive will
asynchronously coalesce and erase trimmed pages and can add
them to the write cache.

Lesson learned: Caching on modern drives helps to serve
writes with high bandwidth and low latency. A system designer
only needs to use a file system with support for trimming and
ensure sufficient free space on the drive. Contrary to previ-
ous SSD technologies, block erasure and garbage collection
overheads are largely moved off the critical path.

With writes being absorbed by a fast cache and sequential
reads being prefetched, random reads turn out to be the
challenging usage scenario for real-time scheduling. We will
support this conclusion with experiments in Section III.

C. Block I/O in Operating Systems

As an example of a modern I/O subsystem capable of
achieving high throughput on NVMe-attached devices, we
summarize the implementation of block I/O in the Linux kernel,
particularly version 4.15.03. The Linux subsystem for block I/O

3https://www.kernel.org
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Figure 1. Block I/O in the Linux operating system.

is called the block layer. It mediates between the file system
and the device driver as a common interfacing component.
As such, it also performs shared management tasks like I/O
scheduling and accounting. Figure 1 illustrates the Linux block
layer.

When processing parallel requests at high rate, the operating
system can become a bottleneck in the storage stack. Sequential
data structures, global locks, and cache interference can severely
impact I/O performance. To avoid such problems, Linux
introduced a multi-queue block layer [2], which is based on
parallel request processing. An I/O request is submitted in the
form of a scatter-gather structure describing the block device
regions it affects. Upon entering the block layer, requests
to consecutive regions can be merged and are then inserted
into a staging queue. In the default configuration, the Linux
kernel allocates one such queue per CPU core. In contrast to a
global queue, such core-local queues reduce cross-core locking
operations. Requests in the staging queue are still mutable, so
they can be merged with other incoming requests.

The kernel queries the staging queues to select requests for
promotion to driver buffers, which then feed into the block
device driver. Each staging queue has one driver buffer assigned.
The driver will forward the buffered requests to the NVMe
queues provided by the storage device, where the device will
autonomously process them and signal completion back to the
driver. The kernel aims at establishing a one-to-one mapping
between staging queues and NVMe queues, so one NVMe
queue is dedicated to each core, again reducing cross-core
interactions. I/O requests in the driver buffer and NVMe queues
are immutable and must not be reordered, because the driver
may forward them to the device at any time and the device
independently consumes the NVMe queues at its own pace.

Lesson learned: The Linux block layer architecture is de-
signed to avoid cross-core interactions. However, this design
complicates the implementation of a global policy like pri-
oritizing requests according to their timing constraints. Our
scheduler needs to find a balance between these conflicting
objectives.

The last step of consuming requests from the NVMe
queues is performed by the drive itself. The NVMe standard
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defines a round-robin policy to arbitrate between requests from
different NVMe queues. A weighted round-robin strategy is also
specified [9], but only as an optional feature, which we do not
consider, because relying on it would restrict the applicability
of our results. In which order requests are then fulfilled and
retired is not specified and entirely up to the internal decisions
of the drive’s controller.

D. Linux I/O Schedulers

I/O scheduling is the process of deciding, which I/O
requests should reach the device in what order. Schedulers can
implement different strategies to maximize throughput, reduce
latency, or improve fairness. These goals can be contradictory,
so schedulers have to make policy decisions when designing
their strategy. The Linux block layer offers powerful extension
points to implement a variety of policies.

I/O schedulers in Linux are realized as kernel modules. A
scheduler offers implementations for a set of functions that
the block layer calls, whenever an event like the arrival of a
new request occurs. I/O schedulers can instantiate their own
staging queue data structure, which then overrides the default
staging queue implementation. Schedulers can also implement
custom request promotion strategies like holding back requests
in the staging queues, if the NVMe queues are too long.

We now briefly describe all I/O schedulers available in the
standard Linux kernel that are compatible with the multi-queue
block layer. When no specific scheduler is active, the NONE
policy is used: Synchronous requests from applications are
directly inserted into the driver buffer, bypassing the staging
queues. Asynchronous requests are first inserted into the staging
queue, but immediately propagate to the driver buffer unless
the driver buffer is full. No reordering is performed.

MQ-DEADLINE is a simple scheduler designed for spinning
hard drives. It orders requests by their target address in order to
minimize seek operations. To prevent starvation of operations
that access remote disk regions, each request is given an
artificial deadline. Whenever a request violates this deadline, it
is served immediately. However, this deadline cannot be used
to prioritize amongst multiple applications.

BUDGET FAIR QUEUING (BFQ) [24] is a priority-aware
fair queuing scheduler that provides bandwidth guarantees to
processes. With BFQ, each process maintains a private request
queue for synchronous operations. Asynchronous operations are
collected in additional global queues according to their priority.
BFQ divides time into epochs. When a new epoch starts, each
queue receives a bandwidth budget that it may spend by issuing
requests during the current epoch. Request arbitration uses a
heuristic based on budget and priority. Whenever all queues
have used up their budget or there is no more outstanding
work, a new epoch starts and all budgets are replenished.

