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Executive Summary

This document provides a theoretical foundation for the study of wireless networks using tools
from stochastic geometry, with a particular focus on joint communication and sensing (JCAS). It
begins with a concise survey of the mathematical foundations of the field and reviews significant
questions that have been addressed so far using this approach in cellular network scenarios.

The main contribution is the definition of a new set of performance metrics, grounded in
stochastic geometry, designed to evaluate both communication and sensing capabilities—
especially in joint settings. These metrics are intended to guide the analysis and design of next-
generation wireless systems where communication and sensing functions must coexist and
interact efficiently. The motivation for this work lies in the increasing importance of integrated
solutions that optimize resource sharing in spectrum, infrastructure, and processing.

This document plays a crucial role in the project as it serves as the theoretical basis for
Deliverables 4.1, 4.3 and 4.4, where these metrics will be implemented and tested in a simulation
environment. Deliverable 4.1is a key milestone, as it translates theoretical developments into a
concrete tool for evaluating JCAS performance under realistic scenarios.

The research is still ongoing, particularly concerning the statistical correlations between
communication and sensing functions. Additional metrics are also under investigation for future
implementation.

The work presented here reflects contributions from multiple INSTINCT partners: Aalto
University, CS-UPS, INRIA, NEC, UOULU and UPRC. It situates itself as a core component in the
broader effort to develop rigorous, efficient, and analytically grounded evaluation methods for
smart wireless systems.

Keywords

Stochastic geometry; Joint communication and sensing performance metrics; Holistic analytical
modeling
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1 Introduction

This deliverable surveys the basics of wireless stochastic geometry (SG).
The survey part is the object of Sections 2 to 3. In this framework, the
positions of network elements are represented as realizations of stochastic
point processes, and performance metrics, e.g. coverage or Shannon rate
and sensing capacity, are functionals of these processes. Information theo-
retic performance metrics can then be evaluated as spatial averages. This
provides a comprehensive system level analysis of large wireless networks
and a reduction of large data sets to a small number of parameters. This in
turn allows for network optimization in function of its parameters.

In a second step, the paper describes the new SG research directions
pertaining to JCAS. We start with a survey on how to extend the classical
metrics pertaining to the communication functionality to metrics appropri-
ate for the sensing functionality. The main novelty is in the definition of
joint metrics for JCAS. This is discussed in Section 4. We also explain how
to evaluate these SG-based performance metrics.

The last section (Section 5) of the paper is focused on the discussion
of further metrics that are mathematically well defined and that could be
useful in the context of INSTINCT.

2 Poisson Stochastic Geometry

Poisson Stochastic Geometry leverages a few basic models [1], [2]:

e Spatial Poisson point process, which are used to represent the locations
of transmitters;

e Spatial Shot—noise fields, which are used to represent interference;

e Poisson—Voronoi tessellations, which are used to represent “Connec-
tion to closest”.

2.1 Spatial Point Processes

A spatial point process on R?, ®, is a random, finite or countably-infinite
collection of points in the space R?, without accumulation. By ‘without
accumulation’, we mean that every bounded region contains finitely many
points.

One can think of a realization ® of a Point Process (P.P. from now on)

e cither as a set of points: ® = {t;} C R?



e or as a counting measure: ® =) . &, where ¢; is the Dirac measure
at t, so that

Yot = f)e(dr).
i R?
Here f is an arbitrary test function.

2.2 Poisson Point Processes

Let A be a locally finite non-null measure on R2.

Definition 1. & is a Poisson Point Process of intensity measure A if

k i
Pr{®(A;) = ni,...,0(Ay) = ng} = H<€_A(Ai)zx(71@>
=1 2

for all k£ and all disjoint sets A1, ..., Ag. In this equation, we are treating the
realisation of the point process ® as a counting measure, so ®(A;) represents
the number of points inside the region A;, which is an integer. The quantity
A(A;) represent the ‘measure’ of the set A; according to A. We will abreviate
Poisson Point Process as PPP, or as PPP(A) when the intensity needs to be
specified.

A homogeneous PPP of intensity A is a PPP of intensity measure
A(dz) = Adz, a multiple of Lebesgue measure.

Laplace Functional The Laplace functional of a P.P. ® is
Lo(f) = ]E[exp <— s f(z) @(daz))], f non-negative.
Proposition 2. The Laplace functional of PPP(A) is
caty = (- [ (1= @),

This is useful for evaluating the Laplace transform of the interference
created by a PPP.



