
Pluggable Components All TheWayDown
Nils Asmussen

nils.asmussen@barkhauseninstitut.org
Barkhausen Institut
Dresden, Germany

Michael Roitzsch
CarstenWeinhold

{michael.roitzsch,carsten.weinhold}@tu-dresden.de
Technische Universität Dresden

Dresden, Germany

ABSTRACT
The hardware and software requirements for the networked com-
puters built into cyber-physical systems are as diverse as the en-
vironments in which they are expected to operate. We propose an
integrated hardware/software co-design for building custom com-
pute hardware from pluggable components and modular system
software that is specifically tailored to these devices.

CCS CONCEPTS
•Computer systems organization→Architectures; Real-time
operating systems; • Security and privacy→ Systems security;
Security in hardware.

KEYWORDS
tiledarchitectures,operatingsystems, security, real-time, low-latency,
isolation, co-design, composable
ACMReference Format:
Nils Asmussen, Michael Roitzsch, and CarstenWeinhold. 2019. Pluggable
Components All TheWay Down. InNGOSCPS 2019: 1st International Work-
shop on Next-Generation Operating Systems for Cyber-Physical Systems, April
15 2019, Montreal, Canada.ACM, New York, NY, USA, 3 pages.

1 INTRODUCTION
Cyber-physical systems (CPSes) and the “Internet of Things (IoT)”
are already pervasive in industrial production and they are expected
to become ubiquitous in many other sectors, too. For example, con-
nected CPSes have great potential to better automate and optimize
critical infrastructure such as electrical grids and transportation net-
works, but there are alsouse cases inhealth care.However, a one-size-
fits-all solution for the compute hardware and system software of all
these devices is infeasible, primarily due to cost pressure and energy
constraints, but also because eachdomain requires different compute
capacity, sensors, and actuators. Instead, customized solutions are
needed for both the hardware and the software that drives it. System
designers should be able to easily assemble these specialized comput-
ers and their operating systems (OSes) from reusable building blocks.

At the software level, microkernels like L4 [3] provide a common
substrate to build custom OSes that can be tailored to specific use
cases by provisioning only those system services that are needed for
the application scenario. Furthermore, all system services, including
device drivers, run as isolated user-space programs. Themicrokernel
approach to building system software enables component isolation
in a way that helps enforce the principle of least authority. Systems
based on this principle improve security by design, as they limit
privileges of individual components. Each component also has a

NGOSCPS 2019, April 15 2019, Montreal, Canada

Core Core

Core

5G

DTU DTU

DTU

Core Crypto

DTU

DTU DTU

(a) Hardware architecture

Core Core

Core

5G

DTU DTU

DTU

Core Crypto

DTU

DTU DTU

App

App

Kern

App
App
App

DTU DTU

DTU DTU

(b) Software architecture

Figure 1: Overview of theM3 architecture

smaller attack surface and is isolated by default from failures in other
parts of the system.

We argue that microkernel-based OSes are well-suited for CPS
and IoT devices, as the underlying construction principle encourages
secure-by-design system software. In these connected devices, secu-
rity is a precondition for safety, as these systems have the potential
to cause physical damage to infrastructure or even bodily harm to
people. But we believe that microkernel-like ideas can also improve
hardware design. Hardware engineers often need to incorporate
third-party components into their systems, much like software de-
velopers use third-party libraries. For example, system-on-chip (SoC)
designers regularly integrate IP blocks from various sources, but not
all of themmay be trustworthy. A prime example are off-the-shelf
wireless modems, which run firmware that implements inherently
complex communication protocols, and which may therefore be
susceptible to attacks. Similarly to how a microkernel isolates mutu-
ally distrusting software components, a small and trusted hardware
component could limit the damage that a faulty or compromised
hardware block can do to the rest of the system. If carefully designed
and integratedwith thenetworkonchip (NoC), thishardwarecompo-
nent may also allow for simpler integration of third-party IP blocks.