The KYBER scheduler was exclusively designed for
SSDs [22]. Furthermore, it is the only strategy making use
of core-local staging queues instead of managing all requests
in a global data structure. KYBER categorizes requests into
three different classes: reads, synchronous writes, and other
operations like trim requests. The scheduler then applies a

Table I
MAXIMUM DEVICE THROUGHPUT AND IOPS AS CLAIMED BY THE

MANUFACTURER AND THE PERFORMANCE WE WERE ABLE TO ACHIEVE.

Queue Depth/ Performance
Workload No. of Threads Manufacturer Measurement

Seq. Read 3400 MB/s 3070 MB/s
Seq. Write (burst) 1500 MB/s 1500 MB/s
Seq. Write (sust.) 300 MB/s 320 MB/s

Ran. Read 1 / 1 15 kIOPS 12.7 kIOPS
Ran. Read 32 / 4 200 kIOPS 195 kIOPS
Ran. Write 1 / 1 50 kIOPS 80 kIOPS

Ran. Write (burst) 32 / 4 350 kIOPS 344 kIOPS
Ran. Write (sust.) 32 / 4 80 kIOPS 73 kIOPS

token-bucket algorithm to limit the amount of requests that
each class may have in flight within the driver buffer or the
NVMe queues. This arbitration between the different request
types allows to control the latency experienced by requests
of each class. However, prioritization between requests of the
same type, but of different applications is not considered.

Lesson learned: With the exception of MQ-DEADLINE, which
targets spinning drives, all Linux I/O schedulers operate some
form of traffic shaping to manage bandwidth or latency.
Schedulers do not inspect and reorder requests based on their
individual characteristics, but broadly arbitrate between streams
of events.

One possible reason is that schedulers do not want to spend
too many cycles executing their policy. As our measurements
in the next section will show, BFQ — which implements the
most complex policy — already impacts latency results.

Lesson learned: Given that NVMe-attached devices do not
execute individual requests one by one, but can have multiple
requests in flight, the work-conserving nature of a scheduler
becomes non-binary. Other than a CPU, which either executes
or idles, we can pass fewer or more requests to the storage
device, depending on the scheduling policy.

III. DISSECTING LINUX’ I/O SCHEDULERS

We use this section to assess existing I/O schedulers in Linux.
To the best of our knowledge this is the first study examining
the latency characteristics of the Linux I/O schedulers for
NVMe drives and their suitability for real-time workloads.

Our system is based on a quad-core Intel i5-4590 with SMT
disabled and 16 GiB of RAM. We selected a Samsung 970evo
with a capacity of 250 GB4 as our test subject. The 970evo
is based on 3 bit MLC V-NAND, features a PCIe Gen 3.0 x4
interface, and implements the NVMe 1.3 protocol. To illustrate
the complex performance characteristics of NVMe drives we
reproduce the throughput values measured by the manufacturer
from the device datasheet [21] in Table I. These figures illustrate
the impact of the write cache, queue depth parameter, and
exploitation of parallelism on the performance achieved by the
drive.

4Model Code MZ-V7E250BW
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Figure 2. Bandwidth-latency plots of standard Linux I/O Schedulers for random read workload with 4 KiB block size.

A. Benchmark Setup

To investigate the latency characteristics of the Linux I/O
schedulers, we measure the makespan of disk requests from
entering the I/O scheduler until completion of the request by the
device. We perform these measurements on Linux 4.15 using
kernel tracepoints and the LTTng infrastructure. We added
new tracepoints or modified existing tracepoints to capture
request submission, request propagation between queues, and
request completion. LTTng uses high-resolution timers with
nanosecond granularity.

We use the Flexible I/O Tester (FIO) version 3.1 to conduct
our microbenchmarks: three processes simulate background
workload while a fourth process acts as a real-time application
issuing a stream of requests with an interval of 2 ms between
consecutive requests. FIO configures I/O priorities to distin-
guish background and real-time tasks. The background load
uses asynchronous I/O to achieve higher throughput, while the
real-time task performs synchronous I/O. In synchronous mode,
FIO issues an I/O request and then waits for the specified time
of 2 ms before issuing the next request. FIO therefore does
not precisely implement a strictly periodic job submission,
but because it is a standard load generator, we refrained from
modifying it. Due to this operation mode, real-time request
queues never saturate and requests are never dropped. We think
the results produced are easier to interpret.

Keeping the configuration of the real-time application con-
stant, we ramp up the bandwidth requirement of the background
workload. Each plotted point constitutes one such configuration,
where we measure the makespan of real-time requests as well as
the bandwidth actually achieved by the background workload.

We tuned the I/O schedulers for low latency as follows:
Using KYBER’s configuration options, we reduced the target
latency for read requests to 2 µs and for write requests to 10 µs.
For BFQ, we disabled the anticipation mechanism for HDDs.
Our attempts at tuning MQ-DEADLINE resulted in increased
I/O latency, so we used the default configuration.