Figure 1: Voronoi tessellation generated by a Poisson point process in R?.

2.3 Poisson Voronoi Tessellation

For a realisation ® of the point process, the Voronoi cell V) (®) of atom ¢
of ® is the set of all locations of R? that are closer to ¢ than to any other
atom of ®. Each Voronoi cell is a convex polyhedron of R2. See Figure 1
for an realisation example.

The empty ball criterion for Voronoi states that = € R? belongs to the
Voronoi cell of ¢t € ® iff the open ball of center x and of radius ||z — t|| is
empty of points.

If ® is a PPP with intensity A under Palm (i.e. PPP(A) plus an atom
at 0),

Ple € V(2)] = P[2(B(z, ||z]) = 0] = exp{—A(B(z, |lz]))}.

Here B(z, ||x||) is the ball of radius ||z|| and center x.

3 Poisson-Voronoi Cellular Networks

Assume that base stations (BSs) are arranged according to a homogeneous
Poisson point process of intensity A in R? . Users are assumed to be located
according to some independent stationary point process. Assume that each

10



user is served by the closest BS. This leads to service cells which are Poisson
Voronoi cells.

() - Stations

. - Users

- Connections

- Cells

Figure 2: A Poisson-Voronoi-Shannon network.

3.1 Shannon Rate in Poisson-Voronoi Cellular Networks

The Signal-to-Interference-plus-Noise Ratio (SINR) experienced by the typ-
ical user is defined by

e The signal power, which stems from the closest BS;

e The interference power, radiated from BSs outside the Voronoi cell of
the typical user;
e The thermal noise power N.

The Shannon rate offered to typical user is 7 = Blog(1 + SINR), where B
stands for the bandwidth. We show below how the law of the Shannon rate
offered to typical user can be determined.

11



Propagation Assumptions Assume the power law path loss model: at

distance r, the path loss is
I(r)= P,
with 8 > 2 the path loss exponent, which is a classical assumption in real-

world environments.

Fading model The fading assumptions are the following;:

e Fading on the downlink from BS to tagged user, represented by a
random variable S, is Rayleigh with mean % = Py

e Fading from other BSs is i.i.d., with representative random variable F’
with general distribution.
3.2 Coverage and Shannon Rate
Metric 1 within this context is the coverage probability of the typical user:
pe(T, N\, B) = PY[SINR > T] = PY,[Shannon rate > Blog(1 +T)]. (1)

Here, IP)?J denotes the Palm probability of the user point process [2]. This is
equivalent to

e the probability that typical user achieves target T" for SINR;
e the average fraction of users who achieve T for SINR;

e the average fraction of the network area in SINR “T-coverage”.

Metric 2 is the mean Shannon data rate R of the typical user, defined as
ER = Elog(1 + SINR).

Note that the bandwidth B is not included in the definition of this metric,
as it is considered as a controlled parameter. This metric can be rephrased
in equivalent terms as above.

3.3 Poisson—Voronoi—Shannon Formula

Theorem 3 ([4]). The probability of coverage in the cellular network is

o
pUTAG) = ma [ ey
0

can - B[ (o) ()]

12
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Expectation is with respect to the fading F', and
o0 o
t=0 t=z

The proof is based on the results listed below only. The signal power is
a function of the distance r to the closest BS, which is determined by the
empty ball condition. The interference power is characterized by its Laplace
transform as the Laplace of the PPP of base stations that are outside the
ball of center the UE and of radius r.
3.4 Special Cases

Special Case: =4 Defining

Q) = = [ expl=s?/2a,

00 2
—av _—bv? ™ a a
e e dv=,/—-exp|— — ],
/0 \ﬁ p<4b>Q(¢2b>
and hence

pe(T, A 4) = \/7%6"1’ ((AZ/}(Z}?)F) © (/\%))

we have

Special Case: Rayleigh I’ with the same law as S In this case, we
have

pe(T, )\, B) = A /00 e_mv(1+p(T,g))_#TNvﬁ/zdv’

0
where
2/6 /Oo 1 d
T =T ——du.
p(T, B) s TP
Interference limited sub-case Here we have
(T,\, B) = B
P T T (T By

Note that, since the right-hand side does not depend on A, one has a constant
coverage probability which is the same for all BS densities!