In the following section, we summarize the state of the art of com-
ponentized architectures at both the hardware and OS level. Based
on that, we describe how pluggable components on both levels can
be combined to build customized and secure CPS or IoT platforms.
Finally, we discuss the open research challenges.

2 STATEOF THEART
2.1 Hardware Components
At the hardware level, tiled architectures [10] are already used today.
They enable modular system design and an easy integration of dif-
ferent components into one system, but do not solve the problem of
isolating potentially untrusted components from each other. M3 [1]
provides a solution by introducing a simple and trusted hardware
component into each tile, called data transfer unit (DTU), as depicted
in Figure 1a. The DTU serves both the purpose to add a uniform



NGOSCPS 2019, April 15 2019, Montreal, Canada Nils Asmussen, Michael Roitzsch, and CarstenWeinhold

interface to each tile and to isolate tiles from each other. The uni-
form interface enables the separate development of each component
(cores, modems, accelerators, . . . ) and simplifies the tilemanagement
as well as their collaboration at runtime. M3 is a hardware/software
co-design, where the M3 microkernel runs on a dedicated kernel tile,
as shown in Figure 1b. Applications, accelerators, and other IP blocks
are referred to as user tiles. To establish communication channels dy-
namically at runtime, the DTU offers a set of endpoints that need to
be connected to form communication channels. These channels can
only be established by the kernel tile, but not by user tiles. Since M3

does not impose any architectural requirements (such as different
privilege levels or a memory management unit) on the components
in user tiles, any component can be integrated. This idea can also be
taken further by integrating memory and I/O devices such as disks
or network interface cards as user tiles. For example, LegoOS [9] sug-
gested a similar architecture for data centers to increase modularity
and improve utilization.

2.2 Software Components
Combining independently developed components to create a larger
system is also a standard technique in software engineering. As a sys-
tem architecture paradigm, microkernels like L4 offer a compelling
way to place components into separate address spaces and enable
carefully controlled interaction between them. At the same time,
microkernelsmaintain a low resource footprint and provide efficient
communication primitives.We believe that these properties are vital
for CPSes and that strong isolation between components simplifies
reasoning about the overall system.We substantiate this belief with
a discussion of existing work using microkernels:

Security. Microkernels address security by reducing the Trusted
Computing Base (TCB). The TCB comprises all components that are
relied upon formaintaining specific security objectives like confiden-
tiality or integrity. The Nizza security architecture [2] implements a
secure VPN gatewaywith three components on top of amicrokernel:
one component provides TCP/IP networking for the Internet-facing
network adapter, a second component does the same for the intranet-
facing network adapter, and a third component implements the VPN
cryptography layer between the intranet and the Internet. Regarding
confidentiality and integrity of the VPN traffic, only the latter two
components have access to plaintext and are therefore part of the
TCB.Attacks from the Internet on theVPNdevicewould be absorbed
by the Internet-facing component, which never has access to plain-
text within the confines of its address space. Subverting components
outside of address space boundaries would require a vulnerability
within the microkernel or misconfigured communication channels.
The former can be addressed with formally verified kernels [5], the
latter with communication controlled by capabilities.

Real-Time. Microkernels have been researched extensively for real-
time use cases [4]. Many embedded real-time executives and time-
partitioning kernels bear close resemblance to microkernel designs.
On traditional systems like Linux, many activities happen implicitly
within the kernel as background work. On a microkernel however,
all activities happen explicitly within components. The system itself
does not perform any surprise activities that would perturb schedul-
ing. This principle allows to realize time as a first-class abstraction in

microkernel systems [8]. Furthermore, resource managers and I/O
schedulers to govern timely access to devices like sensors or actu-
ators can be implemented as components on top of the microkernel
rather than being baked into the monolithic kernel of traditional
systems. This way, these managers enjoy the same security, fault
tolerance, and scheduling advantages as any other component on
top of the microkernel.

3 CROSS-CUTTINGCONCERNS
After discussing the existing solutions and respective advantages
of pluggable components at the hardware and software level, we
now bring these two worlds together. We focus on security and real-
time, because of their cross-cutting nature, which poses interesting
challenges for the hardware/software co-design of future CPSes.