We loaded the drive with random and sequential read and
write accesses, as well as mix of random read and write
accesses, each for block sizes of 4 KiB to maximize IOPS
and 64 KiB to maximize throughput. We configured FIO to

use direct I/O to forgo the Linux buffer cache and ensure our
results reflect drive access latencies.

The amount of trimmed pages influences performance,
because it impacts the ability of the drive’s firmware to perform
garbage collection. For example, reading and writing a fully
trimmed disk is very fast but also uncommon. Reading trimmed
pages does not require the drive to access its flash and is
therefore very quick5. Writing to a fully trimmed disk is also
very fast, because empty blocks are readily available. The other
extreme is writing to a disk with no trimmed pages. Because
the drive has to reorganize and garbage collect very often,
access latency increase and throughput decreases. We consider
both cases as hypothetical, as they should occur rarely, if ever,
in practice. Nonetheless we performed our benchmark on those
drive configurations out of academic curiosity and we were
able to reproduce the expected results. In the remainder of
the paper — unless otherwise noted — we configured the drive
such that half of its blocks are occupied and the other half are
trimmed.

B. Benchmark Results

We present the results of our analysis as bandwidth-latency
plots. The bandwidth available to background load is plotted
on the x-axis and the median, 99th, and 99.9th percentile of
the real-time request latency is on the y-axis. The color of the
plot marks indicates the bandwidth target we configured for the
background workload. Due to the limited space available we
do not reproduce all measurements as graphs but concentrate
on interesting and insightful results.

We start our examination in Figure 2 by comparing achieved
bandwidth and latency when the drive is exercised with
a random read workload with 4 KiB block size. There is
neither much qualitative nor quantitative difference between
the schedulers: with low background load each scheduler is
able achieve very low latencies of less than 200 µs; maximum
bandwidth is around 550 MiB/s and latencies increase to 3 ms.
A random read workload with 64 KiB block size (not shown)
looks qualitatively similar, but when the drive is saturated

5As per the NVM Express specification 1.3, §6.7.1.1 the drive is free to
return a value of all zeros, all ones, or the previous data for such a request.
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Figure 3. Bandwidth-latency plots of standard Linux I/O Schedulers for random read/write workload with 64 KiB block size.
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Figure 4. Bandwidth-latency plots for KYBER with random read/write
workload (left) and NONE with random read/write workload for background
tasks and random read for foreground tasks, both with 4 KiB block size.

at little over 550 MiB/s, latencies increase significantly up to
14 ms.

Next, we turn to a 50/50 mixed random read/write workload
with a block size of 64 KiB in Figure 3. Here again the different
I/O schedulers behave very similarly. For low to medium
throughputs of up to 600 MiB/s median latency continues to be
around 100 µs to 200 µs, while 99.9th-percentile latencies are in
the order of magnitude of 5 ms, significantly higher compared
to read-only workloads. When the background load is increased
to the maximum throughput of 800 MiB/s, 99.9th-percentile
latencies rise even further, up to 17 ms in case of KYBER.

With the data presented so far, we hope to convince the reader
that there is little qualitative difference between schedulers. This
remains true for the following experiments, so to save space
we only show one representative for the following workloads.

We selected KYBER as representative for a 50/50 random
read/write workload with a block size of 4 KiB shown in
Figure 4. While the 99th percentile is close to the median for a
wide range of throughput values, once the drive is saturated the
99th percentile quickly closes the gap to the 99.9th percentile
which itself increases only slightly. The median latency is not
affected by drive saturation.

So far foreground and background load always performed the
same work type. For the next experiment we mixed a random
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Figure 5. Bandwidth-latency plots for MQ-DEADLINE with sequential read
workload with 4 KiB (left) and 64 KiB (right) block size.

read foreground workload with an 80/20 random read/write
background workload. We selected NONE as the proxy for this
benchmark group plotted in Figure 4 (right). The result is not
substantially different from a homogeneous random read/write
workload. While the 99th percentile is close to the median in a
pure random read/write workload, we measured a 2 ms higher
latency for the lowest throughput values when the foreground
application performs a read-only workload, contending against
a random read/write background load.

In Figure 5, we compare the bandwidth-latency charac-
teristics under a sequential read workload with 4 KiB (left)
and 64 KiB (right) block sizes. In this case we selected MQ-
DEADLINE as our proxy. The sequential read throughput with
a block size of 4 KiB is — independently of the scheduler —
lower than for random reads. We speculate that random reads
are faster, because random accesses potentially exploit more
drive-internal parallelism. Sequential data seems to be laid
out in a less favorable way. Nevertheless, maximum latencies
decrease from around 3.5 ms for random reads to approximately
2.5 ms for sequential reads. In case of a block size of 64 KiB
all schedulers achieve a throughput of 2850 MiB/s, including
MQ-Deadline depicted in Figure 5. Contrary to previous results,
increasing the requested throughput further results in a sharp
drop in achieved throughput down to 2100 MiB/s and an equally
sharp increase in latency up to 5 ms and 7 ms for BFQ.
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Figure 6. Bandwidth-latency plots of BFQ with 64 KiB block size for random (left) and sequential writes (middle left), and for random writes on a 30%
trimmed (middle right) and on a full drive (right).