13



Special Case: Rayleigh F', g = 4, interference limited

1
pe(T, A, 4) = 1+ VT (r/2 — arctan(1/VT))’

3.5 Extensions of the basic Poisson cellular model

3.5.1 Initial Extensions

The following extensions have been considered since [4] (see e.g.

references therein):

e Multi-tier;

Beyond Rayleigh: Nakagami, Rice;

Beyond Poisson: Determinantal, Cox;

Uplink;
e Frequency reuse;
e Resource sharing within cells;

e Power control.

3.5.2 Recent research topics

Here is now a list of more recent research topics:

Cellular densification [5]

e For power law attenuation we have scale invariance;

[2] and

e For a wide class of bounded attenuation functions Area spectral effi-
ciency — 0 as BS density — infinity. Hence, there is a sweet spot in

terms of BS density.

Shadowing

e Geometry based obstacle shadowing [6] is based on convex stochastic

ordering (see Figure 3).

e Obstacle based Shadowing for millimeter wave UE [7], based on mul-

tiplicative cascades (see Figure 4).

It is shown in these papers that correlated shadowing is in fact beneficial to

wireless spatial averages.

14
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2
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Figure 3: Geometric obstacles.

4 S
; n+l
/ I’l
A | 4,

Figure 4: UE centric obstacles.

Beam management The setting of [8] features UEs with several pan-
els and given mobility. The main results are on the optimization of the
number/width of beams maximizing the mean effective spectral efficiency,
which takes into account both the Shannon rate and the beam handover
cost experienced by mobile users.

LEO Constellations NTNs based on LEO satellites require a new cellular
geometry with spherical characteristics. It leverages several types of point
processes on the sphere:

e Binomial point process or Poisson, like in [9];

15
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Figure 5: A LEO satellite constellation with 38 degrees inclination orbital
planes.

e Cox point processes on Poisson orbits [10].

These papers study downlink coverage and rate of low earth orbit satellite
constellations using spherical stochastic geometry.

The objectives of these studies are the analysis of this new type of global
radio access and of its cooperation with terrestrial networks.

4 SG Metrics for JCAS

4.1 The SG model

The SG model we propose to use here for an JCAS network is that of [12]. It
features @, Py, Pg, which are the Base Station (BS), the User Equipment
(UE), and the Sensed Object (SO) point processes, which are independent
PPPs with Ay > Ap and Ag > Ap. See Figure 6 for a realisation example.
One UE-SO pair is selected at random in the Voronoi cell of each BS.
Each BS transmits data to its UE (the communication part is hence
downlink) and at the same time tracks the parameters of interest of its SO
using the same frequency bands. The transmit power of the BS is split

16



A\ : BS locations
M : UE location
@ : Beam reselection locations
O : BS handover locations

Figure 6: Beam Management. Dashed lines: Beam boundaries; Solid lines:
Voronoi boundaries

between these two functionalities. The split ratio is one of the parameters
of the model.

We have defined (and characterized) in Subsection 3.2 the coverage prob-
ability and the Shannon rate of the typical UE. Let us now do the same for
the SO, assuming that the variables of interest concerning it evolve according
to a linear Gauss-Markov model and that these variables are observed by the
BS via a measurement sequence, which is typically a linear transformation of
these variables with additive Gaussian noise. Based on these measurements,
the BS iteratively maintains a belief (conditional expectation) on the vari-
ables of interest and tracks the first moment and the covariance matrix of
this belief through an extended Kalman filter. This Kalman filter leverages
the parameters of the Gauss Markov model and those of the observation
process.

17



Cell k

Sensing object /
person

Figure 7: Joint Design of Communication and Sensing for Beyond 5G and
6G Systems,” by T. Wild, V. Braun, and H. Viswanathan, published in
IEEE Access under the Creative Commons Attribution 4.0 International
License (CC BY 4.0).

4.2 Sensing performance metrics
4.2.1 Sensing capacity

Sensing capacity quantifies the rate at which a radar system reduces uncer-
tainty about target parameters (e.g., range, angle) by measuring the mutual
information between the true parameters and their noisy estimates. It there-
fore directly reflects estimation performance, with higher sensing capacity
indicating faster reduction in uncertainty. Sensing capacity is defined [13]
by
I(0 + Nest;0) 1
Teer 2T

where | K| denotes the determinant of K.
Here,

Crad :=

—logy (I + QV?R™1QY?)),

0 is the vector of unknown target parameters (for instance range and
velocity);

I(-;-) denotes mutual information;

Tcpi is the processing interval;

The prior P = N(0, Q) is Gaussian;

Nest ~ N (0, R) is the vector of estimation noise;

I is the identity matrix.