3.1 Security
Physical Separation. More performance-critical CPSes such as au-
tonomous cars or Industry 4.0 machinery require modern general-
purpose cores that perform out-of-order execution and speculative
execution to deliver the expected performance. Unfortunately, these
features and their interactions are complex, which is one of the rea-
sons why security issues like Meltdown, Spectre, and Foreshadow
have been lurking unnoticed in CPUs formany years. These security
issues allow attackers to leak information, which is in particular
a problem for devices that process sensitive data such as patient
records. While there are mitigations for the mentioned security
issues, the mitigations are similarly complex as the CPU features
that introduced them and it is therefore expected that more secu-
rity problems will be found in the future – either in the CPU or
the mitigations. For these reasons, we believe that physical separa-
tion of security-critical components is important to prevent such
side-channel attacks by design.

Placing software components on different physical cores is sup-
ported by most modern operating systems. M3 runs the kernel on
a dedicated tile and thereby also prevents side channels between the
kernel and applications by design. However, resource constraints
will prevent us from using dedicated cores for all applications. In
other words, some applications can be placed horizontally on differ-
ent cores, whereas some applications need to be stacked vertically
on a single core (see Figure 1b). This trade-off raises several research
challenges. First, how and when do we decide which applications
run on dedicated cores? Second, how canM3’s model of DTU-based
communication between tiles be combined with core-local inter-
process communication in case of vertical stacking? And third, what
are the latency differences between these communication types?

Software Components. We have already seen some advantages of
microkernel-based operating systems in the work mentioned in
subsection 2.2. Another important point is the ability to update in-
dividual components. For example, many devices still run old Linux
kernels, because the device manufacturer needed to develop custom
device drivers, which are part of the kernel (as a kernel module or
builtin) in Linux’ model. Since Linux’ internal API is a huge moving
target, vendors need to keep up with Linux’ development speed in
order to keep the system secure. In practice, many systems remain
unpatched.We believe thatmicrokernel-basedOSes are better suited
to address this problem. However, to enable updates and restarts of



Pluggable Components All TheWay Down NGOSCPS 2019, April 15 2019, Montreal, Canada

individual components without affecting the rest of the system, stan-
dardized interfaces between the components are required, which is
still an open challenge.

Another problem is that reality forces us to reuse and combine
existingcomponents. Ideally,wewould like to freelychoose the thick-
ness of isolation walls between such components. In some cases, we
need maximum performance and are willing to sacrifice security to
somedegree. In other cases,weprefer security over performance and
therefore want to place the components in different address spaces
or on different cores. Unfortunately, there is still tooling missing to
support this trade-offwith acceptable effort. One promising example
is Sandcrust [7] that allows Rust applications to use an existing and
untrusted library by running it in a separate address space. At the
same time, this only requires a simple annotation of the function to
sandbox, making it easy to use.

Remote Attestation. Cooperating software components need to trust
eachother forcertainsecuritygoals.Withinadevice, themicrokernel-
based OS can establish this trust implicitly by launching software
components and configuring their communication channels. How-
ever, for use cases that offload part of the processing to a data center,
the trust relationship spansmultipledevices.Remoteattestation tech-
niques can securely identify remote components using hardware-
based trust anchors and cryptographic protocols. An interesting
research question is how we can minimize the hardware require-
ments using hardware/software co-design in our M3 architecture.

3.2 Real-Time
As another topic that needs to be respected on all layers, we regard
real-time as a combination of predictability in timing behavior and
low-latency dispatching of activities.

Distributed Compute Resources. Predictability can be catered by in-
tegrating an existing real-time application onto a dedicated core for
real-time tasks. This core could run a traditional real-time operat-
ing system and would constitute the real-time island of the system,
while other hardware tiles could host non-real-time workloads. This
combination allows for maximum reuse of existing components,
but enables only limited interaction of real-time workloads across
hardware resources.