In Figure 6, we juxtapose the bandwidth-latency plot of a
random write workload (left) and a sequential write workload
(middle left), both with a block size of 64 KiB. Random write
workloads result in a latency of less than 100 µs even in the
99.9th percentile for all schedulers, for block sizes 64 KiB
and 4 KiB (not shown), and up to the saturation throughput
of roughly 900 MiB/s. With a block size of 4 KiB BFQ is
able to sustain a throughput for the background workload of
721 MiB/s, MQ-DEADLINE and KYBER achieve a background
throughput of 853 MiB/s, and the NONE scheduler reaches
898 MiB/s.

Similar to random writes, sequential writes also show
latencies below 100 µs for all schedulers and both block sizes.
With 4 KiB blocks, BFQ is able to achieve a maximum through-
put of 759 MiB/s, KYBER of 901 MiB/s, MQ-DEADLINE
of 909 MiB/s, and NONE of slightly over 1 GiB/s. In the
configuration with 64 KiB block size all schedulers are able
to exploit the full performance of the drive with background
throughputs of 1201 MiB/s to 1257 MiB/s and consistently low
latencies below 100 µs. If the bandwidth requirement of the
background work is further increased, the write cache of drive
is exceeded and the throughput drops suddenly to around
500 MiB/s and from there on decreases further to the minimum
TLC write speed of 300 MiB/s. At the same time latencies
increase to 25 ms to 33 ms. Only at this point would write
buffering at the operating system level be beneficial.

So far, our measurements were all performed with half of
the blocks on the drive trimmed and therefore available for
write caching. In Figure 6 (middle right), we show results for
random writes of 64 KiB blocks with BFQ, when 30% of the
blocks are trimmed. Even for this higher fill level, the write
cache enables latencies of less than 100 µs.

To emphasize the importance of trimmed blocks for write
latencies, we repeat the previous experiment — random writes
of 64 KiB blocks with BFQ — on a full drive, i.e. with no
trimmed blocks. The results are shown in Figure 6 (right).
In this configuration the drive is able to sustain only half
of the throughput and latencies increase from 100 µs in the
99.9th percentile to over 50 ms. We posit that a completely
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Figure 7. Median request latency and scheduler delay for Linux I/O schedulers
for random write workload with 4 KiB block size.

full drive constitutes an unrealistic operation point. In such a
situation performance characteristics will be dictated by the
drive, regardless of any I/O scheduling policy.

These results show both the efficacy and importance of
the write cache. There is no difference in latency between
random and sequential writes on this NVMe flash device, but
throughput is about 30% higher for sequential writes. Only
with sequential writes in combination with large block sizes
were we able to exceed the write buffer of the drive and observe
the sustained write speed.

Another question we asked ourselves is how the different
complexities of the Linux I/O schedulers may influence the
achievable throughput and latency. We theorize that there is a
tipping point where the additional delay of complex analysis
and request reordering does not translate anymore into higher
bandwidth and lower latency but instead decreases bandwidth
and increases latency. We believe BFQ to be an example of
such a complex scheduler. For a random write workload with a



block size of 4 KiB BFQ achieves a throughput of 721 MiB/s,
compared to 853 MiB/s for KYBER and MQ-DEADLINE, and
898 MiB/s for NONE, at comparable latency. This corresponds
to a throughput penalty of 85% and 80%, respectively. To
get an idea of how the processing time of a scheduler affects
throughput and latency we compare makespan and processing
time.

In Figure 7 we compare the median latency for the random
write benchmark with 4 KiB block size with the time the
scheduler took to process that request, which we call scheduler
delay. Since NONE passes synchronous requests directly to the
driver buffer, it experiences no such delay. MQ-DEADLINE
and KYBER have roughly the same median scheduler delay
and also achieve roughly the same latency. BFQ has about 1 µs
higher scheduler delay which directly causes the makespan to
also increase by 1 µs, or 8% for this workload.

C. Summary

We observed in our benchmarks that more often than not the
bandwidth-latency characteristics of a workload are dominated
by the behavior and particularities of the NVMe drive and not
the I/O scheduler itself. We still believe we can gain some
insights from our measurements, not only about the existing
I/O schedulers in Linux, but also insights specific to NVMe
storages devices:

Writes are fast. The indirection introduced by the FTL
causes random and sequential writes to have no difference in
performance, neither in terms of latency nor bandwidth. Unless
the write cache is full, writes are blazingly fast with write
latencies below 100 µs, often less than 20 µs at throughputs of
up to 900 MiB/s, only BFQ is significantly slower at 759 MiB/s
for sequential writes with 4 KiB blocks.