18



The setting is the following:

e Multicarrier waveform used to sense a single target in the presence of
interference from the JCAS network;

e The waveform consists of N, subcarriers, and the maximum burst
duration of the radar excitation signal is Ny multicarrier symbols;

o A subset S;aq € {0,1}VsXNe of these resource elements are used for
sensing;

e SINR,, ,,: the SINR on a resource element.

4.2.2 Sensing capacity bound

The sensing capacity is in general difficult to evaluate because R is difficult

to evaluate. As in most papers in the field we will rather focus on ng’

which uses the Fisher Information and is defined as

1
Crad = Tmlogz(IH—FleJQlﬂl), (2)

where J denotes the Fisher Information of the estimation problem related
to sensing. It follows from the Cramer Rao theorem that

Crad < Crag- (3)

The next theorem is proved in [12].

Theorem 4. The following bounds hold:
1 UB 1
5 10g2(1 + G . SINRrad) S TCPICrad S ].Og2 1 + §G . SINRrad s

where
SINRysa = D mnSINRpy

(man)esrad

and {nmn}, G are constants depending on waveform parameters and prior
covariance for 6.

As a direct corollary of this theorem, when SINR,,q is small,

CUB G

~— T SINRyug. 4
Y Slog@)Tep W

19



4.2.3 Sensing metric

By analogy with the definition in (1), we propose to define the basic SG
sensing metric as
0 G

P SINR,.q>T|,
B 210g(2)TCpIS Rrad > (5)

where T is a positive parameter and where IP’% denotes the Palm probability
of the BS point process [2]. Note that this metric is only valid in the low
SINR regime, which is natural in this setting (the signal power stems from
reflections and is hence low power).

This is equivalent to

e the probability that typical SO is sensed by its BS with a C’gg’ capacity
larger than or equal to T7

e the average fraction of SOs (or BSs) which achieve a C’g? capacity
larger than or equal to T'.

The computational aspects are similar to those discussed in the commu-
nication part and we will not discuss them further here.

4.3 JACS performance metrics

Consider now a JCAS setting where each BS splits its power to at the same
time communicate with its UE and sense its SO.

4.3.1 Marginals

The marginal metrics defined above in terms of coverage and sensing capac-
ity can be used almost directly, for instance through the coverage metrics

G

P (SINReopy > 7T) and PO ( ——————
0 (3INReom = T) am B(2log(2>Tcm

SINRyaq > S>

(T and S being the threshold parameters). The only modifications of JCAS
(with respect to the sole Communication or sole Sensing cases considered
above) are in the evaluation of the SINRs. Signal power has to be changed
to take into account the split of total power between the two functionalities.
Interference has also to be evaluated differently in view of the fact that
each BS simultaneously communicates and senses and that both operations
contribute to the interference seen by the process of interest.

20



4.3.2 Joint metrics

It is quite important to go beyond marginals and to define joint metrics for
JCAS. A key observation for this is that, since there is a bijection between
the BSs and the UEs in the model, we have

PP (SINReom0 > T) = P%(SINReom,ur > T), (6)

where by SINR¢om,0 we mean the interference seen at the origin (which is
a UE under ]P’?]), whereas by SINR¢om,ur we mean the interference seen at
the UE attached to the origin (which is a BS under P%). We highlight that
IP’% is the Palm probability for BSs (hence assuming the presence of a BS in
the origin), and PY; is the Palm probability of UEs (hence assuming a UE
at the origin). The last result follows from the mass transport principle [2].
We are now in a position to define the joint metric, which is simply

P (SINReom U > T, SINRyq > ), (7)

where (S,T) are parameters. The marginals of this joint PDF are those
defined above. This is equivalent to

e the probability that the SO of a typical BS is sensed by its BS with
a CYB capacity larger than or equal to 2log(2)STcpr/G, and that the

rad

UE of that BS is T-covered by the said BS;

e the average fraction of BSs which achieve a C’Eg’ capacity larger than
or equal to 21og(2)STcp1/G w.r.t. their associated SO and T-coverage

for their associated UE.