Interesting combinations of new hardware components, like com-
puter vision accelerators with real-time software components, re-
quire a much deeper integration of timing behavior across different
compute resources. M3 would enable such heterogeneous resources
to interact directly, but timing models and schedulability analysis
for such systems remain challenging. These connected compute
resources communicate with each other to solve an overall problem,
but they execute concurrently and independently, essentially form-
ing a distributed real-time system. Research on systems with both
CPUs and GPUs, for example, is still ongoing.

Low-Latency Communication. Timely interaction between compo-
nents requires low-latency communication channels. Microkernels
solve this problem for single-core systems with fast kernel entry
and exit paths, but cross-core communication remains a perfor-
mance problem. Decoupling [6] allows a multicore system to be
co-scheduled by both a traditional Linux system and a microkernel

to combine the support for existing software with the predictable
low-latency scheduler response of the microkernel.

If applications span across multiple separate cores, for example
to improve security by removing cache side channels, M3 in com-
bination with the DTUs can offer direct fast-path communication
between the cores. But latency guarantees for the on-chip inter-
connect remain an open problem, with priority channels or credit
systems as potential solution ideas.

4 CONCLUSION
We outlined how componentized, microkernel-based OSes can be
integrated with tile-based hardware architectures and chip-level
communication control in order to build customized CPS and IoT
devices. The isolation-by-default approach that is central to M3 en-
courages secure-by-design systems at both the hardware and the
software level. But important research challenges remain. For the
hardware part, the trade-off between physical separation to improve
security and sharing of resources to reduce cost depends on the
specific use case. With regard to software, it is still difficult to decide
where to place isolation boundaries. Finally, real-time analysis for
the inherent parallelism in tile-based systems is challenging. Better
tool support is needed to help system designers in all these areas.

5 ACKNOWLEDGEMENTS
This research was co-financed by public funding of the state of Sax-
ony/Germany.

REFERENCES
[1] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard

Fettweis. M3: A hardware/operating-system co-design to tame heterogeneous
manycores. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS’16, pages 189–203. ACM, 2016.

[2] Hermann Hartig, Michael Hohmuth, Norman Feske, Christian Helmuth, Adam
Lackorzynski, Frank Mehnert, and Michael Peter. The nizza secure-system
architecture. In 2005 International Conference on Collaborative Computing:
Networking, Applications andWorksharing, pages 10–pp. IEEE, 2005.

[3] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and
Jean Wolter. The performance of µkernel-based systems. In SOSP, volume 97,
pages 66–77, 1997.

[4] HermannHärtig andMichael Roitzsch. Ten years of research on l4-based real-time
systems. In Proceedings of the 8th Real-Time LinuxWorkshop, 2006.

[5] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, et al. sel4: Formalverificationof anoskernel. InProceedings of theACMSIGOPS
22nd symposium on Operating systems principles, pages 207–220. ACM, 2009.

[6] Adam Lackorzynski, Carsten Weinhold, and Hermann Härtig. Decoupled:
low-effort noise-free execution on commodity systems. In Proceedings of the 6th
International Workshop on Runtime and Operating Systems for Supercomputers,
page 2. ACM, 2016.

[7] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann
Härtig. Sandcrust: Automatic sandboxing of unsafe components in rust. In
Proceedings of the 9thWorkshop on Programming Languages andOperating Systems,
pages 51–57. ACM, 2017.

[8] Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. Scheduling-
context capabilities: a principled, light-weight operating-systemmechanism for
managing time. In Proceedings of the 13th EuroSys Conference, page 26. ACM, 2018.

[9] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A
disseminated, distributed OS for hardware resource disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI’18.
USENIX Association, 2018.

[10] DavidWentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, MatthewMattina, Chyi-ChangMiao, John F. Brown III, and Anant
Agarwal. On-chip interconnection architecture of the tile processor. IEEE Micro,
27:15–31, 10 2007.


	Abstract
	1 Introduction
	2 State of the Art
	2.1 Hardware Components
	2.2 Software Components

	3 Cross-cutting Concerns
	3.1 Security
	3.2 Real-Time

	4 Conclusion
	5 Acknowledgements
	References