Reads are slow(er). Reads have considerably higher la-
tencies than writes, and sequential reads with small block
sizes have lower throughput than random reads with the same
block size, because the drive cannot take advantage of its
internal parallelism. Large block sizes alleviate this problem
by amortizing over more data. This is were BFQ shines and
outperforms all other schedulers in terms of throughput.

No performance isolation. From a real-time perspective
we can conclude that no scheduler can maintain low request
latencies for the real-time workload under high throughput
background workload. This result is only surprising in the case
of BFQ, which explicitly distinguishes between I/O priority
classes which none of the other scheduler do.

Two-tier scheduling. Except for corner cases, changing the
I/O scheduling policy on the operating systems side has no
impact on the measured throughput and latency. Modern SSDs
offer parallel access to their flash packages, which is managed
by a drive-internal scheduler. Combined with long queue depths,
the behavior of the drive-internal scheduler dominates the
observable behavior of the drive.

Less is more. Less complexity means less delay. BFQ — an
example of a complex scheduler — spends about 50% more
time on processing requests, which can have a measurable
impact on request latency. BFQ also incurs 15% more CPU

overhead than other I/O schedulers. This finding calls for a
simple solution to reduce scheduling overhead, otherwise the
scheduler will constrain the performance of the device [7].

We believe sub-20 µs latencies for write requests are hard
to improve upon. However, in case of random and sequential
reads our results show that latencies observed by our real-
time workload correlated with increasing throughput of the
background workload. In the following section we describe how
we built an I/O scheduler that is able to trade throughput of
background applications for predictable latencies of real-time
applications.

IV. THE K2 SCHEDULER

Neither of the I/O schedulers we evaluated was able to
isolate real-time application performance from background
loads. Latencies suffer under the NONE, MQ-DEADLINE, and
BFQ schedulers because they are work-conserving: As long
as there are requests in the staging queues, these policies will
promote them to the NVMe queues. On one hand, this improves
global throughput since more requests in flight result in more
opportunities for the drive to optimize. On the other hand, long
NVMe queues lead to many competing requests, increasing
the probability for real-time requests to be stalled. Therefore,
higher background load leads to increased latencies of real-time
applications.

A. Work-Constraining Scheduling and Performance Isolation

Generalizing the work by Reuther and Pohlack on Dynamic
Active Subset [20], we apply the construction principle of work-
constraining scheduling: We limit the choices of a second-tier
scheduler by constraining the amount of work visible to it. In
our case, the second-tier scheduler is the request arbitration
within the controller of the NVMe drive. K2 constrains the
amount of work seen by the controller by bounding the length of
the NVMe queues. This length bound gives system designers a
tunable parameter to trade latency reduction against throughput
loss.

A similar strategy of request throttling is implemented by
KYBER, but it does not differentiate between applications and
therefore cannot ensure performance isolation. K2 needs to
separate requests according to their I/O priority. Assuming
the availability of trimmed blocks for write caching, we have
observed that write requests and garbage collection are no
longer problematic and the different request types do not
influence each other significantly. Therefore, K2 opts for
simplicity and does not distinguish between request types.

B. Design and Implementation of the K2 Scheduler

K2 is implemented as a kernel module for Linux. It maintains
nine separate staging queues, one for each of the eight Linux
real-time I/O priority levels and a ninth one for all non-real-
time requests. Whenever a new request is submitted to the
block layer, its I/O priority determines the queue the request
is inserted into. Each queue is organized in FIFO order, so
requests from real-time applications with equal I/O priority are
processed in submission order.
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Figure 8. Bandwidth-latency plots for random read workload with 64 KiB block size.
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Figure 9. Bandwidth-latency plots for sequential write workload with 64 KiB block size.

When the kernel invokes K2 to promote requests to the
driver buffers and ultimately to the NVMe queues, K2 treats
requests in strict priority order: the head request of the highest
priority non-empty staging queue is promoted to the NVMe
queue. However, when the current total length of the NVMe
queues exceeds the configured bound, work-constraining kicks
in and K2 deliberately refrains from propagating a request.
The request then remains in the staging queue until the total
length of the NVMe queue is reduced by a request completion.
Total length refers to the number of requests currently in-flight
across all parallel NVMe queues, thus enforcing a device-wide
upper load bound. We need to access cross-core data structures
to implement this strategy, but we favored a global policy over
a strictly core-local implementation. Otherwise, high load on
one core could negatively impact real-time latencies on other
cores.

Whenever an I/O request is completed, a slot in the NVMe
queues becomes available. K2 then re-evaluates its staging
queues to propagate the head request from the highest-priority
non-empty queue.

K2 trades overall throughput for responsiveness. The through-
put degradation depends on the number of requests allowed to
be in flight simultaneously and therefore on the configured total
length bound. Increasing this bound weakens the latency pro-
tection for real-time applications. When setting this parameter
to infinity, K2 approximates the NONE policy.