4.3.3 Derived metrics

The Shannon rate to the UE, which is directly related to the SINR for com-
munication, can be the service rate of a queue, with an arrival point process
of packets. The steady state of this queue is an instance of derived metric
for the communication functionality. Similarly, the Fisher Information for
the SO, which is directly related to the SINR for sensing, can be used in a
Kalman filter in charge of an iterative estimation of the variables of interest
to the BS. The steady state of this queue is an instance of derived metric
for the sensing functionality. This holds for both the marginal distributions
and the joint distribution.

21



4.3.4 Joint tuning (contribution made by UPRC)

The expressions of the marginals can be used to pose and solve optimization
problems. Here is a simple instance: let 0 < n < 1. Assume that the
constraint P%(SINReom,ug > T) > 7 is achievable by some power split.
Under the constraint IP’OB(SINRcomyUE > T) > n, what can be achieved at
best for E%(SINRrad)?

5 Further metrics

Here are known refinements of the coverage and Shannon rate metrics in-
troduced above:

e Fluctuations of the latter, e.g., Meta distribution, based on conditional
probability to be T covered given the environment.

e Non homogeneity case, for example, constellation based NTN where
the probability of T coverage and the mean Shannon rate are functions
of the latitude of the UE.

e Overhead aware case, for example, in the motion and beamforming
case, the effective Shannon rate which takes beam handovers and cell
handovers into account.

Natural and fundamentally new metrics can be proposed in the context
of INSTINCT. A simple example, which is depicted in 2D in Figure 8, is
that of RIS based T coverage extension, which is defined as the proportion
of space that is T covered in the presence of RISs and not in their absence.
This again can be defined mathematically as a spatial average and computed
using integral geometry.

5.1 Performance metrics in a certain area (contribution
made by NEC)

The simplest way of quantifying the performance of a certain KPI is via the
threshold function

1 ifk>T

0 otherwise

T(k,T)= {

where k denotes the value of the KPI to be evaluated, and T is the thresh-
old taken into account. This approach provides a clear separation between

22



Figure 8: Visibility regions associated with segment-obstacles.

“good” and “bad” performance. For instance, equation (1) can be written
as EY[T(SINR, T)].

When the KPI depends on a specific location x of an area of interest A,
it is possible to evaluate the goodness of the performance over A —instead
of a single point— as

D(A,T) = |,11 /A T(k(z), T)da,

denoting |A| the area of A. We quantify in this way the proportion of A
delivering at least the desired performance T

In the context of SG, we can further consider the average of D(A,T) for
a certain region around a typical BS as follows:

E%[D(A,T))].

For example, if A denotes the region that is within a certain distance of the
BS, this quantity corresponds to the average fraction of BSs that satisfy the
performance criterion defined by 7" within this surrounding region.

Threshold functions can be also used to evaluate multiple KPIs. For
instance, equation (7) can be written as

E% [T(SINRcom,EUa T), T(SINRrad, S)] . (8)

In the quenched case, i.e. for a fixed realisation of the spatial point process,
we can evaluate the joint performance in a certain region A. For instance,
if there are n KPIs to be evaluated,

_ 1 -
Djoint(AvT) = W /A HT(k‘(wl)vﬂ)d‘ﬁl
1=1
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denotes the proportion of A for which all the KPIs satisfy their dedicated
conditions determined by the threshold vector T = (T1,...,T},). To obtain
the average performance of this quantity with respect to a typical UE or
BS, it suffices to take expectation with respect to the corresponding Palm
distribution.

We finally mention an alternative approach provided by the sigmoid
function. For a threshold parameter T', and a control parameter 5 > 0, let

1

The same analysis we did can be done by substituting 7 for S, with the
advantage of having a performance metric that is more sensitive in some
cases to performance changes.

These area depending metrics are treated in [14] and [15].

6 Conclusions

SG provides a powerful framework for defining a wide range of performance
metrics. In this setting, the positions of BSs, UEs and SOs are modeled as
realizations of random point processes in space. Performance metrics emerge
as functionals of these processes, or as expectations of these functionals un-
der the corresponding probability laws. Thanks to known ergodic properties
in SG, it is possible to rigorously characterize the performance of a typical
BS or UE, and to study correlations between the performance of different en-
tities, as proposed in Section 4.3.2 in the context of communication-sensing
cooperation. Importantly, closed-form expressions can be derived in certain
cases, such as those presented in Section 3, illustrating the analytical power
of SG in specific network configurations.
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