V. EVALUATION

To evaluate K2, we use the same hardware as in Section III:
a quad-core Intel i5-4590 with SMT disabled, 16 GiB of RAM,
and a Samsung 970evo NVMe SSD with a capacity of 250 GB.
K2 runs as an I/O scheduler provided by a kernel module on
a Linux 4.15 kernel. We begin with a microbenchmark setup,
also similar to Section III: three processes of the Flexible
I/O Tester (FIO) simulate background load; a fourth instance
constitutes the real-time load issuing a stream of requests
with an interval between consecutive requests of 2 ms. I/O
priorities are configured such that the real-time application
takes precedence over the background load.

A. Microbenchmarks

Our first experiment executes random reads as both the
real-time and background load. We used a block size of
64 KiB, because we have observed that larger block sizes
emphasize differences between the schedulers. Figure 8 shows
a bandwidth-latency plot with achieved bandwidth of the
background load on the x-axis and request latency of the real-
time task on the y-axis. We run K2 with different configurations
of the queue length bound: 8, 16, and 32 in-flight requests.
We give the results of the NONE policy for comparison. At
the 99.9th percentile, the real-time task experiences latencies
of up to 14 ms with NONE, which K2 reduces significantly to
just 2.5 ms with a queue bound of 8. Background throughput
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Table II
MAXIMUM ACHIEVED THROUGHPUT FOR ALL SCHEDULER/WORKLOAD CONFIGURATIONS AND THE CORRESPONDING 99.9TH PERCENTILE LATENCIES.

Maximum Throughput [MiB/s] (at 99.9th percentile Latency [ms])

Random Sequential

Read Write Read/Write Read Write

4 KiB 64 KiB 4 KiB 64 KiB 4 KiB 64 KiB 4 KiB 64 KiB 4 KiB 64 KiB
NONE 557 ( 3.04) 559 (13.15) 898 ( 0.01) 898 ( 0.04) 714 ( 5.15) 799 (13.59) 478 ( 2.12) 2849 ( 1.37) 1055 ( 0.02) 1228 (21.87)
BFQ 545 ( 3.31) 543 (13.96) 721 ( 0.02) 897 ( 0.06) 704 ( 4.67) 797 (14.23) 695 ( 1.18) 2849 ( 1.34) 759 ( 0.02) 1257 ( 0.06)

KYBER 557 ( 2.87) 562 (12.84) 853 ( 0.02) 899 ( 0.08) 677 ( 3.66) 801 (16 ) 443 ( 2.32) 2850 ( 1.37) 901 ( 0.02) 1201 (21.69)
MQ-DL. 557 ( 3.14) 562 (12.8 ) 853 ( 0.02) 898 ( 0.07) 712 ( 4.3 ) 798 (13.13) 439 ( 2.37) 2849 ( 1.27) 909 ( 0.02) 1255 ( 0.07)

K2-8 288 ( 0.31) 501 ( 2.31) 899 ( 0.02) 898 ( 0.08) 394 ( 2.98) 696 ( 4.84) 219 ( 1.16) 1049 ( 0.97) 894 ( 0.02) 1257 ( 0.06)
K2-16 417 ( 0.55) 529 ( 4.19) 898 ( 0.02) 897 ( 0.04) 546 ( 2.77) 746 ( 6.83) 244 ( 1.44) 1186 ( 2.01) 890 ( 0.02) 1254 ( 0.84)
K2-32 493 ( 0.96) 557 ( 5.89) 856 ( 0.02) 899 ( 0.08) 648 ( 3.12) 794 ( 8.62) 345 ( 1.55) 1362 ( 3.23) 899 ( 0.02) 1237 ( 7.15)

Table III
MAXIMUM OBSERVED 99.9TH-PERCENTILE LATENCY FOR ALL SCHEDULER/WORKLOAD CONFIGURATIONS AND THE CORRESPONDING THROUGHPUT.

Throughput [MiB/s] (at Maximum 99.9th percentile Latency [ms])

Random Sequential

Read Write Read/Write Read Write

4 KiB 64 KiB 4 KiB 64 KiB 4 KiB 64 KiB 4 KiB 64 KiB 4 KiB 64 KiB
NONE 556 ( 3.13) 558 (13.53) 60 ( 0.06) 224 ( 0.09) 714 ( 5.15) 795 (15.14) 299 ( 2.36) 2147 ( 4.62) 90 ( 0.07) 477 (28.44)
BFQ 545 ( 3.48) 543 (14.74) 30 ( 0.07) 224 ( 0.08) 704 ( 4.67) 794 (14.67) 680 ( 1.29) 2202 ( 7.26) 90 ( 0.07) 479 (27.3 )

KYBER 554 ( 3.12) 562 (13.41) 30 ( 0.05) 224 ( 0.09) 676 ( 3.87) 797 (17.36) 434 ( 2.52) 2146 ( 4.36) 30 ( 0.05) 479 (33.11)
MQ-DL. 557 ( 3.14) 562 (13.39) 90 ( 0.03) 853 ( 0.08) 711 ( 4.75) 796 (14.24) 436 ( 2.51) 2193 ( 4.98) 30 ( 0.04) 353 (24.99)

K2-8 288 ( 0.34) 495 ( 2.45) 60 ( 0.06) 314 ( 0.08) 388 ( 3.11) 684 ( 4.91) 217 ( 1.27) 1015 ( 1.71) 30 ( 0.06) 445 ( 4.83)
K2-16 416 ( 0.58) 529 ( 4.52) 30 ( 0.06) 134 ( 0.09) 545 ( 3.17) 746 ( 6.83) 243 ( 1.62) 1184 ( 2.12) 30 ( 0.03) 543 ( 7.07)
K2-32 492 ( 1.13) 555 ( 6.23) 30 ( 0.05) 134 ( 0.09) 647 ( 3.38) 787 ( 9.45) 299 ( 1.79) 1349 ( 3.54) 90 ( 0.06) 308 (13.09)

degrades moderately from 600 MiB to 500 MiB. As expected,
the other K2 configurations achieve higher throughput at the
cost of higher latency.

Next, we evaluate sequential writes with 64 KiB blocks. We
have seen that write requests are generally fast as long as
there is room in the drive’s write cache. Once the cache is
full, write throughput drops and latency sharply increases as
the drive starts to perform garbage collection. Figure 9 shows
the results again under NONE and the same configurations for
K2. Note that the K2 plots use a different y-axis than NONE.
We observe the same low write latencies with all schedulers.
From the green towards the blue plot points, the background
load increases its target throughput. As it reaches roughly

1250 MiB/s, the expected drop in throughput occurs, with all
schedulers performing around the 500 MiB/s mark. However,
K2 manages to constrain the resulting increase in request
latencies.

We also performed a measurement of random writes with
64 KiB blocks for a configuration, where 30% of the available
drive capacity is trimmed. In this setup, fewer blocks are
available for write caching. As we have observed in Section §III
for BFQ, K2 achieves the same latencies with 50% and 30%
trimmed blocks.

Figure 10 shows a selection of additional workload scenarios.
We have selected K2 with a queue bound of 16 requests. We
again observe the peculiarity, that random reads are faster
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Figure 11. 99.9th percentile latencies for K2 with multiple real-time tasks
with the same priority (left) and RT1 having a higher priority than RT2 (right).

than sequential reads. The 50/50 random read/write workload
experiences higher latencies, but K2 keeps all results well
below 8 ms.

Finally, we present the maximal throughput in Table II and
maximal latencies in Table III for all scheduler and workload
combinations. As expected, K2 with a queue bound of 8
loses some throughput for read operations, but with significant
reduction in 99.9th-percentile latencies.

B. Multiple Real-Time Tasks

To show composability of K2, we now run two real-time
applications RT1 and RT2 simultaneously. The background
load executes an 80/20 random read/write mix, while the real-
time applications issue random read requests, all with 4 KiB
block size. We evaluate two different setups: First, we set the
same I/O priority for RT1 and RT2, and we keep the 2 ms inter-
request interval, which we used in all previous experiments.
Second, we decrease the I/O priority of RT2 and also decrease
its inter-request interval to 250 µs. We chose this setup to
show that the lower-priority task RT2 does not impact the
higher-priority RT1, even though RT2 exercises a higher load.

Figure 11 shows the 99.9th percentile latencies for both
setups against a baseline of running a single real-time task
against background load. We can see that these setups do
not differ in their achieved bandwidth or latency except for
some latency differences in the low-bandwidth runs. As long
as the drive is not overloaded, requests from both real-time
applications can be served with latencies below 3 ms.

C. Application Benchmark

We round out the evaluation with the Sysbench benchmark6

in the OLTP read-only configuration. This setup emulates a
database querying workload using the MySQL InnoDB engine.
The benchmark executes mostly random read requests plus a
small number of writes to maintain the transaction log. We run
the Sysbench load generator and the MySQL database with
real-time priority and we add sixteen Unix dd processes in
direct I/O mode with 64 KiB block size as background load.
We use such a high number of processes, because dd performs

6https://github.com/akopytov/sysbench
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Figure 12. Event processing times of the Sysbench SQL benchmark for
different I/O schedulers with a read background load.
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Figure 13. Event processing times of the Sysbench SQL benchmark for
different I/O schedulers with a read/write background load.

synchronous I/O and therefore does not generate enough load
on its own to impact the real-time application.

Figure 12 compares all schedulers for a read-only back-
ground load. The length of the bars indicate the completion
latencies of database queries, where each query accesses the
storage multiple times. Figure 13 presents the same comparison
for a read/write background load, where eight dd processes
are reading and one dd is writing to a file. Since writes hit the
Linux buffer cache and are persisted asynchronously, a single
dd generates enough load. Both experiments support our claim
that K2 is able to trade throughput of background applications
for improved response times of latency-critical applications,
not only for micro-benchmarks, but also for complex database
workloads.

VI. RELATED WORK

There is a broad range of existing work on I/O scheduling,
so we group works related to K2 into three categories: research
with an approach similar to our work-constraining scheduling,
current works on SSD and NVMe scheduling for off-the-shelf
devices, and finally ideas for modifications of drive internals
to benefit applications with timing requirements.

A. Work-Constraining Approaches
At the heart of work-constraining scheduling is the idea of

restricting the choice of a second-tier scheduler by exposing

https://github.com/akopytov/sysbench


fewer requests to it. In the case of K2, the second-tier scheduler
is located within the NVMe drive controller’s firmware, which
independently decides in which order requests available in
the NVMe hardware queues are fulfilled. By constraining the
amount of requests in these queues, the maximum wait time
for any request in the queue is reduced.

Reuther et al. pioneered this concept for spinning disks in
their Dynamic Active Subset work [20]. Here, the second-
tier scheduler is either the NCQ implementation within the
disk or an OS-level throughput-optimizing disk scheduler like
SATF [4]. The Dynamic Active Subset has been revisited
by Povzner et al. for the Fahrrad scheduler [18], which uses
a different reservation mechanism based on RBED [3], but
a similar enforcement approach called Disk Scheduling Set.
Fahrrad also targets spinning disks.

TimeGraph [11] applies work-constraining to GPU schedul-
ing: real-time GPU workloads are prioritized by delaying the
dispatching of other workloads to the GPU subsystem.

B. Scheduling Off-the-Shelf SSDs

Kim et al. compiled one of the first analyses of SSD behavior
and designed an I/O scheduler from these findings [13]. They
focus on write requests, because on these early SSDs, write
latencies were erratic due to garbage collection. For modern
NVMe devices, the picture has changed, so these considerations
no longer apply.

FIOS [17] is a more recent work, but still targets the
single-queue Serial-ATA block layer architecture of Linux
and consequently compares against pre-NVMe Linux I/O
schedulers. FIOS’ design is similar to the BFQ algorithm [24],
which was published in the same year. BFQ is NVMe
compatible, so we compared K2 against BFQ rather than FIOS.
To the best of our knowledge, no comprehensive survey of
existing I/O schedulers has been conducted for NVMe devices,
which prompted us to do so in this paper.

Other works try to increase overall SSD performance by
optimizing request data alignment [14] or database indexing
structures on flash-equipped sensor devices [5]. The MAP+ I/O
scheduler [8] reorders I/O requests to use the page translation
cache within the drive’s FTL implementation more efficiently.
These ideas rely on intimate knowledge of internal device
parameters.

C. Changes to SSD Controllers

In order to improve end-to-end behavior, some researchers
propose changes to the FTL controller firmware. Qin et al.
improve garbage collection latency by splitting collection
operations into multiple steps, which execute within the slack
of real-time read and write requests [19]. Their approach
guarantees an upper bound for all request completion times,
but requires 2× over-provisioning in storage size.

Instead of splitting operations temporally, PartFTL [15]
partitions flash storage spatially. Read and write operations
target different flash chips to ensure that reads are never blocked
by writes. To implement the request partitions, PartFTL relies
on 25 % storage over-provisioning.

Other works like AutoSSD [12] and FlashShare [25] do not
offer hard guarantees. Like K2, they reduce tail latencies to
improve quality of service. AutoSSD schedules device-internal
background jobs like garbage collection, read scrubbing, and
mapping management so that they do not harm application
requests. FlashShare introduces an end-to-end notion of request
prioritization, which the system can use to express application
requirements to the SSD firmware.

A third group of works focusses on improving inter-
application fairness without reducing overall throughput. Jun
and Shin investigate fairness and accounting for SSDs with
single-root I/O virtualization (SR-IOV) [10]. Tavakkol et al.
reduce inter-application unfairness with an interference-aware
scheduler [23]. K2 deliberately ignores fairness, but allows
system designers to control request latencies of real-time
applications at the expense of reduced service for background
load.

VII. CONCLUSION

We have presented a survey of existing NVMe I/O schedulers
and found all of them lacking in terms of tail latencies and per-
formance isolation. Therefore, we designed and implemented
K2, a new I/O scheduler for Linux, specifically targeting NVMe-
attached storage. It is based on the concept of work-constraining
scheduling: K2 constrains the scheduling opportunities of the
second-tier scheduler located within the drive controller. In
doing so, it trades reduced throughput for lower tail latencies.
K2 reduces read latencies up to 10× and write latencies up to
6.8× in the 99.9th percentile, while penalizing throughput for
non-real-time background load by at most 2.7×.

K2 operates with off-the-shelf drives and can therefore be
deployed today. It is lightweight and device-agnostic, but only
provides empirical improvements and no hard upper bound.
To fix this, combining K2 with the existing work on real-time
capable flash controllers should prove beneficial. Also, K2
currently restricts the second-tier scheduler by a fixed number
of requests. In the future, we want to consider a dynamic
constraint depending on upcoming real-time load.
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